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Numerical studies of a 36-site kagomé antiferromagnet
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The ground-state wave function for the spin—% quantum antiferromagnet on a 36-site kagomé
structure is found by numerical diagonalization. Spin-spin correlations and spin gaps indicate that
the ground state of this system does not possess magnetic order. The spin-Peierls order is studied
using a four-spin correlation function. The short-range structure in this correlation function is found
to be consistent with a simple dimer-liquid model. The spin-Peierls order, if it exists, must be quite

small.

It has long been speculated that low-dimensional quan-
tum spin-% antiferromagnets may have spin-disordered
ground states.! Through various approaches, it is well
established that the spin—% Heisenberg antiferromagnet

(HAF) on a square lattice, with Hamiltonian

H=) 88, (1)
(ig)

has a magnetically ordered ground state.? Disordered
ground states are more likely to be found in frustrated
systems with large quantum fluctuations, i.e., small spin
S and low coordination number. The HAF on the kagomé
structure is a very good candidate because it is both
frustrated and has a low coordination number. Classi-
cal spins on the kagomé structure are just as frustrated
as spins on a triangular lattice but have a lower coor-
dination number. Moreover, ground states for classical
spins on the kagomé structure have a local degeneracy
whereas the degeneracy on the triangular lattice is only
the trivial global one.

Several independent approaches have concluded that
the spin—% kagomé HAF has a spin-disordered ground
state.37 The absence of a simple three-sublattice mag-
netic ordering has been convincingly demonstrated by the
high-order perturbation theory treatment of Singh and
Huse.® Unfortunately, this approach does not tell us any-
thing obvious about the nature of the ground state in the
range of parameters that includes the true HAF. Various
exotic ground states have been proposed for the spin—%
kagomé HAF.59 In particular, large-N expansions pre-
dict a ground state with spin-Peierls order for the group
SU(N) (Ref. 6) and a spin liquid for the group Sp(N/2).”
To test these predictions for the case N = 2 a numerical
technique can be used. Unfortunately, quantum Monte
Carlo methods break down due to the problem associ-
ated with the fermion sign. Exact diagonalizations have
so far been restricted to small systems up to 21 sites
only.3%10 Using finite-size scaling up to 18 sites, Chalker
and Eastmond!® conclude that the ground state of the
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kagomé HAF either has no or very weak spin-Peierls or-
der. However, we caution that the smallest unit cell of
the spin-Peierls solid of Marston and Zeng® (MZ) has 18
sites. Smaller systems cannot accommodate the kind of
ordering they proposed. Furthermore, even the 18-site
system still has the problem of having rings of four sites
wrapping around it — this becoming the dominant mode
of resonance among near-neighbor singlet (valence-bond)
states. The smallest system having even number of sites
that is free of these spurious resonances (and also able
to accommodate the proposed spin-Peierls states) has 36
sites. In this paper, we present exact diagonalization re-
sults for the 36-site kagomé HAF.

We use the Lanczos algorithm!! to calculate the
ground state of the 36-site kagomé HAF. Using all pos-
sible point group symmetries for zero momentum as
well as spin reflection, the SZ,,, = 0 sector still has
31527894 states. The ground-state energy per spin is
Ey/N = —0.438377. Since we have no reason to be-
lieve the ground state has long-range magnetic order, it
makes no sense to use spin-wave theory together with
results from smaller systems to extrapolate to the ther-
modynamic limit. In fact, the 36-site system may be the
smallest that is representative of the true ground state.
We note that the trend toward higher energy with system
size is consistent with the elimination of spurious energy-
lowering wraparound resonances. In Table I we tabulate
the spin-spin correlations. Also shown are the spin-spin
correlations for the HAF on a 36-site triangular lattice.!?
It is obvious that the spin-spin correlations of the kagomé
HAF fall off much faster than its triangular analogue. In
Fig. 1 we plot |[(S§SZ)| versus r. Except for the last point
at r = 4, all data points seem to be bounded by an expo-
nentially decaying function with correlation length less
than 1. This is strong evidence that the ground state is
magnetically disordered.

Another way to show the absence of magnetic order is
to look at the spin gap A, defined as the excitation energy
of the lowest energy state with a higher Siota) than the
ground state. We were not able to calculate the spin gap
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TABLE 1. Spin-spin correlations (S§S7) at various sep-
arations 7 in the 36-site kagomé and triangular HAF. The
near-neighbor spacing is unity. For the kagomé structure, the
reference site 0 is site 26 in Fig. 2, and n refers to the site
in the same figure. Results for the triangular HAF are from
Ref. 12.
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TABLE II. The size dependence of the spin gaps for the
kagomé HAF. The discrepancies between some entries in this
table and those in Table II of Ref. 3 stem from the fact
that only zero momentum states were considered in the latter
whereas all momentum states were examined in the present
table.

n r kagomé Triangular N A

27 1 —0.07306 —0.06226 12 0.38267

15 V3 0.00386 0.05115 15 0.41880

34 2 0.01758 —0.01826 18 0.28457

14 2 —0.00300 21 0.27864

21 \/7 —0.00159 —0.02214 27 0.26878

3 3 —0.00766 0.03787

32 2v3 0.00210 0.03914

6 2v/3 0.00106

7 Vi3 —0.00328 l. A liquidlike state would display short-range structure
22 4 0.00740 in this expectation value but would approach (S; - Sj)2

for the 36-site kagomé HAF. The spin gaps of smaller sys-
tems are given in Table II. It appears that A approaches
a value of ~ % as N — o0o. As in smaller lattices,*
the 27-site kagomé HAF has many excited states be-
tween the ground state and the lowest quartet state.
The first excited state is a doublet (same Siuia as the
ground state) with momentum (7/3,7/3+/3) and exci-
tation energy 0.001 51. Of these low-lying states, some
may correspond to true singlet modes in the thermody-
namic limit while the energies of others may collapse to
the ground-state energy more rapidly and provide a sig-
nature of symmetry breaking.!®> We conclude that the
apparent saturation of the spin gap in larger systems (up
to 27 sites) is consistent with the absence of long-range
magnetic order.

The most direct way of distinguishing spin-liquid from
spin-Peierls order is to measure the dimer-dimer corre-
lations, ((S;-S;)(Sk - S;)), where spins ¢ and j are near
neighbors and distinct from near-neighbor spins k& and
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FIG. 1. Two spin correlations (S§SZ) of the 36-site

kagomé HAF. The straight line is a guide for the eye.

at large dimer separation. A spin-Peierls state, in con-
trast, would continue to show periodic oscillations reflect-
ing the nonuniform value of (S; - S;) in the presence of
translational symmetry breaking. The expectation val-
ues ((S;-S;)(Sk - Sy)) for the 25 inequivalent dimer pairs
of the 36-site system are given in Table III. (See Fig. 2
for the numbering of the sites.) The short-range struc-
ture is explained quite well by a simple near-neighbor
valence-bond state! where each configuration carries the
same weight. If the four-spin expectation value is cal-
culated by including only terms that are diagonal in the
configuration of valence bonds, then

((Si - 85)(Sk - S1)) = (—3/4)*Ps ) k1) (2)

where P(; jyk,) is the probability that bonds (7,7) and
(k,l) are occupied by dimers. As in Fig. 2, the ref-
erence bond is (25,26). We see that Pos 6)(k,) is
clearly zero for (k,l) = (34,35), since this would re-

TABLE III. Four spin correlations of the 25 inequivalent dimer pairs
of the 36-site kagomé structure from exact diagonalization and the MZ
spin-Peierls solid. See Fig. 2 for the numbering of the sites.

C(25,26)(k,1) C(25,26) (k1) ((S25 - S26)(Sk - St))

(k1) (Exact results) (MZ model) (Exact results)
(5,6) —0.00628 —0.03516 0.04177
(4,5) 0.00603 0.03516 0.05407
(3,4) —0.00273 —0.02344 0.04531
(3,8) 0.00710 0.03516 0.05514
(4,8) —0.00430 —0.01172 0.04374
(5,9) 0.00366 0.02344 0.05170
(9,14) —0.00560 —0.02344 0.04245
(8,13) 0.00315 0.00000 0.05120
(8,12) —0.00385 —0.02344 0.04420
(11,12) —0.00016 —0.01172 0.04820
(12,13) 0.00010 0.01172 0.04814
(13,14) 0.00045 0.00000 0.04850
(14,15) 0.01221 0.01172 0.06025
(14,19) —0.00113 0.01172 0.04692
(13,19) 0.00108 —0.01172 0.04912
(11,18) —0.00419 —0.02344 0.04386
(18,22) —0.00134 0.00000 0.04671
(19,24) 0.04337 0.03516 0.09141
(22,23) —0.00214 —0.01172 0.04590
(23,24) —0.01416 0.01172 0.03389
(23,29) 0.01322 0.00000 0.06127
(29,32) —0.00646 0.03516 0.04159
(32,33) 0.01178 0.00000 0.05982
(34,35) —0.06510 —0.03516 —0.01705
(1,33) —0.01045 0.02344 0.03759
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FIG. 2. Four spin correlations C(; jyx,) of the 36-site
kagomé HAF. The reference bond (25,26) is represented by
a double line. The magnitude of C(25,26)(k,1) is proportional
to the thickness of the line joining the pair of sites (k,!). The
solid line means C(25,26)(k,1) is positive, and the broken line
means C(25,26)(k,1) iS negative.

quire a spin to be unpaired. It can easily be shown!4
that Pos 26)(k,) = 1/8 for (k,l) = (19,24) and other
equivalent bond pairs, while P25 26)(k,;) = 1/16 for all
other other bond pairs. This simple model thus pre-
dicts that all ((S2s-S26)(Sk - S;)) are the same except for
(k,1) = (19,24) and (34,35), which have equal and op-
posite deflections of magnitude (—3/4)%(1/16) = 0.035
from the rest. This is in fair agreement with the results
in Table III, although the value 0.035 is a bit too small
compared with the results in Table III.

To analyze the long-range structure of the four-spin
correlations, we subtract a constant term from the ex-
pectation values,

Clijyky = ((Si - S5)(Sk - 1)) —

Figure 2 shows the dimer-dimer correlations C(; ;y(x,) for
all dimer pairs of the 36-site kagomé structure. Positive
correlations are represented by solid lines and negative
correlations are represented by broken lines. The thick-
ness of the lines is proportional to C; j)(,))- The numer-
ical values of C; jy(x,;) are tabulated in Table III. Using
a simple model where ((S; - S;)(Sk - S;)) = (—3/4)? if
both spin pairs (¢,5) and (k,!) form dimers, and zero
otherwise, we can construct the dimer-dimer correlations
for the spin-Peierls solid proposed by MZ.% The constant
term in Eq. (3) is given by

(Si-8;) = (3/4)f, (4)

where f = 1/4 is the fraction of near-neighbor spin pairs
that form dimers. For each hexagon with three dimers

(Si-8;)% 3)
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FIG. 3. Four spin correlations C(;,jy(k,i) of the spin-Peierls
solid proposed in Ref. 6. Conventions are the same as in
Fig. 2.

(“perfect hexagon”) in the MZ spin-Peierls solid there are
two resonating states corresponding to the two possible
arrangements of the three dimers around the hexagon.!®
These resonating states are degenerate in the large-N
limit. On the 36-site kagomé structure, there are two
perfect hexagons, and hence four such resonating states.
Figure 3 shows the dimer-dimer correlations C; ;1) of
the MZ spin-Peierls solid averaged over translations, lat-
tice symmetries, and the four resonating states. The nu-
merical values of C(; ;y(x,) are also tabulated in Table III.
We notice that the modulation of the dimer-dimer corre-
lations for the more distant dimer pairs in Fig. 2 mostly
agrees with the MZ spin-Peierls solid. Nevertheless, the
amplitude of spin-Peierls order, if present, must be quite
weak.

To conclude, we have calculated the ground-state wave
function for the 36-site kagomé HAF using numerical di-
agonalization. From the spin-spin correlations and the
energy gaps (of systems up to 27 sites), we conclude that
the kagomé HAF does not have magnetic order. Our re-
sults for the dimer-dimer correlation function are clearly
consistent with a dimerized state in its short-range prop-
erties and cannot rule out the possibility of a very weak
spin-Peierls modulation amplitude in the ground state.
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