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By identifying a continuous, three-dimensional classical unit vector field with the tangent to a space
curve, we show that the associated global anholonomy is related to certain topological quantities, which
depend on the dimensionality d of the field. In three dimensions (3D) there exists a conserved topologi-
cal current. The three components of the corresponding vector potential are the torsions associated with
three space curves. Also, there exist two types of global anholonomy: one of them always vanishes iden-
tically while the other takes the form of the Hopf term. This is a consequence of the existence of an in-
herent gauge freedom in the space-curve formalism, which plays no role in 1D and 2D, but becomes im-
portant in 3D. An application to classical spin systems is briefly discussed.

There are many problems in physics that can be de-
scribed in terms of a three-dimensional vector field t of
unit magnitude, normalized such that t-t=1. For in-
stance: (i) the propagation of light in a twisted optical
fiber is studied' in terms of t(x), a function of one spatial
variable x, the distance along the fiber; (ii) the time evolu-
tion of the (normalized) classical spin vector at a site in
the continuum version of a one-dimensional Heisenberg
chain is described? by t(x,y), a function of two variables,
one spatial and the other temporal; and (iii) the vector
field in the (2+ 1) dimensional O (3) nonlinear sigma mod-
el® in field theory is described by t(x,y,z). There exists a
connection between this last model and 2D antiferromag-
nets, which in turn is relevant in the study of high-7, su-
perconductors.

In recent years, the notion of anholonomy in physical
problems has been receiving much attention.* Em-
phasized by Berry® in the context of an adiabatic, cyclic,
and unitary evolution of a quantum state, the
phenomenon has been extended to more general contexts®
and finds applications in purely classical’ problems as
well. Anholonomy is a geometrical concept in which a
quantity fails to recover its original value when the pa-
rameters on which it depends are varied round a closed
circuit. In the case of a unit vector field, the tips of the
vector lie on the surface S? of a unit sphere. Now, the
closed circuit may be in the target space (i.e., on the unit
sphere) or in the configuration space. For t(x) (in 1D) it
is the former that plays a role (since there is no *“closed”
path in 1D configuration space) and it is by now well
known that this anholonomy manifests itself as a
“geometric phase” which is the solid angle subtended at
the center by the area enclosed by the closed path on the
sphere.

In this paper, we present a unified method of studying
the anholonomy associated with a continuous
differentiable unit vector field t by identifying it with the
tangent to a space curve. First, given the tangent t(x) the
space curve is specified uniquely®® (except for its location
in space) by its curvature

k(x)=1t,-t, (1)
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and its torsion
T(x)=t-(t, Xt )/k*x) . )

The subscript x denotes d /dx, x being the length along
the curve. Second, it is possible to form an orthogonal
triad of unit vectors t, u, and v at any point x. Using vec-
tor identities t-t, =u-u, =v-v, =0, etc., it is easy to ob-
tain the following Darboux-Ribaucour equations:?

= Dy (1)
t, =Kk u—kK, v,

— _ (D (1)
u, =K, t+7'g v, (3)

X

A\ =K£1”t—-7'fgl u ,

where «!!, ng,l), and r;” are called the normal curvature,

geodesic curvature, and geodesic torsion, respectively.
From Egs. (1) and (3), k¥*=k}"?+x!"2. In problems for
which the direction of t, (i.e., the orientation of the curve
in space) is unimportant, one may choose «'!’=0 without
loss of generality. Then Egs. (1)-(3) show that k=x}"
and 7—=T(g“, and Egs. (3) reduce to the well-known
Frenet-Serret equations,” u and v being the normal and
binormal vectors. Equations (3) can be written in the
more compact form:

F,=¢&XF,
where F=t, u, or v, and £ is the Darboux vector
E= T‘gl t+rutely (4)

Here & denotes the angular velocity of rotation of the
triad as one moves along the curve. In particular, 7.
represents the angular velocity of rotation of the u—v
plane around t. We define a nonrotational frame!® by us-

ing the usual Fermi-Walker parallel transport:
DG'
dx
Then it is clear that as x is increased from x to x +dx,
the corresponding infinitesimal angle of rotation of the u

(or v) axis around t, with respect to the nonrotational
frame, is given by

=[(K,,u+ng)><G][ .
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8¢=r\Vdx . (5)

An expression for 7\

¢ may be found as follows. We
first reformulate our theory in terms of Euler angles. If
we denote the column matrix consisting of the unit vec-
tors t, u, and v by T, then Eqgs. (3) may be written as

DT

d;—A T, (6)

where A is the antisymmetric matrix with entries

(1)

(1) — (1)
a);=Kg 5a3

=K, ,a3=7,, and a;E4 .

If we introduce the rotational matrices R, parametrized
by the Euler angles, 6, ¢, and ¢, Eq. (6) may be written as
follows: !0 1!

dT _ dR

dx dx
Comparing Eqgs. (3) and (7) allows us to express k,, K,
and 7, as functions of the Euler angles:

R7IT . 7

k) =sin0 smz/x—ﬂ + cosdz— (8)

k' V=sinf cosw——g ~sm¢rﬁ )

“’—cosﬂ—g—kl . (10
dx  Ox

An alternative interpretation of the angles 6, ¢, and ¥ is
as follows. If 6 and ¢ are identified as the polar and az-
imuthal angles of t(x), we may write

t={(sin6 cosg, sinf sing, cosH)

in a cartesian coordinate system. Using Eqgs. (8) and (9) in

Egs. (3), it is then readily verified that
t,=sinfp,u'+6,v.. Hence u'=ucosy+vsiny and
v'=—usiny+vcosy may be immediately identified as

the (u,v) axes rotated through an arbitrary angle ¢ about
the t axis, with 0<y¥ <27. It is this arbitrariness in
defining the orientation of the (u,v) axes in the plane per-
pendicular to t that represents the gauge degree of free-
dom inherent in the problem.

Equatlons (3) reduce to the Frenet-Serret equations
when «{!’=0. This yields x}'’=« and

= Op/ox
tany=sin® 30 /0%

Note also that Tg ) is given by the same expression as in
Eq. (10), but ¢ is no longer arbitrary. Thus, working in
the Frenet-Serret frame amounts to choosing a special
gauge function ¥. From Eq. (5) it is clear that the total
anholonomy associated with going from x =0 to x =x,,
with the boundary condition t(xy)=t(0), will be given
byIO

<I>=f'r§z”(x)dx=f

which becomes, on using Stokes theorem,

o=27— [ [sin0dode .

surface

ox OJx

cosB—aﬂ + 9 ]a’x ,
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This anholonomy is associated with a closed path in
target space and represents the solid angle subtended at
the center by the surface enclosing the circuit, which is
just Berry’s geometric phase, as mentioned earlier.

Next, consider t(x,y), a function of two variables.
Clearly, y can be regarded as a continuously varying pa-
rameter for the curve in the sense that for every y =y,
one can associate a space curve with the tangent vector
t(x,y,). Or alternatively, x plays the role of the parame-
ter for the curve t(xg,y). Let &', ng“, and T ) where
i=1,2, represent the parameters that occur in the
Darboux-Ribaucour equation (3) corresponding to the x
and y space curves, respectively.

If we consider an infinitesimal closed path in the
configuration space, it is clear from Eq. (5) that the anho-
lonomy associated with it is measured'? by the net angle

of rotation 8Q of the u (or v) axis around t. It is given
bv'?

8Q =T;,1 (x,y)Ax +'r(gZ)(x +Ax,y)Ay
— [T;;Z)(x,y)Ay +ng”(x,y +Ay)Ax]
82 arlV
ax ay
Using Eq. (10) in Eq. (11), we find

AxAy . (11)

20 3g
ox dy

096 3¢

=sin6
8Q =sin 3y ax

dx dy

Note that 8Q is independent of the gauge v, and is the
determinant of the Jacobian of the transformation
(x,y)—t(x,y). Also,

8Q =t-(t, Xt,)dx dy , (12)

as is seen by a direct substitution of t=t(0,¢) in Eq. (12).
Hence if t(x,y) is such that it takes on the same value at
the boundaries at infinity, it is readily concluded that!?
the total anholonomy Q is 47 times the Pontryagin index,
i.e.,

Q =4mn , (13)

n being the number of times S2 wraps around S2.

Finally, consider the case when t is a function of three
variables, i.e., t(x,p,z). Construct an infinitesimal cube
with edges Ax, Ay, and Az along the respective axes. In
this case, there are two distinct ways of computing anho-
lonomy densities associated with this problem which, as
we will show, will lead to two distinct topological terms
H, and H,.

To find H,;, we use Eq. (11), which gives the surface
anholonomy densities associated with faces dx dy, dy dz,
and dz dx as, respectively,

(1 (2)

JO— a'rg _ arg

dy ax

a,r(3) a,r(l)
J=_8 _ "8 , 14
ox az (14)

(2) (3)

Jih— a7y B a7y

az ay
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These may be regarded as components of a (topological)
current J. Adding up the anholonomy densities corre-
sponding to the faces, we get

SH,= [TV(x +Ax,p,2)—J Vx,p,2)|]Ay Az

+[IJPx,p +Ay,z)—TP(x,p,2) |Ax Az
+[T¥x,p,z +Az)—T3(x,y,2) ]Ax Ay
=divIAxAyAz .
However, divJ vanishes identically, essentially because
J=curl A, with A=(r “) T(gz),rg)). (15)
Thus
=[ [ [vidxdydz=0. (16)

Note that A is a local function whose components are
given by the three torsions. This avoids the problem of
having to solve for A from curl A=1J, as is done in exist-
ing formalisms.!* The geometric significance of A and J
also become clear now.

The other anholonomy term H, is found as follows.
Considering a point (x,y,z) in configuration space, anho-
lonomy density may also be computed by finding the
product of the anholonomy density associated with a
closed circuit in a 2D configuration space corresponding
to any two (x,y) of the variables, i.e.,
(974" /3y — 7> /3x)dx dy, and the anholonomy density
associated with a closed circuit in the target space corre-
sponding to the third variable z, i.e., Té,”dz. On adding up
all the three contributions, we obtain

2) (3) (3 (1)
R O ) i s iy dry 37y
oy § ox oz
aT(l) aT(Z)
g g
+T§z3) Ty—— ax dxdydz ,
giving
=[[[AJdxdyaz, (17)

where we have used Egs. (14) and (15). This is just the
Hopf invariant!® for appropriate boundary conditions. In
fact, by using Eq. (10), we get

=fffdx dy dz sin0[¢, (¢, 0, —¢,0,)
+, (9.0, —9,0)
+¢,(9,0,—¢,0,)] . (18)

H, is explicitly dependent on the gauge function ). We
may also write

=fffdxdydzakw7‘, A=x,z

where co}‘— #¥cos0 9, 0,¥. Thus H, is a pure diver-

gence term! and adding such a term to the Lagrangian
of the system does not change the equations of motion of
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the field.

As an application of the above formalism, we now
briefly consider a problem that has received considerable
attention recently, namely, the role of topological terms
in antiferromagnets.'>!® In a (1+1)D problem, the ex-
istence of such a term is well established. However, all
the methods that attempt to directly generalize the
(1+1)D result to (2+ 1)D indicate that the corresponding
topological term should be absent.!” Thus, Fradkin and
Stone'® conjecture that ““if there is a nontrivial Hopf term
in the two-dimensional antiferromagnet, it must come
from somewhere else, other than the spins themselves.”
Our analysis shows that this conjecture is indeed true and
that a nonzero topological term H, arises essentially be-
cause of the angle ¢ which signifies a gauge freedom in-
herent in the problem. The topological term H, (studied
in Ref. 16), which depends only on the angles 6 and ¢
describing the spins, vanishes identically.

Let us consider a specific configuration of the (2+1)D
continuous classical antiferromagnet. One possible solu-
tion is of the form' 6=0(x,y) and p=¢(x,y). z now
denotes the time variable ¢. Equation (18) yields [if ¥ is a
function of time alone and if (6,¢) take on the same
values as x,y — 1+ 0 ]

fdt ffdx dy sinf(¢, 0, —¢,0,)

=47 X4wn =161°n .

Geometrically, the Hopf index H,/167* represents the
linking number of two curves in R>. In this special case,
curves in the z direction become the trajectories of t in
time. H, is clearly nonzero for this case, and it should be
possible to construct other such examples. This may sug-
gest that there is indeed a Hopf term in the Lagrangian
for the (2+1)D antiferromagnet, as originally suggested
in Ref. 20.

In conclusion, we have developed a theory of space
curves to understand anholonomy effects associated with
continuous unit vector fields in one, two, and three di-
mensions. For the three-dimensional case, we have
identified the components of the vector potential with
torsions of the space curves with natural parameters x, y,
and z, respectively. We have generalized the notion of
Berry phase which, in the context of continuous systems,
can be regarded as the manifestation of the anholonomy
of a vector field in one dimension, to higher dimensions,
using a unified approach. Our analysis shows that in two
and three dimensions, the associated anholonomy mani-
fests itself as Pontryagin- and Hopf-type terms, respec-
tively. In 3D, the Hopf term depends crucially on the
third Euler angle ¢, which shows that if one wishes to
consider the global properties of the field, the local-order
parameter space should be SO(3) rather than S2. Finally,
we emphasize that our formalism is general, independent
of the form of the Hamiltonian or Lagrangian of the vec-
tor field, and therefore has many possible applications.
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