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Detection of Cr’™" sites in LiNbO;:MgO,Cr** and LiNbO4:Cr3™*
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In this work, experimental results describing Cr** sites in LiNbO;:Cr and LiNbO;:MgO,Cr previously
determined with electron-paramagnetic-resonance (EPR), electron-nuclear-double-resonance, and opti-
cal techniques, are correlated in terms of the formation of three chromium sites: Cr3* ions in Li* and
Nb*" positions, and a Cr’* (Nb°*)-Mg?* center that only appears in the double-doped system. It is con-
cluded that the majority of the unperturbed centers, Cr’* (Li*) and Cr** (Nb*"), are forming close pairs
and only a small fraction of Cr** (Li") ions are diluted into the crystal host, giving rise to an EPR sig-

nal.

The determination of the site location of dopant (rare-
earth and transition-metal) ions in LiNbO; has come to
be of great importance in understanding the nonlinear
properties of this ferroelectric crystal. On the other
hand, the doped system has to be codoped with 5% or
more MgO in order to avoid the optical damage associat-
ed with the photorefractive effect.l'? In view of these re-
sults, in particular, the site location of Cr’* ions has been
the subject of special interest in order to understand the
role played by these defects. In LiNbO;:MgO, Cr*™, by
means of the electron-paramagnetic-resonance (EPR)
technique, Corradi et al.’ have identified the presence of
two centers: one axial Cr3" center with D=0.4 cm ™!
and a different center giving an isotropic signal with
g=1.971. These authors, by using electron nuclear dou-
ble resonance (ENDOR), associated this second center
with Cr’" replacing Nb>", presumably perturbed by
Mg?" ions at various nearby locations. The axial EPR
spectrum is the same as that which appears* in LiNbO;
but doped with Cr®*. Due to the significant differences
with respect to the second Cr’" center appearing in the
double-doped system, they associated the axial spectrum
to Cr’t ions entering at Li™ cation sites, at variance with
Rexford, Kim, and Story,4 where they assign the site to
Nb**.

In a later work® Martin, Lépez, and Agullé-Lépez ob-
served the same two EPR spectra in their double-doped
LiNbO;:MgO, Cr*™ crystals. For the sake of comparison
they also studied the single-doped system (but doped with
Cr’t). As expected, the new isotropic center was absent
in LiNbO;:Cr. They analyzed the EPR spectra according
to the superposition model and concluded that both
centers (axial and isotropic) are consistent with Nb>*
substitution, at variance with Corradi et al., but in agree-
ment with the assignment for the axial center of Rexford,
Kim, and Story.

Now, optical spectroscopy (optical absorption and
fluorescence) has recently been applied to study the Cr®™
site distribution in LiNbO;:Cr** and LiNbO,;:MgO,
Cr’". By means of site-selective spectroscopy® in the R-
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lines region (* 4, =—2E transition of Cr’") it was shown
that Cr’" ions are replacing both Li* and Nb>" cation
sites in the single-doped system. On the other hand, the
present authors carried out fluorescence experiments’ °
in LiNbO;:MgO, Cr**. Three Cr*" sites were clearly ob-
served in this system: the same Cr " (Li*) and Cr3™*
(Nb°") sites appear in LiNbO,:Cr** and a different one
associated to Cr** (Nb°*) perturbed by close Mg?* ions.

In a previous work® on the fluorescence spectrum of
the double-doped system LiNbO;:MgO, Cr’t it was
shown that the spectrum consists of peaks at 727.0 and
731.3 nm corresponding to the R lines (E=*’4A2 and
24 ="4, transitions, respectively) of the Cr’" ion at a
Li* site; one peak at 735.7 nm is assigned to the
2A4="*4, transition for the Cr’" ion at a Nb°* site.
The E=—"*4, line for Cr** (Nb>") overlaps the intense
24="4, line of Cr** (Li") and cannot be resolved.
Two other peaks at 739.1 and 741.1 nm were also found
that correspond to the R lines of the Cr-Mg center.

Therefore, the presence of three nonequivalent crit
sites in the crystal codoped with MgO has been unequivo-
cally ascertained by optical measurements. In principle,
EPR spectroscopy should also show the same three Cr3™
centers. However, only two well-defined EPR spectra
have been reported to date, the axial and the isotropic
ones (Cr*™ at Nb> " position, perturbed by Mg?* ions).

It is important to point out that samples from the same
block used for optical measurements’ ° were used in the
work of Martin, Lépez, and Agullé-Lépez.> As their ex-
perimental results are quite similar to those observed by
Corradi et al.,> the same conclusions should be applied
for the results obtained by both authors.

The isotropic EPR spectrum is clearly correlated with
the emission R lines peaking at 739.1 and 741.1 nm of the
Cr-Mg center because it only appears in the doubly
doped system. However, at variance with the two non-
equivalent Cr** (Li*) and Cr3" (Nb>") sites detected by
optical spectroscopy, only one EPR axial spectrum has
been observed. The assignment of this axial EPR spec-
trum with one of these centers is still the object of contro-
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versy; for Corradi et al.® this spectrum corresponds to
Cr’" at the Li™ site, while for Rexford, Kim, and Story*
and Martin et al.’ it should correspond to Cr’*™ at the
Nb* 7 site.

Obviously there is a lack of agreement between the
different spectroscopies about the Cr’* site distribution.
However, with this information at hand, and taking ad-
vantage of other experimental evidence, it is possible to
make a coherent interpretation about the Cr’* site distri-
bution. Below we present a possible scheme to explain
this apparent lack of agreement. Jia et al.® interpreted
the broadening in the fluorescence spectra (R lines) of
Cr*t (Li*) and Cr®* (Nb**) centers as a consequence of
the formation of Cr** (Nb**)-Cr** (Li") dimers. Addi-
tionally they observed an energy shift in the time-
resolved fluorescence spectra that supported this idea.
These effects appear as a consequence of (Cr*"-Cr**)-ion
superexchange interaction, which splits the *E and *4,
levels of the dimers. The effect of this interaction in the
R-lines optical spectrum of the Cr’>™ ion was evidenced a
long time ago in chromium-doped LaAlO;.!"° In
LiNbO;:Cr’" the formation of Cr**-Cr3* pairs has also
been pointed out by Malovichko, Grachev, and Lukin!!
and Grachev, Malovichko, and Troitskii'> by means of
EPR spectroscopy. They assumed that only the nonclose
pairs could be detected by EPR because of the close pairs
the ground state is a singlet due to an antiferromagnetic
coupling, with a constant |J|=400 cm~!. The spread in
the optical spectrum, due to Cr-Cr pairs, depends on
both coupling constants; J and J' for the ground and ex-
cited states, respectively. Now taking advantage of the
emission spectrum shown in Ref. 8, the coupling constant
for the excited state, |J’|, compatible with the width of
the R-emission lines can be roughly estimated. Following
the procedure used by Fergurson, Guggenheim, and
Tanabe!® the estimated value is |J'| ~390 cm ™. Thus,
we can suppose that the majority of Cr** ions are form-
ing close pairs, and only a small Cr*" concentration is di-
luted inside the LiNbO; host. Therefore, this small frac-
tion of diluted chromium ions is solely responsible for the
EPR axial spectrum.

In order to clarify the nature of the Cr’* center [Cr
(Li*) or Cr** (Nb°")] associated to the axial EPR spec-
trum, the absorption spectrum (in the R-lines region) of
LiNbO;:Cr** can give us useful help. This spectrum is
shown in Fig. 1. The main peaks at 724 and 726.6 nm are
associated with the same * 4, = E(?E) transition of Cr*™"
(Li*) and Cr’" (Nb>") centers, respectively. Assuming
that the oscillator strength of this transition is similar for
both centers, the optical density has to be proportional to
the concentration of each type of Cr*" ion. Thus, Fig. 1
indicates that the concentrations for both kinds of sites
are similar. However, there are more Cr*" ions (about
14%) occupying Li™" sites than Cr*™" ions replacing Nb>*
ions. This excess of Cr’™ (Li™) is not paired, and there-
fore it should be diluted into the LiNbO; matrix.

In this scheme the Cr3* (Li*) sites should be responsi-
ble for the axial EPR spectrum found in both
LiNbO;:Cr** and LiNbO;:MgO, Cr’" systems. This
idea is in accordance with the assignment made by Corra-
di et al.® but at variance with the assignment of Rexford,
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FIG. 1. R-lines absorption spectrum observed for

LiNbO;:Cr.

Kim, and Story* and Martin, Lépez and Agullé-Lépez.”

In the double-doped system, the absorption coefficient
at 724 nm [Cr’*t (Li*)] diminishes with respect to the
peak at 726.6 nm [Cr®* (Nb°*)], the former peak [Cr®™
(Li*)] then being only slightly higher than the latter
[Cr*t (Nb°")]. Consequently, the axial EPR spectrum
should be strongly reduced in the sample codoped with
magnesium, as experimentally observed.>

In summary, the results about site location obtained by
EPR and ENDOR are consistent with the results ob-
tained by optical spectroscopy, if one assumes that Cr3*
(LiT)-Cr3" (Nb>") close pairs (not detected by EPR)
and Cr*" (Li*) centers are formed in LiNbO;: Cr. Co-
doping with MgO produces a different center, which is
related to Cr*t (Nb>") perturbed by Mg?* ions. The
Crt (Lit)-Cr’t (Nb*') close-pair centers are missed in
the EPR spectrum due to an antiferromagnetic coupling.
On the other hand, crystal-field effects on the optical
spectrum are dominant and Cr®* (Li™) and Cr3* (Nb* ™)
sites are identified separately and can be associated with
two defined optical spectra.
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