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Coupling of microwaves to Huxon motion in Josephson junctions
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Phase locking of fluxon motion in a long Josephson junction is investigated theoretically for mi-
crowave coupling through the boundaries of the system. We demonstrate that the wave properties
of the fluxon motion during reflection are crucial for predicting the size of the locking range. Ana-
lytical results are compared to direct numerical simulations of the sine-Gordon model and excellent
agreement is found.

The eKort to explain and predict the behavior of mag-
netic Huxon motion in long Josephson junctions (LJJ's)
interacting with externally supplied microwave fields has
been stimulated by several experiments showing phase-
locking phenomena in both single junctions as well as
phase locking of arrays of LJJ's. ~ 4 Theoretically, exper-
iments have been successfully explained by use of the
sine-Gordon (SG) wave equation, modeling the LJJ.5 Nu-
merical calculations have shown some characteristics of
the phase-locking mechanism, but no direct comparisons
have been made to analytical results. Due to the comput-
ing time of the problem, long time simulations and scans
of the parameter space have typically been done by using
the simple particle map approach suggested by Salerno et
al.7 s and Malomed, s where a Huxon is treated as a parti-
cle with one degree of freedom and where the wave nature
of the junction field is neglected. This formulation has
proven to be a powerful tool for understanding the Huxon
dynamics, as long as the interaction between the particle
and the surroundings only takes place at the boundaries
of the system. The reflection at a boundary is in the map
approach assumed to be an instantaneous event, which
means that the wave nature of the reflecting fluxon is
neglected. In this paper we will demonstrate that this
is not always a good approach if the time of reflection is
not negligible compared to the characteristic time of the
boundary effect. This has particular consequences for the
study of phase locking of fluxon motion to subharmonics
of the external drive. ~o ~z In these cases the refiection
time may be comparable to, or even larger than, the pe-
riod of the external drive. For a well defined external
frequency, we evaluate analytical expressions for the en-
ergy change of the system during a reHection and we give
the analytical expression for the range in bias current for
which the voltage is constant (the locking range).

We will study the SG equation in the form

—Pt, —sing = o.P, —rl,

where P is the phase difference between the quantum me-
chanical wave functions of the two superconductors defin-
ing the junction. The spatial dimension, x, is normalized
to the Josephson penetration depth, Ag, and the tem-

poral dimension, t, is normalized to the inverse plasma
frequency, up, of the junction. The dissipative term,

0., represents the tunneling of quasiparticles through
the junction and the external bias current (overlap ge-
ometry) is represented by rl (normalized to the critical
current of the junction). The boundary conditions are
given by

P (0) = +P~(L) = b'+ csin At, (2)

where "+" represents the magnetic coupling and
represents the electric coupling (see Ref. 8 and references
therein). Here, e and A are the normalized amplitude and
frequency of the magnetic and electric field, respectively,
and the normalized length of the terminated system is
denoted by L. It should be noted that in case of the
electric coupling, the above notation describes a system
in the in-line geometry, where g = 0 and 6 represents
the bias current. The electric coupling in the overlap
geometry has been treated in Ref. 13. For simplicity
we will limit our analysis to the magnetic coupling to
the overlap geometry. That is, in the following, we will
assume 6 = 0 as well as only consider the "+" in Eq. (2).

Let us define the energy of the system in the usual
form,

H = [zP + zP, + 1 —cosP]dx.

From this we find the power flow to the system as

4't d&+ rl 4'td& —0t4'*l~=o+ 0t4'*le=~

(4)

As in Ref. 13 we will consider the shuttling fluxon in
the junction. In order to do this in a simple way, we will
limit the analysis to a one-collision event by studying
the analytical solution to the left-hand side of Eq. (1) for
L —+ oo:

, t 1 sinh[up(u)(t —r)]

(u cosh [p(u) x]

where p(u) = (1—u ) ~ is the inverse Lorentz contrac-
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tion of a traveling mode with the asymptotic velocity u
and ~ is the time of collision with the boundary at x = 0.
Inserting the above solution into the power expression
Eq. (4) we get

27t ug
—

(u) sech'[u&(u) (t —~)]

u~ + sinh [up(u)(t —r))

H = —a. P, dx—

Keeping the perturbation treatment correct up to first
order in the perturbation parameters (n, rI, and s), we
will regard the asymptotic velocity u as a constant. In
a phase-locked state, where the Huxon performs one rev-
olution of the junction in the time it takes the external
signal to go through III periods, we can find the constant
velocity u from the expression,

cosh[p(u)L/2] = (1/u) sinh[up(u)N~/2A] .

$2dxdt + 2Iq+ 2~b, (9)

where the I is given by

This equation is derived by using Eq. {5) in half of the
soliton period. In the phase-locked state, the energy of
the system must remain unchanged after one period of
motion, i.e. , the following condition is fulfilled:

2+%/0
HG]', 4 = 0 ~
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FIG. 1. The locking range in bias current as a function
of the amplitude of the driving field. Markers show the
results of direct numerical simulations of Eqs. (1) and (2)
for the parameters n = 0.1, I = 8, and 0 = Nu„where
u, = 0.375. The solid lines show the corresponding analytical
results, given by Eqs. (12) and (14).

velocities, since the velocity in this case cannot be treated
as a constant during the collision.

By adjusting the internal phase, Av. , the system may
now exhibit a range in the bias current for which the
voltage is constant. This range is given by Eq. (8),

sinh[Ip(u)/4vr] = (1/u) sinh[up(u)¹r/2A], (10)
'go —

z W & '0 & 'go + 2 W, (i2)

and the energy change during reHection due to the exter-
nal magnetic field is

cosh[~iAu 'p '(u) cos '(2u2 —1)]
I, = 4ns ~

i sin A~,
cosh[2 Au —'p-'(u) ~)

where the time integral for this contribution is carried
out for —oo & t & oo. The function cos i is defined
in the interval [0;x]. This expression, Eq. (11), is the
general perturbation result for a refiecting Huxon at a
boundary„oscillating with the frequency, A. As is clear,
this contribution has its maximum (~I, = 4vrscosA7)
for 0 = 0, u = 1, or u = 0. %'e note that the energy
contribution is not well determined for low asymptotic

where the center, rlo, and the size of the locking range,
liras, are given by

7rlV/0

go Qg dxdt,I o

87re cosh[2 Au p (u) cos (2u —1)]
I cosh[2 Au —'p —'(u)~]

(14)

and where u and I are given by Eqs. (7) and (10). For
large velocities, u ~ j., we may write

u= AL/Nm = ur, L/rr,
I =2~L,

and hereby get an approximative expression for the size
of the locking range:

s cosh( ~~ gl —(Lcu, /7r)2 cos [2(L~,/7r) —1]$
cosh[ ~2~' Ql —(L(u, /7r) z]

{i7)

Here, ~, denotes the frequency of the Quxon motion. Un-
der the approximation of constant asymptotic velocity
expressions (11), (14), and (17) are valid for the elec-
tric coupling as well. These expressions are, however,

only valid for odd N (even N) for the magnetic (electric)
coupling.

We have performed direct numerical simulations of the
system described by Eqs. (1) and (2) for the overlap junc-
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FIG. 2. The locking range in bias current as a function
of the soliton frequency. Markers and error bars show the
results of direct numerical simulations of Eqs. (1) and (2) for
the parameters a = 0.1, L = 8, 0 = N~„and e = 0.1.
N = 1: +; N =3: x; N =5: &. Thesolidlinesshow the
corresponding analytical results, given by Eqs. (12) and (14)
(thick), and Eq. (17) (thin).

FIG. 3. The locking range in bias current as a function of
the ratio N for two different soliton frequencies. The markers
0 and show the analytical result Eq. (14) for ~, = 0.375
and w, = 0.25, respectively, and the markers (with error bars)
+ and x show the corresponding results of numerical simu-
lations of Eqs. (1) and (2). Parameters are a = 0.1, L = 8,
A = N~„and e = 0.1.

tion in an ac magnetic field. For all the numerical simu-
lations we have chosen the damping and the length of the
system to be o. = 0.1 and I = 8. The numerical method
of integration is a finite difference scheme, second order
in time and fourth order in space, with a spatial grid size
of dx = 0.025 and a temporal grid size dt = 0.8dx. All
simulations were carried out by allowing the system to
relax over 100 soliton periods every time a change in a
parameter was made. After this relaxation time, the sys-
tem was allowed to run for an additional 100 periods to
average the normalized voltage over the system.

In Fig. 1 we show the upper and lower limits of the
locking range in bias current for different amplitudes and
frequencies of the ac magnetic field. We have fixed the
soliton frequency, cu, = 0/N = 0.35 for all the data
in Fig. 1. The markers represent the results of direct
numerical simulations of Eq. (1) and the solid lines are
the analytical limits given by Eqs. (12) and (14). As is
obvious from Fig. 1 we find excellent agreement between
the analytically predicted range of phase locking and the
dynamically evaluated locking ranges.

In Fig. 2 we have shown the frequency dependence of
the locking range for different values of N. Here, we have
fixed the amplitude of the driving field to e = 0,1 for all
the data shown. The markers and error bars represent
the results of numerical simulations and the solid lines
represent the analytically predicted locking ranges. The
thick lines represent the analytical expression Eq. (14),
where u and I are given by Eqs. (7) and (10), and the
thin lines represent the simplified expression Eq. (17),
valid for w, —+ 7r/L. It is clear from Fig. 2 that there is
a very close agreement between the results obtained nu-

merically and the ones obtained from the perturbation
analysis "ven the simplified expression Eq. (17) seems
to be very successful in predicting the locking range. We
note, however, that for relatively low soliton frequencies
there seem to be some deviations between the numeri-
cal and the analytical results. This is an artifact of the
assumption of constant asymptotic velocity in the pertur-
bation treatment, which is only a good approximation for
a relatively high velocity (soliton frequency).

Finally, in Fig. 3 we have shown the locking range as
a function of the driving frequency for two fixed values
of the soliton frequency. As noted above, only the odd
values of N will give rise to phase locking (to first or-
der in the perturbation parameters) when the magnetic
coupling is considered. The markers, 0 and &, represent
the analytical result Eq. (14) for w, = 0/N = 0.375 and
u, = 0/N = 0.25, respectively. The markers (with error
bars), + and x, show the corresponding results of nu-
merical simulations. Again we Bnd excellent agreement
between the simulations and the analytical expressions.
From Fig. 3 we see the exponential decay of the locking
range as the ratio, N, between the driving frequency and
the soliton frequency is increased [see Eq. (17) for large
Nj.

We have evaluated an analytical expression for the en-
ergy that a Huxon absorbs from an external magnetic Beld
(or electric field for an in-line geometry) during reflection
at a boundary of the junction. We have demonstrated
the correctness of the expression by comparing numeri-
cal simulations of phase-locking ranges in bias current to
analytically evaluated expressions. Excellent agreement
has been found. We note that this result is of particular
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importance for the numerical and analytical studies per-
formed using the map approach. ' ' ~ These studies,
performed for ~~ = 4vresin A7, have shown too large
interaction between the Buxon and the external ac field.
In particular, the studies of subharmonic steps must be

corrected with the interaction energy proposed in this
paper.

This work was performed under the auspices of the
U.S. Department of Energy.
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