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We show how all extended graphitic tubules constructed by rolling up a single graphite sheet can be
defined in terms of their helical and rotational symmetries. Specification of these symmetries is practi-
cally mandatory in all but the simplest calculations of tubule properties as a function of radius and struc-
ture. We also report results of a tight-binding study implemented by using these symmetries. This study
shows that independent of their helicity the larger-diameter, moderate-band-gap semiconducting tubules

all have band gaps given approximately by E,

=|V,l(dy/R+), where R, is the tubule radius and ¥V is

the hopping matrix element between nearest-neighboring 2p orbitals oriented normal to the tubule sur-
face and centered on carbon atoms separated by a distance d, along this surface. In addition, we show
that all tubules constructed by rolling up the graphite sheet can be labeled in a fashion familiar in the
description of helical chain polymers with translational symmetry.

Very recently, Ebbesen and Ajayan' found carbon-arc
conditions that yield gram quantities of the extended
nanometer diameter carbon fibers discovered by lijima. >
This advance should stimulate many additional studies of
the mechanical and electronic properties of these novel
fibers. Already theoretical studies of the individual hol-
low concentric graphitic tubules, which comprise these
fibers, predict that these tubules will exhibit conducting
properties ranging from metals to moderate-band-gap
semiconductors depending on their radii and helical
structure.®”® Other theoretical studies have shown that
these tubules should have the high strengths and rigidity
that their graphitic and tubular structure implies.” The
metallic tubules—termed serpentine’—have also been
predicted to be stable against a Peierls distortion at and
far below room temperature® making this family of tu-
bules good synthetic targets for light-weight, high-
strength metals.

The structures Iijima observed can be visualized as a
conformal mapping of a two-dimensional (2D) graphitic
lattice onto the surface of a cylinder? so that the proper
boundary conditions around the cylinder can only be
satisfied if one of the Bravais lattice vectors of the graph-
ite sheet maps to the cylinder circumference. Hence,
each real lattice vector R defines a different way of rolling
up the sheet into a tubule.* ® The point-group symmetry
of the honeycomb lattice will make many of these
equivalent, however, so that unique graphitic tubules are
generated by using only the one-twelfth irreducible wedge
of the Bravais lattice shown in Fig. 1. If we introduce the
set of primitive lattice vectors R, and R, depicted in Fig.
1, then R can be expressed as R=n R;+n,R, and hence
each tubule labeled by the pair of integers [n,,n,].>"8

All tubules generated by the conformal mapping are
translationally periodic along the tubule axis.*”’ How-
ever, even for relatively small-diameter tubules, the
minimum number of atoms in a translational unit cell can
be large. For example, if n; =10 and n, =9 then the ra-
dius of the tubule is less than 0.7 nm, but the translation-
al unit cell contains 1084 carbon atoms. The rapid
growth in the number of atoms that can occur in the
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minimum translational unit cell makes recourse to the
helical and higher point-group symmetries of these tu-
bules practically mandatory in any comprehensive study
of their properties as a function of radius and structure.
Herein, we show how all graphitic tubules defined by R
can also be defined in terms of their helical and rotational
symmetries.® Using these symmetries we then calculate
the band gaps of those tubules that have been predicted
to be moderate-band-gap semiconductors based on the
band structure of 2D graphite.»® Our calculations lead
to a rule of thumb for estimating the band gaps of this
family of semiconducting tubules. We also show that all
tubules defined by R can be labeled in a fashion familiar
in the description of helical chain polymers with transla-
tional symmetry. '°

The rotational and helical symmetries of a tubule
defined by R can be seen by using the corresponding sym-
metry operators to generate the tubule. This is done by
first introducing a cylinder of radius |IR|/2m. The two
carbon atoms located at d=(R;+R;)/3 and 2d in the
[0,0] unit cell of Fig. 1 are then mapped to the surface of
this cylinder. The first atom is mapped to an arbitrary
point on the cylinder surface, which requires that the po-
sition of the second be found by rotating this point by
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FIG. 1.
lattice vectors R; and R, are defined with the dotted lines
denoting the [0,0] unit cell.

Irreducible wedge of the graphite lattice. Primitive
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2m(d-R)/|R|? radians about the cylinder axis in conjunc-
tion with a translation |d XR|/|R| units along this axis.
Next, note that the cylinder axis must coincide with a Cy,
rotational axis for the tubule, where N is the largest com-
mon divisor of n; and n,. Thus, the positions of these
first two atoms can be used to locate 2(N —1) additional
atoms on the cylinder surface by (N — 1) successive 27 /N
rotations about the cylinder axis. Altogether, these 2N
atoms complete the specification of the helical motif
which corresponds to an area on the cylinder surface
given by A,,=N|R;XR,|. This helical motif can then
be used to tile the remainder of the tubule by repeated
operation of a single screw operation §(4,a) representing
a translation % units along the cylinder axis in conjunc-
tion with a rotation a radians about this axis. To find 4
and a and hence determine §(h,a), first note that there
must exist a real lattice vector H=p R, +p,R, in the
honeycomb lattice such that 2 =|HXR|/|R| and
a=27(H-R)/|R|?. In terms of H and R, the area of the
helical motif on the cylinder surface, 4,,, equals |HXR]|.

However, A4,, also equals N[Rl ><R2|. Therefore,
|[HXR|=N|R,;XR,]| or equivalently,
pyny—ph,==EN . (1)

There are no other constraints on H and hence on
S(h,a). If a set of integers {p,,p,} satisfy Eq. (1), then
so too will the sets {(p,xn,),(p,xn,)} and { —p,;,—p,}.
These uncertainties arise because a is defined modulo 27
and if &(a,h) generates the tubule, then so will
& —a, —h). For uniqueness, we restrict R to the irre-
ducible wedge of Fig. 1, [n; = n, 2 0], take p; =0, choose
the plus sign in Eq. (1), and then find the single solution
set which yields the minimum value of |H|. These
choices restrict (4,a) to the right-handed screw opera-
tion along the positive tubule axis that yields the
minimum twist angle a around this axis. Note that / is
independent of the choice of H, because
h=|HXR|/|R|=N|R,XR,|/IR]|.

These results show that every tubule defined by R can
be generated by first mapping only two atoms onto the
surface of a cylinder of radius |R| /27 and then using the
rotational and helical symmetry operators to determine
the remainder of the tubule. As an example, consider the
[6,3] tubule shown in Fig. 2 which is defined by
R=6R;+3R,. Then the first atom of this tubule is
mapped to an arbitrary point on the surface of a cylinder
of radius (3V'21/27)|d| and the position of the second
then found by rotating this point 7 /7 radians around the
cylinder axis in conjunction with a translation |d| /(2V'7)
units along this axis. Because N equals 3, the cylinder
axis must coincide with a C; axis for the tubule. Thus,
the positions of these first two atoms can be used to lo-
cate four additional atoms on the cylinder surface by two
successive 27 /3 rotations around this axis. Altogether,
these six atoms complete the specification of the helical
motif for this tubule. To determine &(h,a) used to gen-
erate the remainder of the tubule from this motif we then
solve Eq. (1) subject to the constraints above to find the
solution set {1,1}. Hence, H=R,+R,, which in turn
implies that h =3|d|/(2V'7) and a=23w/7. If this resul-

FIG. 2. Left: One-third of the [6,3] tubule generated by ap-
plying &a,h) with a=37/7 and h=3|d|/(2V7) to only the
first two atoms mapped to the cylinder. Thin dark lines are not
bonds but are rather included as a guide to the eye. Right: This
same one-third plus the remaining two-thirds of the [6,3] tubule
generated by applying & to the full six-atom helical motif.

tant $(h,a) is applied to only the first two atoms mapped
to the cylinder surface, then one-third of the tubule is
generated as illustrated at the left of Fig. 2. However, if
the full helical motif is used, then the entire structure is
generated as shown at the right of Fig. 2.

The helical and rotational symmetries of these tubules
are broadly useful in studies of their properties. Herein
we use these symmetries to study their electronic struc-
ture as a function of radius and helicity within a tight-
binding framework. To this end, first assume that each
carbon atom in a tubule is described by j atomic-centered
basis functions. Next, let (m,/) denote a cell in the tubule
generated by first mapping the [0,0] unit cell of Fig. 1 to
the surface of the cylinder and then translating and rotat-
ing this cell by / applications of the rotational operator
@y followed by m applications of §(4,a). Like the heli-
cal motif, these cells tile the tubule, but contain 2 instead
of 2N carbon atoms. In this notation, a cell labeled by
(m,l) in the [n,n,] tubule corresponds to the unit cell in
the plane located at rq1q2=q1R1+q2R2, where from the

definitions of R and H and with the help of Eq. (1),
m=(q,n;—qn,)/N and [I=q,p,—q,p, , )

with [ defined modulo N. Now, let |m,l) denote a row
matrix with 2j elements corresponding to the 2j basis
functions centered on the two carbon atoms contained in
the tubule cell labeled by (m,l). Then, because $(a, k)
and @y commute, symmetry adapted generalized Bloch
sums given by

. 1 M N—1 .
K,n>= lim ——— ikm Zmnl/Nm,l) , (3)
{ M— \/ZNM m=2—M [goe € |

can be constructed such that Cylk,n)=e 2"V, n)

with n =0, ...,N —1and $a,h)|k,n)=e *|k,n) with
—m7<k=1. Note that, if a=2wm with m an integer,
then k corresponds to a normalized quasimomentum, i.e.,
k= —hk, where k is the traditional 1D wave vector from
Bloch’s theorem.!! Next, note that the matrix elements of
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the tight-binding Hamiltonian # between these Bloch
functions vanish, unless #» =n' and k=«' so that

(', n'|H|k,n)

© N—1 .
:‘Snn’(smc' 2 2 e'Kmezmnl/N<O,0‘7‘[|m,l> . (4)
w [ =0

m=—

Equation (4) reduces the matrices to be diagonalized in
a tubule band-structure calculation to a size no larger
than those encountered in a corresponding band-
structure calculation for graphite. For example, if we as-
sume an all-valence carbon s and p tight-binding model,
then the problem is reduced to the diagonalization of a
8 X 8 matrix for each x and n. In addition, first-principles
local-density functional (LDF) calculations indicate’ that
the highest occupied and lowest unoccupied valence
bands of these tubules should be primarily formed from
the set of carbon p orbitals (one per carbon atom) orient-
ed normal to the tubule surface and denoted by p,. If we
assume only this set of valence functions, then the right-
hand side of Eq. (4) is reduced to a 2X2 matrix. This
2 X2 matrix is readily diagonalized to yield (within a con-
stant on-site term) the one-electron dispersion relations
for the [n,n,] tubule:

nik—2mnp,
€,(k)==xV, |3+2cos N
n,k—2mnp,
+2 —_—
cos N
172
[nytnylk—2mn[p,+p,]
+2cos N R

(5)

where p, and p, are given by Eq. (1), n =0, ... ,N—1,
and —m <k =m. In obtaining this result we have retained
only the matrix elements between nearest-neighboring p,
orbitals, V,, and neglected the small differences in V)
that arise because of different C-C bonding directions on
the tubule surface. We have also used Eq. (2) to deter-
mine that §' " /N)@ip' and oS°(in2/N)@;p2 can be used to
locate the four nearest-neighboring cells to (0,0) on the
cylinder surface.

Equation (5)—Ilike its counterpart derived by first ob-
taining the band structure of graphite and then imposing
additional periodic boundary conditions arising from rol-
ling up the sheet>®—predicts that an extended tubule
will have a zero band gap if and only if n;, —n, =3q with
g an integer. However, Eq. (5) neglects the effects of cur-
vature which induces small s-p, hybridizations and slight
shifts in V,. With the exception of the serpentine tubules
(n;=n,), which retain zero band gaps for any diameter
because of symmetry,’ these residual interactions should
open a small gap at the Fermi level.*"® The other tu-
bules, (n; —n,)#3q, should be moderate-band-gap semi-
conductors>® which will have their band gaps E, per-
turbed by these interactions. However, as |R| increases,
curvature effects will decrease and hence Eq. (5) will pro-
vide an increasingly accurate expression for calculating

E,. We have used Eq. (5) to calculate E, for all tubules
with n; —n,73q and diameters from 3 to 35 d,, where
d,=|d|. Figure 3 depicts the results of these calculations
with each point corresponding to a different tubule.
These results show that with increasing radius of curva-
ture, RTElR|/27T, the effects of differing helicities re-
tained in Eq. (5) rapidly diminish with all moderate-
band-gap tubules of similar radii having similar band
gaps.

The inset in Fig. 3 depicts a log-log plot of the same tu-
bule data presented in linear scale in the main portion of
the figure. A least-squares fit to these data yields a slope
of —0.998 with a correlation coefficient of —0.999 85.
Thus, Eq. (5) predicts that both chiral and achiral tubules
with n, —n,53q have band gaps proportional to 1/R.
Stimulated by these results, we have shown by direct
analysis of the states in the neighborhood of the well-
known K point of graphite, subject to the additional con-
straint imposed by rolling up the sheet, that tubules with
n,—n,73q have band gaps given approximately by
E,=|V,l(dy/Ry). With increasing Ry, d, will decrease
and |V,| increase. An upper bound (small R ;) estimate
for d can be obtained from geometry optimized LDF re-
sults for the [5,5] tubule, which predict*’ that d,~0.144
nm with a corresponding value of |V,|=~2.4 eV. A lower
bound (large R;) estimate for d, can be obtained from
similar calculations on 2D graphite, which predict'? in
agreement with experiment for crystalline graphite, that
dy=~0.142 nm with a corresponding value of |V,|=2.7
eV. For the larger radii tubules, not only should
E, = |V,l(dy /R 1) provide an excellent approximation to
E, but also ¥, and d,, should nearly coincide with their
values appropriate for 2D graphite. Hence, we conclude
that tubules with n, —n,%3¢q do not have band gaps ap-
proaching room temperature until their diameters exceed
ca. 30 nm. Therefore, if tubule samples can be purified to
the point that all tubules have radii significantly less than
ca. 30 nm then samples formed solely from tubules with
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FIG. 3. Band gaps predicted by Eq. (5) in units of | V| for all
extended chiral and achiral moderate-band-gap tubules
(n, —n,73q) with diameters from 3 and 35d,. The inset is a
log-log plot of the same data while the solid curve in the main
portion of the figure is E, =|V,|(d,/R ), approximately valid
when R is large.
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n, —n,73q should not be metallic.

The derivations of Egs. (1)-(4) do not assume transla-
tional symmetry along the tubule axis, only a underlying
2D lattice characterized by a set of primitive translation-
al vectors. For any single helix such a lattice can always
be found, even if the helix does not have translational
symmetry along its axis. However, all tubules defined by
R in the honeycomb lattice also have translational sym-
metry with a repeat length along their axes given by
V'3|R/, as can be seen by inscribing a hexagon with a side
coinciding with R in the lattice prior to mapping to the
cylinder. Hence, M =V'3|R|/h and T=Ma /27 give the
number of motifs and complete (27 radian) helical turns
in this translational repeat unit, respectively. These re-
sults allow every tubule to be labeled by 2N« M /T and A,
in a notation familiar in the description of helical chain
polymers with translational symmetry.!® It might hap-
pen that M and T are not relatively prime, which implies
that V'3|R| is not the minimum translational repeat
length. Indeed, by constructing a vector perpendicular to
R but lying in the honeycomb lattice, it is readily seen
that the minimum translational repeat length is given by
V3|R|/L, where L is the largest common divisor of
(2n,+n,) and (2n,+n,). Hence, L =N, unless there ex-
ists an integer m such that (n, —n,)/N =3m, in which
case L =3N. Because the fractionlike notation M /T in-
dicates that any common factors between M and T
should be eliminated, the 2N %M /T notation accounts
for the possibility that the minimum repeat length (corre-
sponding to a least one complete helical turn for the
definition of a), can be less than V'3|R|, without chang-
ing the definitions M and 7. In this notation the [6,3] tu-
bule shown in Fig. 2 is labeled as a 6%14/3 helix with
h=3|d|/(2V/7). The notation is further clarified for this
tubule in Fig. 4, where the six atoms that will form the
helical motif (@’s), the 14 successive applications of
&(a,h) (represented by H in the plane) necessary to gen-
erate the translational unit cell (arabic numerals), and the
three complete helical turns in this repeat unit (roman
numerals) are all depicted.

We have shown how all tubules defined by R in the
honeycomb lattice can be generated using their helical

FIG. 4. Six-atom helical motif (®@’s), 14 helical steps (arabic
numerals), and three full twists (roman numerals) used to gen-
erate the minimum translational repeat unit for the [6,3] tubule.
The light dotted lines illustrate the C; axis for this tubule.

and rotational symmetries. Specification of these sym-
metries represent a necessary starting point for all but the
simplest calculations of tubule electronic and structural
properties. Using these symmetries we have calculated
the band gaps of all extended, moderate-band-gap tubules
(ny—n,#3q) with diameters from 3 to 35 d,,. Indepen-
dent of helicity, we find that the larger-diameter members
of this family of semiconducting tubules have band gaps
given approximately by E, =|V,|(d,/R ) and hence do
not have band gaps approaching room temperature until
their diameters exceed approximately 30 nm. We have
also shown how tubules constructed by rolling up a single
graphite sheet can be characterized by a nomenclature
often used to describe helical chain polymers with
translational symmetry.
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