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Nonlinear lattice excitations in charge-Auctuating systems
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The coupling of ionic charge fluctuations to lattice dynamics is studied by means of a breathing shell

model with a nonlinear core-shell potential at the fluctuating ion. A molecular-dynamics simulation of
the dynamical structure factor is performed for a one-dimensional diatomic model. Several qualitative
diA'erences with the structure expected from harmonic dynamics are found. Besides a softening and

broadening of the breathing phonon peak with decreasing temperature, a quasistatic peak appears at

short wavelengths. This occurs approximately below a temperature at which the breathing phonon be-

comes broadest and the softening reverses. An additional finite-frequency nonphononic structure ap-

pears at low temperature. We interpret these results in terms of nonlinear excitations of the model.

I. INTRODUCTION

Variations of the effective ionic radius due to localized
charge-density fluctuations in mixed valence compounds
are known to couple with lattice dynamics, thus produc-
ing strong anomalies in the phonon dispersion curves. '

We can cite, for example, the unusual temperature depen-
dence of breathing-type motions around the valence Auc-

tuating ion and the appearance of additional branches in
the phonon spectrum. ' This last feature has also been
recently observed in the high-T, compound LazCu04,
where it may be also related to Cu charge fluctuations.

The couplings of variations of ionic radius with lattice
vibrations has been simulated through the breathing shell
model. The valence fluctuations have been considered to
give rise to a nonlinear core-shell coupling at the Auctuat-
ing ion. A local double-well potential can be understood
as simulating the energy barrier between the two charge
states of the ion.

In this work we shall consider a diatomic chain with a
quartic double-well core-shell interaction at one of the
ions. With the aim to obtain the true dynamical response
without any linearization procedure, we shall calculate
the dynamical structure factor from a molecular-
dynamics (MD) simulation. We shall look for the effects
of the nonlinear interaction in the phonon as well as for
the appearance of additional features generated by the
nonlinear dynamics.

II. MODEL AND CALCULATION

The potential energy for a diatomic chain where one of
the units is composed of a compressible shell coupled to a
core by a quartic double-well potential V(w ) =—

—,'gzw + —,'g4w (gz) 0, g4) 0) is given by

N= g —[[u, (n)+w(n) —uz(n)]
S

and rigid ion 2.
With the purpose of simplifying the numerical analysis

of the problem, it is convenient to write the equations in
terms of dimensionless quantities: t = (g z /m z )

' t,I=m, /m2, and F =S/gz. Displacements Uand 8'are
measured in units of wo =(gz/gz)', which represents
the minimum of V(w). Therefore, we obtain the follow-
ing equations of motion:

MU, (n) =F[Uz(n)+ Uz(n —1)—2U, (n)],
Uz(n)=F[U, (n +1)—W'(n +1)+U, (n)

+ W(n) —2Uz(n)],

0 =F[Uz(n) —Uz(n —1)—2W(n)]+ W(n) —W'(n)

(2a)

(2b)

(2c)

The last equation represents the adiabatic condition for
the movem'ent of the massless shell. The nonlinearity in
8' in this constraint between U and 8' is the origin of a
nonlinear dynamics for the cores. The cubic equation
(2c) can be resolved for W(n) and replaced in Eqs. (2a)
and (2b). It can be seen that the condition for W(n) to
have only one real root for any Uz(n) is F) —,'. In the
forthcoming analysis we assume this condition.

Due to the nonlinear interaction V(w) the effective po-
tential 4[u, w (u)] may have several configuration mini-
ma ju I;. It has been shown for rigid-ion models with
competitive nearest- and next-nearest-neighbor interac-
tions that the existence of these configurations lead to
structures in the static response. Therefore, as will be-
come apparent in the next section, it is useful to consider
some analytic solutions of Eqs. (2) in the static case
Ul, ( n ) =0. From these equations it is possible to obtain a
system involving P„=Uz(n) —Uz(n —1), and W(n).
Equations (2a) and (2b) lead to

+[u, (n) —w(n) —uz(n —1)] I+ V(w),
P„+,—2 W(n +1)=P„—2W(n) =P=const,

(1) while (2a) and (3) lead to

(3)

where u&(n) denotes the core displacements and w (n)
denotes a variation of the shell radius at ion type 1. S is
the interionic force constant between the shell of ion 1

—W (n)+ W(n)+PF=O . (4)

Equation (4) can take three real roots when P F ~
—,', and
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only one in the other case. The latter is not a physical
solution because it implies P„=const and therefore
infinite energy. In the former case it is possible to con-
struct different periodic solutions. In Table I we show
solutions with period I for the simplest case )33=0. We
also include the energy per cell El in the 1th
configuration. I = 1 corresponds to the homogeneous
solution. The configuration with I =2 is the absolute
minimum for the potential energy and corresponds to the
breathing pattern displacement. The position of the
cores in every configuration is such that all the nearest-
neighbor springs in the chain are not stretching. Analo-
gous periodic solutions may be obtained from difFerent
values of 13.

The study of self-consistent solutions of the linearized
system will help with the analysis of the numerical results
obtained by MD simulations. To this purpose we ap-
proximate W(n) -=3( W ) W(n) in Eq. (2c). Thus we
can eliminate W(n) from Eqs. (2a) and (2b) and obtain
the following phonon dispersion relations:

1 . 2qa
F " M 2
—co (q) = + 1 —2a sin

1 z qa
M

—1+2m sin
2

2

+ cos
4 a
M 2

1/2

with

F
2F —1+3( W' )

~, and co, denote the optic and acoustic branch, respec-
tively. For M &B, with

TABLE I. Static solutions with different periods l for the case
P=O. w(n) is the shell coordinate of the configuration. E& is
the energy per unit cell.

w(n) E,

2 2
sen —~nv'3 3

cos—n
2

2
sen —nv'3 3

1

4

1

6

1

8

1

6

2T
Wo =WT W2T+1

W1=W2= ' WT 1=1
WT+1 WT+2 W2T

——'(1 —1/T)

B =1+
3(W ) —1

the zone boundary frequencies are co, (m. /a ) =2F/M and
co, (m/a)=2F/B. In this case the co, (m/a) mode is a
symmetric motion of ions 2 which compress and expands
the shell of ion 1 (breathing mode). For M (B the previ-

ous expressions are interchanged and the acoustic mode
becomes the breathing one. Instead of calculating ( W )
fully self-consistent, it will be obtained from the MD
simulation.

The nonlinear dynamics will become more apparent
the higher the double-well potential barrier is relative to
the intersite coupling. This corresponds to a low F.
Therefore, we take F =0.51, which leads B -=1.5. Final-
ly, we take a relative mass M =32 in order to get a
breathing optic mode about four times higher than the
acoustic mode.

III. RESULTS AND DISCUSSION

The MD simulation is performed for a chain of 1000
unit cells with periodic boundary conditions. The shell
coordinate W is obtained from Eq. (2c) in each iteration
step as explained previously. The runs were performed
for 2' steps after the zero of time, using a step size of 0.3.
Then the space-time Fourier transform of the
displacement-displacement correlation function is corn-
puted. This quantity gives the leading approximation to
the dynamical structure factor S(q, co). Figure 1 shows
S(q, co) for q =3m/4a at three different temperatures,
which is measured in units of gz/g4kz. A reduced tem-
perature T =0.25 corresponds to the double-well energy
barrier. At a high temperature (T =3.14) there is a well-
defined acoustic phonon and a broader optic peak. The
position of the acoustic peak is in quite good coincidence
with the self-consistent values indicated by the arrow and
the optic phonon peak is somewhat lower than the self-
consistent value, which is an effect of the anharmonicity.
The intensity scale is such that the absolute maximum of
the spectrum is set equal to 1. The frequency unit is
2' /t t t where t„, is the dim ensionless total running
time. As the temperature is lowered at T =0.15 the op-
tic peak becomes very broad and its maximum shifts to a
lower frequency. At this temperature, where the mean
energy per particle is slightly below the double-well bar-
rier, the nonlinear dynamics produces a great width of
the mode related to the breathing motion. At a still
lower temperature, T=0.038, the optic peak becomes
again sharper and its maximum shifts again to higher fre-
quencies. Now from the MD simulation it results in
( W' ) —= 1, which means that the mean position of the
shell is approximately the minimum of the double-well
potential V( W). In fact, the position of the optic peak
coincides with the frequency obtained by linearizing the
potential around 8'=1. A similar behavior is obtained
for the structure factor at the zone boundary q =m /a,
shown in Fig. 2. In this case the broad structure appear-
ing at an intermediate temperature survives partially at a
low temperature, below the optic peak. This feature will
be analyzed more in detail later on. Figure 3 shows the
temperature behavior of the optic peak maximum for
both q values analyzed previously. Here it is clearly seen
that the breathing mode softens with decreasing tempera-
ture only up to a finite value and then hardens again.
The minimum occurs at a temperature nearly equal to
the double-well barrier. This temperature behavior of the
soft mode has also been found in a P chain. In spite of



5444 BRIEF REPORTS 47
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the fact that the one-dimensional system cannot reach
long-range order, the low-temperature hardening is relat™
ed to the local dynamics of the particles in one of the
double-well minima. This temperature behavior has also
been found by Miura and Bilz for the same model by
coupling self-consistent phonons to exact nonlinear solu-
tions. This allowed us to explain the anomalous tempera-
ture behavior of a longitudinal zone-boundary optic
mode in Smo 75YO 25S.

A remarkable fact observed in Figs. 1 and 2 is the ap-
pearance of an intense peak at co=0 for temperatures ap-
proximately below the double-well energy barrier. This is
approximately also the temperature for which the optic
phonon peak becomes broader and reaches its minimum
value. This peak is thinner and higher the lower the tem-
perature is. It is not present near q =0, reaches an inten-
sity maximum at q =—~/4a, and then decreases drastically
towards the zone boundary. The low-frequency charac-
teristic of this peak suggests that it is the quasistatic
response of the lattice at stable configurations corre-
sponding to the minima of the potential. In addition, its
appearance for q&0 indicates that these configurations
have periods which do not coincide with the lattice con-
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FIG. 1. Dynamical structure factor from MD simulations at
q =

4 ( H /a ) for three values of other dimensionless temperature
T. The results of a self-consistent phonon approximation are in-
dicated by the arrows. To get rid of finite-time diffraction
effects, the function was smoothed using a Gaussian.
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FIG. 2. The same as Fig. 1 but for q =~/a.
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FIG. 3. Temperature dependence of the optical phonon peak
as obtained from a molecular-dynamics simulation. Open cir-
cles correspond to q = —(H/a ) and solid circles to q =H/a.

stant. In fact we have shown in the previous section
some of the possible periodic minimal configurations and
there may be even incommensurate solutions which
would lead to a continuous structure in the quasistatic
response. Such incommensurate configurations have
been found in a similar nonlinear shell-model chain. '

Features like the one we obtain in the quasistatic
response have been found for the static structure factor
from the static solutions for a chain with competitive
nonlinear interactions. Such interactions are not explicit
in our model, but they are originated when the adiabatic
condition is resolved in order to obtain an effective poten-
tial for the cores.

Now we will discuss the broad structure associated
with the optic phonon at intermediate and low tempera-
tures. The low-temperature spectrum of Fig. 2(c) shows a
fairly well-defined structure below the optic peak, and the
same feature, although less defined, is seen in Fig. 1(c).
Also, a broad structure centered at about 400 and 500
frequency units in Figs. 2(b) and 1(b), respectively, seems
to be differentiated from another broad structure at high
frequencies, centered at the self-consistent phonon fre-
quency. This may be a precursor effect of the low-

temperature behavior. This apparent additional struc-
ture could not be resolved more clearly, but a definite ad-
ditional peak of the dynamical structure factor appears
below the acoustic peak for a model parameter regime
where the breathing mode corresponds to the acoustic
branch. Thus, the nonlinear breathing dynamic is cap-
able of producing additional structures in the dynamic
response to external fields. This allows one to explain the
additional nonphononic peak observed in the neutron
inelastic-scattering response of LazCuO4. Also, the
valence fluctuating system Sm{) 75&025S shows an addi-
tional branch which cannot be adscribed to localized vi-
brations of the Y ion. It has been explained in terms of a
nonadiabatic breathing shell model with a damping term
for the Sm breathing shell. "' Our results suggest that
the damping might be simulating the effect of the non-
linear core-shell coupling in our model, and the addition-
al excitation may stem from the nonlinear dynamics.

In summary, we simulated the dynamics of a system
with local charge Auctuations by means of a one-
dimensional nonlinear breathing shell model. The
response function obtained through a molecular-
dynamics calculation differs significantly from the one
corresponding to a linearized approximation. Upon de-
creasing temperature, the breathing phonon softens up to
a finite frequency at a certain temperature where it be-
comes very broad, and then hardens and sharpens again.
More striking is the appearance at low temperatures of a
quasielastic peak from finite wavelengths up to the
Brillouin-zone boundary. This behavior is originated by
quasistatic structures with different periods than the
reference lattice. Finally, at low temperatures, an addi-
tional structure due to nonlinear excitations appears at
finite frequencies for a regime of parameters where the
double-well potential barrier is higher than the intersite
coupling.
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