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Bipolaron singlet and triplet states in disordered conducting polymers
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We emphasize the role of the dopant potential on the stability and magnetic properties of bipolarons
in a conducting polymer. For this purpose the singlet and the triplet states of a bipolaron have been cal-
culated within an adiabatic deformable continuum model including short-range Coulomb repulsions be-
tween electrons and attractions by the ionized dopants. We derive a new interpretation of the spin-
charge relation and of the so-called Curie and Pauli contributions to the susceptibility of disordered con-
ducting polymers.

Conjugated polymers such as polypyrrole or po-
lythiophene become conducting when doped with donor
or acceptor counterions. The carriers generated in this
process are known to be self-trapped by the conjugated
polymeric chains in the form of polarons or bipolarons.
In broad terms, the ground state of the bipolaron is deter-
mined by the competition between Coulomb repulsion
and self-trapping net attraction between carriers. ' In a
recent work, Le Csuenneck, Nechtschein, and Travers,
on the bases of an accurate revisitation of the magnetic
properties of polynaniline, express the idea that the finite
number of dopant ions near a single polymer chain is an
important parameter. However, the effects of the
charged counterions on the electronic and magnetic
properties have not been studied extensively, and the few
authors who have explicitly included the dopant (or
impurity) potentials in their calculations, do not consider
electron-electron correlations between carriers explicitly.

In this paper, we present a calculation of the bipolaron
stability in the presence of a pair of dopants, which in-
cludes electron correlations. We show that the positions
of the self-trapped carriers are essentially determined by
the position of the dopants. According to the inter-
dopant separation the ground state of the system is either
the singlet bipolaron or two separate polarons. Our re-
sults show that the distance l between the doping centers
is the essential feature determining the energy and mag-
netic properties of the bipolaron. This calculation ac-
counts for the usual spin-charge relation in conducting
polymers and the temperature dependence of the spin
susceptibility.

Except the best polyacetylenes, many of the insoluble
conducting polymers are composed of short chains of the
order of a few ten monomers and only a small part of
these materials is in a crystalline form. Thus the con-
sideration of a pair of polarons can give a good insight in
the physics of the system, provided that all the important
interactions are included in the mode1. Our bipolaron to-
gether with its pair of dopant potentials can be con-
sidered as the motif of a "bipolaron glass" appropriate
for the description of disordered conducting polymers
such as polypyrroles, polythiophenes, and even part of
the polyanilines. Of course more ordered systems, espe-
cially at high concentrations when bipolaron interactions

are expected, require other treatments such as polaron
lattice calculations. ' The higher concentration con-
sidered in the present work corresponds to a pair of coun-
terions on a chain segment of 12 pyrrole monomoners,
for example.

The main assumption of this bipolaron model is the
following: only the short-range part of the Coulomb in-
teractions will be considered through an on-site repulsion
U of the order of 1 eV and a dopant attraction Ud of the
order —0.1 eV. As we deal with a relatively large
Coulomb repulsion U, electron correlations will be con-
sidered within the Heitler and London approach. As in
Ref. 1 self-trapping of a pair of carriers as a large bipola-
ron is considered within Holstein's adiabatic continuum
model. The binding energy of a single polaron in
Holstein's model is E =Eb/12t, where t is the transfer
integral (2.5 eV) and Eb =F /2k where F is the linear
electron-phonon coupling constant and k is the stiffness
constant associated with molecular deformations. ' In our
conducting polymer problem E is of the order of 0.1
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Within the adiabatic approximation, the energy of a
pair of electrons on a chain is'
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Here b, (x) is the deformation of the chain at x, x, and x2
are the positions of the two electrons expressed in units of
the lattice constants, a, and p(xr, xz) is the electronic
eigenfunction. As appropriate in a one-dimensiona1 sys-
tem we model the Coulomb repulsion between the elec-
trons as U5(x, —x2). To this Hamiltonian we add the
short-range attraction of the carriers to the dopants at
—l/2, +l/2 with a strength Ud,

E„=Ud fdx, dx2ipi I5(l/2+xr )+5(I/2 —x, )

+5(l/2+x~)+5(l/2 —x2)] . (2)

To obtain the deformation pattern associated with the
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Then the total ground-state energy of this bipolaron is

Epp E
$
+E +EQ with the equi librium disp lacement be-

ing given by Eq. (3). As in Ref. 1, our treatment of the
two-electron variational wave function is written in terms
of one-electron ground-state eigenfunctions centered
about different sites:

y&(x) = (1/2L)' ~ sech[(x +a
&

) /L ],
pre(x) =(1/2L)'~ sech[(x —a2)/L ] .

The bipolaron wave function is then written as

(4)

ground state, we minimize the sum of the electronic ener-

gy and the strain energy E„=(k/2) f [b,(x)] dx, and we
obtain

5(x)=2F/k fdx)lg(x), x)l

'Pl(x 1 )9 2(x2 )—0 2(x 1 )9 1(x2 )
0's, T (x i ~

x ~ ) =
+2(1+s )

(5)

E„Cb —2UC, +2U&C,
a/L =

StC,

where

(6)

with s =f dx y&(x)yz(x). The + sign refers to the bipo-
laron singlet state and the —sign refers to the bipolaron
triplet. Therefore the bipolaron energy depends on the
width of the single-particle self-trapped state, L, and on
the separation between the two self-trapped carriers
a

&
+a2. The singlet (triplet) state is determined by

minimizing the energy with respect to L, b& =a&/L,
b2=a2/L: The minimization with respect to L yields
E~„=—2tC, a /L with

C, =
—,'(1+s ) '(1+3s +3sI~),

Cq = [4+(1+2 )I2+4sI3][1+s ], C, =
—,'(1+1)Iq(1+s~)

C, =
—,'(1+s ) '[ sech (b, D/2)+ s—ech (b2+D/2)+2s sech(b& D/2) sec—h(b~+D/2)

+ sech (b, +D/2)+ sech (b2 D/ )2+ s2—sech(b, +D/2) sech(b2 —D/2)],

where D = l /L is the normalized distance between the
two dopants and s =D sech 'D,

I2 =4[(D / tanhD) —1]sech D,
I3 = (2/ sechD) [(1/ tanhD) Dsech ~D]—.

In the absence of impurity potentials (U&=0), the en-
ergy of the singlet state coincides with the result of Emin,
Ye, and Beckel. ' When the electron repulsion U becomes
larger than 2.5EI„ the bipolaron becomes unstable with
respect to dissociation into infinitely separated polarons.
Here the triplet state is also considered. In the absence of
long-range Coulomb interactions, the energy of the trip-
let state does not depend explicitly on U. It is just the en-
ergy of two separated polarons:

2E = El, /6r =———', r (—a /L o ) .

When dopant pairs are introduced (U&%0), the results
are quite different. Even low pinning potentials
(~ U&/U~ ~0. 1) confine the two carriers sufficiently that
their centroids are determined by the positions of the
dopants. The ground-state energy is obtained by minim-
izing the energy values of Eq. (4) with respect to the cen-
troids of the self-trapped carriers for each interdopant
separation. The results of this optimization are summa-
rized in Fig. 1 where the bipolaron energy expressed in
units of E is plotted as a function of the interdopant sep-
aration expressed in units of the single-polaron width Lp,
for two different values of the Coulomb repulsion ex-
pressed in units of EI,. The pinning potential is Uz =0.2

in both cases. As a function of U, we find a transition be-
tween two clearly different regimes separated by a
thresold U, =2. 5( 1 —0.75 U& ). When U ) U„ the ex-
change energy 2J =

Egj„gee, E&zjpie& exponentially van-
ishes with the distance I, while, below the threshold, J
remains finite.

We shall see that the experiments fix U unambiguously
above the threshold U, and below the l =0 singlet bipola-
ron stability limit, U& =2.5(1+0.7U&). The attraction

I I I I I I I I I I I I I I I I I I I I I I I I I I ( I I I I I I I I I I I I I I I I—2

U=2.4

C:0
L

—6—
D
0
Q /

—8 —r

U=1.2

I

1 2 3 4

distance between dopants

FIG. 1. The bipolaron energy is plotted in units of E~ as a
function of the distance between dopants (in units of Lo). The
dashed and dotted curves represent singlet-state energies plotted
for two diA'erent values of the electron repulsion (in units of Eb),
while the solid line represents the triplet-state energy. In all
cases, the impurity attraction Uz was +0.2.
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to the dopants produces a nonmonotonic dependence of
the triplet energy on the interdopant separation. By us-

ing different asymptotic expansions of Eq. (6), we can
deduce the following expressions of the exchange energy
J (here, the bipolaron binding energy Eb 2E—is also 2J)
when U, (U& Ub .

(i) When the normalized distance between dopants
D & 2, the exchange energy is roughly constant, J=—Jo,

2Jo =8(1+1.1Ud —0.2U)2 —2(1+1.5Ud )~ .

(For usual parameters values D„,, remains in the range
3.5 —4.5.)

(iii) When D &D,„;„J=O, the two polarons are in-
dependent.

From the dependence of J on the normalized distance
D = l/L between dopants the magnetic susceptibility g of
the bipolaron glass can be calculated at temperature T,
within the simple approximation of an assembly of N/2
independent pairs:

(ii) When 2 & D & D„;„the exchange energy exponen-
tially decreases,

%Ps 4p ( 1 )dlXT=
ks T f 3+ exp( —2J/ks T)

(10)

2Jo= —2Jo expr —2(D —2)] . (8)

2 —U
a /L =16D„;,exp( —2D„;, ) D„,, +

d

The polaron position cannot be determined with an accu-
racy larger than the lattice constant a and the exchange
energy J is determined with an accuracy AJ=3a Ud/
2I. . Thus exchange energies J lower than AJ are ir-
relevant. This limit AJ fixes a critical distance D„;, be-
tween the dopants, beyond which the two polarons are in-
dependent. We find

where p& and kz are the usual universal constants, and
p(l) the probability distribution for finding two dopants
and the distance I. In general, the random distribution of
counterions p(l) is unknown. An explicit expression of
the susceptibility g(T) is obtained for a random distribu-
tion of the dopants along the chain with a low distance
cutoff Io.

p(l)=(l/1;) expI —(1 —lo)/1;],

where l, is the width of the distribution and the average
distance between dopants is (1)=in+1;. By using the
expressions of J deduced here above,

NP~ 1 ka
y(lo, 1, , T)= exp(lo/1; —) expI (D„;,L/1; )—]+—

L /21, .

I (L/(21;))

where 1 (x) is the usual gamma function.
It is important to notice that the details of the random

distribution of counterions p(l) do not affect the general
shape of the susceptibility versus temperature curve: in
any case, the product Ty( T) is an increasing function of
the temperature T and for the temperature less than some
typical value J(l), it is almost temperature independent.

Relation (12) is in good agreement with the numerical
calculation of the susceptibility presented in Fig. 2.
Indeed it contains two contributions: the first term in the
bracket is the Curie component and the second term pro-
vides a high-temperature upturn in the susceptibility,
which is sometimes referred to as a Pauli component. In
Fig. 2 the spin susceptibility has been plotted as a func-
tion of T for various values of (1). The decrease of the
susceptibility with the concentration of dopants rejects
the usual spin-charge relation. (Notice that in the
present formulation the total number of spins is con-
stant. )

It is worth noting the values of the parameters that we
have used to plot Figs. 1 and 2 where only reduced units
appear. Thinking about polymers such as polypyrrole or
polythiophene ' and choosing the polaron formation en-
ergy in the absence of dopant interaction E =0. 1 lead to

I I I

= io-I

CL
Q)
O
M

CL =
M

=lo4

l I I I

6 10 30 60 100

Temperature T(K)

lo &

300

FIG. 2. The spin susceptibility in units of Npz/k& is plotted
vs the temperature between 3 and 300 K for different dopant
concentrations. (1) is the average distance between dopant
pairs. The minimal distance lo between dopants was considered
to be two lattice constant 2a in all cases. The other parameters
are the same as in Fig. l and in the text. There is no adjustable
parameter. The higher concentration considered here ((1)=L)
corresponds, for instance, to a pair of counterions on a chain
segment of 12 pyrrole monomers (L =4).
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Eb = l. 7 eV, U =4 eV, Ud =0.3 eV, Lo =2.9a (single po-
laron width); then the model yields a formation energy of
the polaron in the presence of a dopant of 0.17 eV and a
bipolaron binding energy at low distances 2Jo= —0. 17
eV. These values are surprisingly reasonable and con-
sistent with each other. With this reasonable set of
values and no adjustable parameters, the spin susceptibili-
ty resembles the experimental data from different groups

in the world '" including recent results measured in our
group in disordered polypyrrole. '
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