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XY-like critical behavior of the thermodynamic and transport properties
of YBa2Cu3O7 „ in magnetic fields near T,

M. B. Salamon and Jing Shi
Department of Physics, Materials Research Laboratory, University ofIllinois at Urbana Cha-mpaign,

104 South Goodwin Avenue, Urbana, Illinois 61801

Neil Overend and M. A. Howson
Department of Physics, University ofLeeds, Leeds LS2 9JT, United Kingdom

(Received 3 December 1992)

The heat capacity, magnetization, and electrical conductivity of single-crystal samples of
YBa2Cu307 „have been measured and are shown to support the existence of an intermediate critical re-

gime in the vicinity of T„governed by the XY-like critical exponent v= —.Clear evidence is found for

the divergence of the ohmic conductivity along the line H (T) ~(1—T/T, ), the vortex melting line.
The glass exponents along that line satisfy zg(vg 1) 6.

In the mean-field phase diagram of a type-II supercon-
ductor, first elucidated by Abrikosov, ' superconductivity
disappears via the unusual continuous melting of the
vortex lattice along the line H, 2( T). As has been pointed
out repeatedly, however, the magnetic field introduces
a transverse length scale that reduces the effective dimen-
sionality of the superconductor from dimensionality d to
d —2. Fluctuations, which are ignored in Abrikosov s
solution, are then so greatly enhanced in three-
dimensional (3D) systems that H, 2(T) no longer marks a
line of phase transitions. An early treatment of the Auc-
tuations in the Gaussian limit by Lee and Shenoy was
followed by many extensions, mainly using perturbation
methods in the "high-field" limit

I
T —T,z(H)I

((H/IdH, ~/dTI. A more ambitious renormalization-
group calculation carried out in the same limit led to an
unbounded free energy and the conclusion that the tran-
sition is first order at all values of H, including zero; the
latter conclusion is not supported by simulations.

In this paper, we present fluctuation diamagnetism,
M (H, T), data taken on the same sample of
YBa2Cu307 used previously for heat-capacity mea-
surements, C (H, T). Those data, combined with magne-
toresistance data from a second sample, are shown to
lend weight to a phase diagram quite different from the
modified mean-field picture described above. This is a
consequence of the high transition temperature, small
zero-temperature coherence length, and large Ginzburg-
Landau parameter of this material. The zero-field criti-
cal temperature T, is considered to be a multicritical
point at the juncture of the Meissner line H„(T) and the
vortex melting transition H (T). ' We demonstrate that
both M(H, T) and C (H, T) behave as expected '' when
the fluctuation behavior is dominated by a critical point
belonging to the 3D, XY universality class. A similar
conclusion followed from a crossover analysis of the
zero-field heat capacity on a comparable sample. " The
data show no distinct feature associated with H, 2( T). To
locate the melting line H ( T), we have studied the
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FIG. 1. Magnetization data on a YBa2Cu3O7 „single-crystal
sample. The arrows mark the lowest-temperature points includ-
ed in the scaling analysis. Lower temperatures at each field are
in the irreversible regime.

temperature-field scaling behavior of the ohmic conduc-
tivity. This analysis complements earlier work' on the
current-temperature scaling at fixed field. The conduc-
tivity tends to diverge along H (T), with the same ex-
ponents deduced in studies of the nonohmic properties. '

Experimental details of the magnetic measurement on the
40-pg sample' will be reported separately.

Figure 1 shows the field-cooled magnetization in the vi-
cinity of T, =90.3 K. The temperatures indicated by ar-
rows on each isochamp correspond to the same value of
the scaled temperature, as we describe below. These lie
roughly at the limit of reversibility; however, zero-field-
cooled data were not systematically collected. Prange'
calculated the fluctuation contribution to the magnetiza-
tion in the Gaussian approximation and predicted that

M„(H, T)/H' =m [(T/T, —1)/H' j

where v= —,
' and m (x) diverges at x = —x„defining the

H, 2 line. This form was found by Gollub et al. ' to hold
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for conventional superconductors, so long' as
H 0.03H, z(0). Our data lie within the range of validity,
yet do not obey Eq. (1) for v= —'.

For three-dimensional systems, Eq. (1) is consistent
with the more general requirement that the fluctuation
Gibbs free energy have the scaling form' '

F„=g "P(Hg /@0),
where g

=
goI tI ', t = T/T, —1, @0 is the fiux quantum,

and d is the diInensionality of the system. Other scaling
forms have been proposed, which go beyond the Gauss-
ian approximation but which are valid only when
IT —T,z(H)l «T, H/H, z(0)=2 K for YBa2Cu307 „at
50 kOe, too small a range to be useful here.

Although the true critical behavior of the supercon-
ducting transition is not known, it is reasonable to ex-
pect' a regime where it resembles the A, transition of
He, i.e., the 3D XFmodel. Accurate estimates of the ex-

ponents for this model, obtained by renormalization-
group methods, ' are in accord with experiment' and we
use them here: v=0. 669 and heat-capacity exponent
o. =2 —dv= —0.007. While such a small value of e is in-
distinguishable from a logarithm, it will prove useful
below to retain a power-law form for the heat capacity.
Shown in Fig. 2 are the data of Fig. 1 collapsed according
to Eq. (1) with I/2v=0. 747. The arrows in Fig. 1 corre-
spond to the value x = t /0 = —4 X 10 . Data with
x & —4X10 would fall on the same curve, but are in
the irreversible regime. As we will show below, the ohm-
ic conductivity tends to diverge along a melting line lo-
cated at x = —4.2X10 Oe, so that melting and
irreversibility lines are closely correlated.

To treat the heat-capacity data in the same way, we re-
tain the small, negative value of a at the cost of adding a
nonscaling, but nonetheless critical, contribution to Eq.
(2) that sets the cusp value at T, . We then remove the
nonscaling contributions by treating the difference
C(H =0, T)—C(H, T). This difficulty was avoided in an
earlier analysis through the use of a logarithmic singu-
larity and a finite-size scaling ansatz. It is straightfor-
ward to show that

IC(H=0, T)—C(H, T)jH ~2 =c(x), (3)

with x =t/H, as above. The heat-capacity data of
Ref. 8, scaled according to Eq. (3), are plotted in Fig. 3.
The collapsing of the data is excellent, except in the
rounding region T, 0.2 K. The logarithmic amplitude
used in our finite-size analysis can be used to obtain the
cusp value at T, . In the absence of rounding, that
analysis predicts a cusp approximately ten times larger
than the observed peak which, if used in place of the
measured curve, would permit all the in-field data to
scale. It is not only the scaling of the data in the peak
(which is dominated by the low-field data) that is impor-
tant, but also the "corners" near x = —2X10 and
x = 1 X 10, where the in-field data rejoin the zero-field
heat capacity.

The nonohmic resistivity of Yaa2Cu3O7 „has been
studied extensively, ' providing solid evidence for a
melting line H (T) along which the ohmic resistance
vanishes. Away from the melting line, the fluctuation
contribution to the ohmic conductivity is predicted ' to
have the scaling form

—g2+z dS (H$2 )

where z is the dynamical exponent and S+(y) are scaling
functions that hold above (+) and below ( —) T, . It is
more convenient to use the temperaturelike scaling vari-
able x as in Eqs. (2) and (3), and take' z =2 and d = 3, so
that

cr H' =s(t/H' )

In this form, there is only one branch of the scaling func-
tion. For T )T„ the conductivity must remain finite as
H~0, so that s (x ~+ ~ ) =x ". At T, the conductivi-
ty is finite except at H =0, and s (0)=const. When weak
pinning gives rise to a vortex glass, the ohmic conductivi-
ty will diverge along a line given by x = —x . The be-
havior close to that line is governed' by the glass coher-
ence length g (T) ~(x +x ) g, which leads to the pre-
diction

—v (z —1~osH' ~(x/x +1)
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FIG. 2. Magnetization data of Fig. 1 scaled according to Eq.
(1) using XYcritical exponents from the e expansion.

FICx. 3. Heat-capacity data from Ref. 8 scaled according to
Eq. (3) with the same exponents as in Fig. 2.
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where z and vg are exponents governing the glass transi-
tion. The melting line, then, is given by
H (T)=[(I—T/T, )/x ] ".

The crystal used for the transport measurement was
grown at Leeds by methods similar to those described
previously. The transition width in zero field is 0.4 K.
Resistivity measurements were carried out by standard
four-terminal methods using a current density of 4X10
A/m to avoid self heating. The resistivity at 100 K is ap-
proximately 75 pA, cm. Details will be published sepa-
rately.

To calculate the fluctuation conductivity we subtract
the normal-state conductivity o.„~3/T from the mea-
sured conductivity, and scale the data according Eq. (5),
with the results shown in Fig. 4 for 10~H (40 kOe. The
lowest resistivity data have been corrected for a systemat-
ic error associated with an instrumental time constant.
The dashed line is s(x) ~x, the expected asymptot-
ic behavior at small fields. The solid line represents the
behavior predicted by Eq. (6) with z ( v —1 ) =6 and

x =4. 15X10 Oe =(695 kOe)
The results of Fig. 4 are consistent with a power-law

divergence of the linear conductivity along the line
H (T)=(695 kOe)(1 —T/T, )', reasonably close to the
previous values. ' ' Note in Fig. 3, however, that there
is no obvious feature in the scaled heat capacity at the
point x = —4. 1X10 . It is also evident in Fig. 4 that
the data fail to scale in a narrow region above
x = —2X 10, close to the "corner" in the heat-capacity
curve seen in Fig. 3. The conductivity is larger in higher
fields than would be expected for perfect collapsing. This
excess is the unexplained 'knee" in the resistivity curves
which is associated with pinning. The coincidence of the
two features suggests some sort of a crossover line,
perhaps the residue of the mean-field H, 2 line.

To address the applicability of the critical-point
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FIG. 4. Scaled conductance data. The fluctuation contribu-
tion is obtained from the measured conductance by subtracting
the normal background term (2900 K/0)/T from the data. The
dashed line is the expected asymptotic behavior =x; the solid
line is the divergence predicted for a vortex glass transition,—v (z —1)=(x +x ), with x =4. 15 X 10 Oe and
v (z —1)=6+0.5.

analysis, we turn to Ginzburg's famous 1960 analysis,
in which he introduced a characteristic reduced tempera-
ture gT that depends inversely on the sixth power of the
zero-temperature coherence length. When T, gT is exper-
imentally unresolvable, the singularities regularly associ-
ated with a critical point are unobservable. For conven-
tional superconductors, T, gT is of order 10 ' K, clearly
beyond experimental resolution, while for Y-Ba-Cu-0 we
have a readily resolvable T, gT-—1 K. There has been a
tendency, in discussing Auctuations in high-T, supercon-
ductors, to take the converse of the Ginzburg criterion
and argue that critical fluctuations cannot be observed
except in a temperature range much narrower than T, gT.
At T, gT, to the contrary, higher-order fluctuation contri-
butions exceed the Gaussian term considered by
Ginsburg. Such considerations' lead to a revised esti-
mate of T, (l+25$T) for the temperature range outside of
which Gaussian corrections suffice. Consequently, for Y-
Ba-Cu-O, the entire experimental range is inadequately
described by Gaussian perturbations.

Finally, we must comment on the use of perturbation
expansions about the mean-field Ginzburg-Landau solu-
tion. Prange' was among the first to use the Landau ex-
pansion to treat this problem, as did some later research-
ers. ' The Landau expansion results in a cascade of
phase transitions, the highest transition temperature
T„LL that of the lowest Landau level and the others
lower by multiples of hT=H/~dH, 2/dT~. So long as

~

T —TLL„~ (&b, T, it is generally argued that the remain-
ing transitions can be ignored. However, in the Prange
calculation, the sum over all levels brings in a leading
H ' factor that exactly cancels the Landau degeneracy
factor, guaranteeing the scaling properties of Eq. (2).
When the sum is truncated, the degeneracy factor enters
as a distinct thermodynamic field H' that scales as H'g,
rather than as Hg . In the language of the renormaliza-
tion group, the truncation process introduces a marginal
operator into the problem that was not present in the
original functional. As a consequence, the exponents that
appear are no longer related to the usual exponents P, v,
etc.

In summary, we have demonstrated that the magneti-
zation, heat capacity, and fluctuation conductivity of
YBa2Cu307 single crystals support a non-mean-field
picture of the transition region of a high-temperature su-
perconductor. In this intermediate critical regime, in the
field-temperature region above the vortex melting line,
the data are consistent with the critical properties of the
3D XY model, the model that describes the A. transition
of "He. We have observed identical scaling in the con-
ductivity of epitaxial Y-Ba-Cu-0 films, in the magnetiza-
tion of YBa2Cu408, and in other materials, results of
which will be reported separately.
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