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In this paper we propose a formulation of the electronic density response that is well suited to investi-
gate the influence of localization and delocalization properties of the electrons on the phonon dispersion
and the electron-phonon interaction. The formalism is applied to study nonlocal, long-range, electron-
phonon-interaction effects of the charge-fluctuation type in high-temperature superconductors, using
La,CuO, as an example. Some important features in the experimental phonon spectrum can be under-
stood within such an approach. We discuss the modification of the usual picture of electron pairing, tak-
ing into account these nonlocal effects. In this context the symmetric apical oxygen breathing mode at
the Z point is of special importance. In this vibration, nonlocal electron-phonon-interaction effects of
the charge-fluctuation type are shown to generate in the metallic phase of La,CuQ, an interplane charge
transfer that is blocked completely in the insulating phase if a strictly two-dimensional electronic struc-
ture is assumed. Very recently we became aware of unpublished experimental results where this previ-
ously undetected mode appears, unusually broad, as the highest A, mode at the Z point, in agreement
with our theoretical predictions for the insulating phase. Finally, our considerations point towards a
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simple structure that could be very effective for high-temperature superconductivity.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity! in the perovskite-derived copper oxides, many pos-
sibilities for its microscopic origin have been discussed.
So far there is still no agreement on the mechanism of
pairing that is operating in this class of materials. The
fact that magnetic, insulating behavior and metallic, su-
perconducting behavior are not separated very much at
low temperatures, together with features like CuO planes
and strong electron correlations present in these materi-
als, promoted the development of theories with purely
electronic and/or magnetic origin. On the other hand,
the electron-phonon mechanism was thought to be not
strong enough to explain the 7, values in the high-
temperature superconductors (HTSC). However, esti-
mates which came to these conclusions exclusively are
based on rigid-muffin-tin or more generally on rigid-ion
approximations (RIA).2 The latter take into account only
local, short-range changes of the potential felt by an elec-
tron if an ion is displaced and ignore nonlocal, long-range
contributions. Quite recently ab initio calculations have
shown that nonlocal contributions to the electron-phonon
interaction are quantitatively important for many phonon
modes in the HTSC? and may even be sufficient to ex-
plain the high-T, value in YBa,Cu;0,. Experimental evi-
dence for the important role played by the phonons in the
HTSC is, for example, reviewed in Ref. 4. In the present
paper we study nonlocal electron-phonon interaction
effects typical for the HTSC, using La,CuQO, as an exam-
ple. We investigate their influence on the phonon disper-
sion and discuss how the usual picture of electron pairing
is modified by including these nonlocal effects.

In order that effects of the kind to be discussed in this
paper can be observed, certain specific suppositions have
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to be fulfilled. The latter are realized extremely well in
the HTSC but not at all in conventional superconductors.
The nonlocal contributions we are talking about have
their origin in the anisotropic mixed ionic metallic (co-
valent) bonding of the HTSC where the metallic com-
ponent is governed by important localization properties
of the electrons introduced in particular by a large elec-
tron self-interaction at the copper, leading to restrictions
of the mobility of the charge carriers. This is in contrast
to the situation found in conventional metals and super-
conductors based on transition metals which display
good metallic screening in all directions of space. The
ionic character of bonding, especially in the direction
perpendicular to the CuO planes, leads to an anisotropi-
cally reduced screening for ions like O, or La sitting at
low-symmetry sites. So it is quite natural to expect that
the change in Coulomb potential, induced in particular
by the movement of these ions, is not screened nearly as
strongly as in the usual high-density metals (note also
that there is additionally a change in the on-site poten-
tial). The dominant screening mechanism can be sup-
posed to be of charge-fluctuation type and the electron lo-
calization effects (correlations) will be important. As a
consequence, the movement of an ion leads to nonlocal
changes of the potential at the sites of other ions, e.g., in
the CuO plane, and causes corresponding charge fluctua-
tions on these ions because of the lack of closed electron
shells of the latter, particularly in the metallic regime of
the HTSC. In fact, indications of such charge move-
ments have been found for the axial oxygen breathing
mode at the T point O! in La,CuO, leading to a charge
transfer between in-plane O,, ions and the Cu.? See also
the discussion of the importance of long-range electron-
phonon coupling in HTSC given in Ref. 5.

Compared with the more elaborate direct first princi-
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ples calculations in Refs. 2 and 3, our approach is compu-
tationally simpler and allows us to calculate the phonon
dispersion at all points in the Brillouin zone. In particu-
lar, our method was designed to study separately, specific
effects of the ionic and metallic component of bonding in
the HTSC where the latter is dominated by strong locali-
zation properties of the electrons. To take care of such a
situation explicitly, a specific description of the
displacement-induced change of the electron-density or
the density-response function in terms of charge fluctua-
tions and Coulomb interactions is essential. This is
achieved by parametrizing the electronic charge density
by a suitable set of effective electronic degrees of freedom,
e.g., charge fluctuations, and using density-functional
theory to calculate how these degrees of freedom change
when the ions are displaced. Another point of our ap-
proach is that we can discriminate the density response of
a metal from that of an insulator by a general criterion
that can be used to study directly the effects of a metal-
insulator transition on the phonon dispersion.

In the present work, the local part of the electronic
density response, which generally is represented by a
RIA or in the framework of the quasi-ion approach
(QIA)®~° by a rigid quasi-ion model, will be described by
a suitable ab initio ionic model of rigid ions. Then, using
such a model as a reference system, nonlocal contribu-
tions to the density response in the form of charge fluc-
tuations on the ions are additionally taken into account
and their influence on the phonon dispersion is studied.
Some important features in the experimental phonon
spectrum can be understood within such an approach,
supporting the proposed screening mechanism on the
basis of charge fluctuations.

In Sec. II, the theoretical method is established and a
proper representation for the electronic density-response
function, the dynamical matrix, and the electron-phonon
matrix elements is derived. The definite modeling of the
theory is described in Sec. III, where the results are dis-
cussed and conclusions given.

II. THEORETICAL CONSIDERATIONS

In this section, the displacement-induced change of the
electron density and the density-response function are ex-
pressed in terms of effective electronic degrees of freedom
and it is shown how these quantities enter the dynamical
matrix and the matrix elements of the electron-phonon
interaction.

A. Density response in terms of
effective electronic degrees of freedom

The fundamental quantity to describe the phonon
dispersion as well as the electron-phonon interaction in a
crystal microscopically is the change in density of the
electrons at space point r, if an ion located at
RA=R?+R (a,q, primitive and nonprimitive lattice in-
dex, respectively) is displaced in a certain direction. In
the adiabatic approximation, this change in density is re-
lated to the static density-response function D (r,r’) and
the potential of the ion cores V,(r—R*) by®’
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PA= [dV'D(r,r' )V’ —RA), (1a)
with
« __9
Vi(r—RA)= R A Vo(r—RA) . (1b)

PA(r) enters the phonon dispersion via the dynamical
matrix t*4(q) (Ref. 6).
t5P(q)=(M M) """ [¢2P(q)— aﬁz $57(0) 2)
q is a wave vector from the first Brlllouin zone and M is
the mass of the ion of type a. $*A(q) can be decomposed
into a direct ion-ion contribution ¢IB(q which can be
dealt with by the Ewald method and into an electron-
mediated contribution $#%(q), which is given by the
Fourier-transformed expressions of P2 and VA r—RA),
respectively:

¢E,j(q)——; 3 V*q+G)*PAq+G)
c G
Xe ~iGRO-RY (3)

G is a vector of the reciprocal lattice and V, the volume
of the elementary cell.

In order to describe the displacement-induced change
of the electron density P4 or the density-response func-
tion, we introduce effective electronic degrees of freedom
(EDF), for example, charge fluctuation, at the ions. We
imagine that the electronic charge density p is
parametrized by a set of suitable ‘“‘generalized coordi-
nates” representing the EDF: ¢={---§%---}. a
specifies the elementary cells in the crystal and k numbers
the localization centers of the EDF in a certain elementa-
ry cell. So we have

p=p(r,§) . 4)

The £’s may be identified, for example, in the framework
of the QIA as localization centers (— ““bond charge coor-
dinates”), decay constants (— ‘“‘breathing coordinates™),
or amplitudes (— “charge-fluctuation coordinates”) of
the Gaussians defining the quasi-ion density.

From its definition the displacement-induced change in
density P4 then can be expressed as

o
Pi(r)= dp(r) -3 ap(:) 9
OR; b 95 OR;
=—3 pr—RE)X . (5)
bk

A definite model is obtained from Eq. (5) by specifying
the form factors p, of the charge-density variation and
the quantities X which describe the reaction of the
EDF £® with respect to the displacement of the ion
A=aa.

In earlier studies within the QIA%’ the nonlocal (dis-
tortion) contributions to P# or X%, respectively, have
been simulated explicitly in the form of “rotations” or
“breathing” of the quasi-ions and this choice was guided
by microscopic calculations of the density-response func-
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tion itself. On the other hand, the correct description of
X and in particular its nonlocal part, follows from the
minimum principle for the energy,

E(L,R)=E[p(&),V(R)], (6a)

with respect to the EDF ¢ for a given configuration R of
the ions. E is the energy functional of density-functional
theory,

Elp]= [dVp()V(r,R)+F[p], (6b)
F=T,+E,+E, . (6¢)

V(R) is the (external) potential of the ions in the crystal;
T,, Ey, and E, are the Kkinetic-, Hartree-, and
exchange-correlation energy functionals. This yields
£(R) and finally X by differentiation; see Eq. (5). The
(adiabatic) minimization condition can be stated as

3E

=0, (7)
¢ |wrnp

where we have assumed that the definite choice of the §
and p, does not violate particle conservation. In a formal
but obvious notation, Eq. (7) yields for (—X)=¢’ after
_differentiating with respect to the ionic positions R:

§':—(E§§)71E§R . (8)

Here and in the following, a shorthand notation for the
derivatives has been used, e.g., E sz =9?E /3¢AR etc. The
partial derivatives of the energy in Eq. (8) can be
represented microscopically in the framework of density-
functional theory. In our symbolic notation, we obtain
for P2 and the density-response function D

P EDVR = '—pg(Egg)_ lEgR
= —PpcF PPV ®)
and
D= ——p;(ngpppg)_lng —p;(C_l)ggpg . (10)

Written in full notation the expression for the density-
response function is

D(r,r')=—Spr—R3)(C")%p . (r'—RY), (11
poe

with

C2®. = [dVdV'p (r—RHF"(r,r')p.(r'—RY) (12)

and

F'(r,r')=T,(r,r')+v(r—r')—v,(r,1")
=T, (r,r')+0(r,1'), (13)

where v is the Coulomb interaction and 7" and
(—v, )=E}, are the second functional derivatives with
respect to the density p of the kinetic energy and the
exchange-correlation energy. If we introduce the polari-
zability 7 of the electronic system by the relation

7 Nr,r')=T.(r,r'), we can express C ! in Eq. (11) in

compact notation as
C ="+ '=(1+aV) le=7(1+Vm)" ', (14)

where (77")%, and V%, are defined analogously to C2 in
Eq. (12) with F"(r,r’') replaced by 7~ Ur,r') and 0(r,1’),
respectively.

Physically, C ,‘:: means the interaction energy between
the form factors p% if the corresponding EDF &2 have
been excited by the displacement of the ions.

Equation (9) can be rewritten as [compare with Eq. (5)]

PA(r)=—3 pr—ROX®A | (15)
bk
with
XiA=3 (CTORBYAA (16
b«
and
B A= [avp(r—ROVAr—RA) . (17)

The quantity (—B®*A) expresses the “force” on the EDF
with form factor p, located at R® if ion A is displaced in
the i direction or, equivalently, the “force” on ion A in
the i direction if the EDF b « is excited by a unit excita-
tion. Thus the following picture arises for PA. The dis-
placement of an ion A exerts a force on the EDF, so the
latter get excited and interact with each other via F'' as
described in Eq. (12).

B. Representation of the electron-phonon interaction

Next we outline how the EDF enter the expression of
the matrix elements M of the electron-phonon interac-
tion. Following Ref. 6, the matrix elements are given by

# 172 A
M .., = iq'R
kn,k'n E’ INM o, (q) | ©
Xef(qo){kn|VAk'n') . (18)

0,(q) and e*(qo ) denote the phonon frequencies and cor-
responding eigenvectors for the mode with wave vector q
and polarization o for an ion of type a. |kn ) symbolize
the wave functions of the electrons with wave vector k
and band index n. ¥ A(r) is the change (per unit displace-
ment of the A atom in the i direction) of the self-
consistent potential felt by an electron at space point r.

According to Ref. 6, V2 can be related to P as fol-
lows:

VA=VA+oPA . (19)

VA denotes the (negative) gradient of the bare ion poten-
tial. The second (electron mediated) contribution in Eq.
(19) is determined by the specific characteristics of the
underlying screening mechanism (in our model, of
charge-fluctuation type, see Sec. III). Substituting in Eq.
(18) and using Eq. (15) we arrive at

EMY, v =V'N 38537 (kn|opdlk'n' Y8y _y1q6, (20
G,k
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with
12

% e (qo )X (q)e R . (21)

(qo) — __ LA
8 2 2M ,0,(q)

ai

XF*(q) is the Fourier transform of X°” from Eq. (16).
8£99) means the change of the EDF £, in the phonon
mode (qo). Note also that for a calculation of the
electron-phonon coupling strength A within the BCS
theory of superconductivity, k and k' in Eq. (20) have to
be kept on the Fermi surface.'°

III. MODELING OF THE THEORY AND DISCUSSION

We start with the construction of our ab initio ionic
reference model followed by a calculation of the structure
parameters and the phonon dispersion of La,CuQ, in this
model. Typical features of the dispersion related to the
ionic forces are singled out. Then the charge-fluctuation
degrees of freedom are implemented and the density
response of a metal is discriminated from that of an insu-
lator by a general criterion. The phonon dispersion in-
cluding the charge fluctuations is then calculated and
several characteristic effects of the latter on the disper-
sion are discussed and compared with the ionic reference
system. Results for both the metallic and the (fictitious)
insulating phase are presented. Finally, we demonstrate
the relevance of nonlocal electron-phonon interaction
effects of the charge-fluctuation type for the axial O,- and
La,-breathing modes at the I' and Z points and indicate
how the usual picture of electron pairing has to be
modified by including these nonlocal effects.

A. Construction of the ionic model

In the following the local part of the electronic density
response will be approximated explicitly by a proper ab
initio model of rigid ions to describe the effects of the ion-
ic forces in the crystal. Using such a model as a reference
system, we additionally incorporate implicitly nonlocal
contributions in the form of charge fluctuations on the
ions into the density response by treating these fluctua-
tions as a special type of EDF, according to the method
presented in Sec. II. Consequently, Eq. (15) only ac-
counts for the contribution of the charge-fluctuation de-
grees of freedom to the density response. The contribu-
tion of the ion cores ¢¢A(q) in the dynamical matrix then
has to be replaced by the contribution of pair potentials
#q5(R), defined below, between the rigid ions of our mod-
el. The ab initio character of the ionic reference model is
important because empirical elements of a reference sys-
tem, e.g., by fitting a phenomenological model to the ex-
periments, could cover the characteristic features related
to the nonlocal electron-phonon interactions we intend to
investigate.

The (spherical) ionic densities p%(r) of the model have
been calculated with a modified Herman-Skillman pro-
gram,'! where the Slater exchange potential has been re-
placed by the exchange potential of local density-
functional theory and a correlation potential according to
Ref. 12 has been taken into account additionally.

Also an averaged correction for self-interaction

effects!? has been used. The O%” ion, which is unstable in
the free state, is stabilized in the crystal by the long-range
electrostatic (Madelung) potential of the surrounding
neighbors. This effect is modeled by enclosing the oxygen
ion in a (Watson) sphere!® with opposite charge. The ra-
dius of the sphere is fixed to give the Madelung potential
at the site of the O>~ ion in the crystal.

Given these ionic densities, the interactions between
the ions are calculated using the approach as proposed by
Gordon and Kim,'* who assumed that the density of a
pair of ions is given by overlapping spherical ions. Then
the energy of the ion pair is calculated by local-density
approximation (LDA), taking for the kinetic contribution
the Thomas-Fermi approximation. This results in pair
potentials between ions of type a and f3:

Z,Zs

Gap(R)= +éa5(R) . 22)

In Eq. (22) Z, and Zj; denote the ionic charges, and the
long-range Coulomb part has been separated from the
short-range contribution ¢, The latter is given by

Bup R)=2,Ug(R)+z5U (R)+ W 5(R)+G5(R), (23)

with
_ 11
U (R)= [dVp,(r) 2 IR’r'] 24)
and
Wos(R)= [dV dV'p,(r)pyr’) lm—% 25)

and

Gas(R)= [dV{ [p,(r)+pgr—R)]
Xe[por)+pgr—R)]—p,(r)€[p,(r)]
—psr—R)e[ps(r—R)]} . (26)

z, and zg are the nuclear charges of the interacting
ions and € in Eq. (26) is given by the LDA expression for
the energy treating the kinetic energy in the Thomas-
Fermi approximation,

elp)=€(p)telp)tep), (27)
where
€x(p)=33mp)*” (28)
and
3 1/3
e, =—> (32 , (29)
4 |7

while the correlation energy per electron €, is taken ac-
cording to Ref. 12.

The ¢,45(R) are calculated numerically for different
values of the distance R between the ions and the results
are fitted to the following two-exponential form:

BLR , PR

dR)=a,e T —a_ , (30)
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which is suggested by Eqgs. (23)-(26) and which deviates
from the Born-Mayer form of the pair potentials fre-
quently utilized in empirical calculations. The force con-
stants of our ionic model then are obtained by
differentiating ¢,5 twice with respect to the ion coordi-
nates and the dynamical matrix of the reference system is
determined in the usual way from the force constants by
a Fourier transformation. Finally, the energy of the ionic
system

E:% > '¢aﬁ(|Rtﬁ’—Rg|) (31)
b,a,B
is minimized with respect to the four structure parame-
ters a (lattice constant), ¢ /a (ratio of ¢ axis to lattice con-
stant), z(La),z(O,) (positions of La and O, in the elemen-
tary cell).

B. Structure parameters and dispersion in the ionic model

The results from the minimization of the energy of the
ionic system are collected in the first row of Table I and
are compared with the results of the so-called potential-
induced breathing model’® (PIB) and the experimental
values.'® The PIB model is like ours, an ab initio ionic
model where the charge density in the crystal is also
given by overlapping Watson-sphere stabilized ions. In
contrast to our model, the ionic densities in the PIB mod-
el are assumed to depend on the actual configuration of
the ions via the Madelung potential, such that the radius
of the Watson sphere varies dynamically with the
Madelung potential when the ions are vibrating.

From the data in Table I we find that there are only
small differences between the results of the PIB model
and our rigid-ion model (RIM) as far as the structure pa-
rameters are concerned. Compared to the experiments,
both models lead to an enhanced planar lattice constant
and to a (¢ /a) ratio, which is too small. This can be con-
sidered to be a consequence of the use of spherical ions
overestimating the repulsion between the Cu and O,
ions in the plane. Note, however, that the model gives (in
spite of the overestimate of the in-plane lattice parame-
ter) a large part of the elongation of the CuOg4 octahed-
ron, being related in this way to the layered tetragonal
structure and the strong ionic forces. The remaining part
of the elongation then arises from the nonspherical shape
of the ions not taken into account. Indeed, complete
LDA calculations lead to a better agreement with the ex-
perimental structural parameters® and one may be tempt-
ed to reduce the long-range Coulomb interaction simply
by taking some effective ionic charges (e.g., from LDA

TABLE 1. Structure parameters for the minimum of energy
of the ionic reference model (first row). Comparison is per-
formed with the PIB-model (Ref. 15) and the experimental re-
sults (Ref. 16).

a (A) c/a z (0,) z (La)
3.98 3.02 0.190 0.363
PIB 4.06 3.01 0.193 0.366
Expt. 3.79 3.49 0.182 0.362

calculations) instead of the completely ionized picture.
We have performed such a replacement of the charges in
a calculation of the phonon dispersion leading, however,
to a larger number of unstable branches as compared
with the calculation using the nominal charges. On the
other hand, the high-frequency optical branches are not
softened significantly.

In Fig. 1 the phonon-dispersion curves of our ionic
reference model for the tetragonal phase of La,CuO, are
displayed for the A~(1,0,0), A~(0,0,1) and £~(1,1,0)
direction. Compared with the results of the PIB model'®
we find good agreement in the = direction. In the other
directions no PIB results are published. Thus we con-
clude that spherical “breathing corrections” to the ionic
charge densities, which are additionally considered in the
PIB model, are not very essential for the phonon disper-
sion in La,CuO,. The occurrence of imaginary frequen-
cies in the PIB model and also in the RIM developed in
this paper cannot be considered as a drawback. Instead it
may be regarded as a reflection of real physical properties
of the system, like instabilities or anharmonicities related
to the ionic character of the forces.>>!> For example, the
lowest frequency at the X point corresponds to a rotation
of the octahedra around the z axis that hardly can be sta-
bilized in the model. The next most unstable mode at X
is the tilt mode and the instability of this mode an-
nounces correctly the phase transition from the tetrago-

E, (LO) —
30 Ey (TO) —F
Aau -
Aig —_
__ 20 Eyo)—
N
T
= Aoy |
- Eu (TO) \
b Eg N
c
[1}] 10 B Aig >
o Ey (LO)
- Axy
[’
Bay -
O+ Eyl(T0) ~
E J—
eﬁ (Lo) —¢ 1 I
R e e
—f ——- 2 . ~
—10 i r—-—3 — 4 T T \\—
r A Z AT z X

FIG. 1. Calculated phonon dispersion of La,CuO, for the
ionic reference model in the main symmetry directions
A~(1,0,0), A~(0,0,1), and £~(1,1,0). The classification of
the phonon branches by irreducible representations (with sym-
metry labels 1-4) has been brought about in the figure by using
different line types. Imaginary frequencies are represented as
negative numbers. Note that the numbering of the irreducible
representations 3 and 4 in A and 3 directions is reversed as
compared to the convention in Refs. 18-21.
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nal to the orthorhombic structure observed experimental-
ly. The lowest frequency at the I' point is connected with
a sliding motion of the O, ions parallel to the plane and
the unstable E, mode involves sliding of both O, and La
ions. These results point in the direction of large ampli-
tude motion of these ions and towards possible anhar-
monicities. Another interesting feature of the dispersion
is the LO-TO splitting of the E, modes and the discon-
tinuity of the A4,, vibrations at the I point. The E, vi-
brations are polarized in the xy plane and are twofold de-
generate while the A4,, vibrations are polarized along the
z axis and are nondegenerate. The splitting of the E, vi-
bration with the highest and lowest frequency is relative-
ly small while the splitting of the two other optical E,
modes is large. The largest splitting (discontinuity) of all
modes is found for the 4,, mode with highest frequency.
Practically no splitting is present for the lowest optical
A,, mode, which means that the dipole moment of the
elementary cell is approximately zero because of the
specific ratio of the amplitudes of vibration of the
different sublattices.

Of particular interest is the so-called planar oxygen
breathing mode at the X point where the four O, , ions
(and to some extent the two O, ions) are vibrating against
the central Cu ion. Because of the in-phase movement
and the correspondingly large variation of the Cu-O bond
length for this vibration, a strong renormalization of the
frequency is to be expected when applying the ideas of a
standard screening approach for high-density metals.
Indeed, in such a description of lattice dynamics,!” which
works well for good metals but ignores the effects of
long-range ionic forces emphasized in this work, leads to
a strong decrease in frequency in the doped material and
even to an instability in the undoped case. However,
from experiments!® 2! and also in our ionic model, the
planar oxygen breathing mode is the hardest mode, rath-
er than being the softest as in Ref. 17.

A global comparison of the results for the phonon
dispersion as calculated from the ionic model (or the PIB
model) with the (still incomplete) experimental curves
shows that the former are about 30% too high. But one
should ‘remember that contributions to the density
response, which can be ascribed to covalent and metallic
effects of the system, have been neglected. Nevertheless,
important qualitative features of the ionic model disper-
sion also can be found in the experimental results. For
example, there is an increasing X, phonon branch with
the highest frequencies of the spectrum when going from
the I' point to the X point, ending at the planar oxygen
breathing mode. Also the proportions of the LO-TO
splittings agree in experiment and calculation. The split-
ting of the highest E, mode is small in the calculation
and not seen at all in experiment. There are two large
LO-TO splittings in the intermediate range of frequencies
and a large discontinuity of the 4,, mode (“ferroelectric
mode”) in theory as well as in experiment. The lowest E,
mode splitting is small both in theory and experiment.
Furthermore, we extract from the experimental re-
sults?®?! that in the doped (metallic) phase of La,CuOy,,
the LO-TO splittings and the large A4,, discontinuity
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vanish. The latter fact indicates a metallic screening also
in the z direction. In connection with the vanishing of
the A4,, discontinuity, there appears a characteristic A,
phonon branch with a very steep dispersion. Of course,
these features cannot be explained in an ionic model and
an explanation will be provided by considering charge
fluctuations as the dominating screening mechanism.

Another interesting feature of the experimental disper-
sion is the anomalous softening of the highest A; branch
midway in the A direction. Comparing the results for the
metallic phase with the insulating phase, this minimum in
the dispersion curve is deepened significantly.?>?! In out-
lines, this minimum is already present in the correspond-
ing dispersion curve of the ionic model (see Fig. 1). The
displacement pattern of the ions in this mode is similar to
the planar breathing mode. But only one pair of oxygen
ions (O, ) in the plane is vibrating against the Cu ion
while the other pair is silent. In view of the similarity of
the displacement patterns of both modes it looks strange
that the highest =, branch does not show any anomalous
softening, not even in the metallic phase. A possible ex-
planation of such behavior is presented below, taking
charge-fluctuation effects at the Cu and O, , ions into ac-
count.

Another interesting feature of the phonon dispersion in
the ionic model (and also in the insulating model, see
below) should be mentioned, namely, that the axial O,
breathing mode (O?) is the highest A; mode at the Z
point [compare with Fig. 1 and 3(b)]. This fact was not
recognized in the experimental work published so far.
However, very recently we became aware of new experi-
mental results?> where O? has been found as the highest
A; mode at the Z point. This phonon is unusually broad
and therefore it was not detected in earlier measure-
ments. We think that nonlocal electron-phonon interac-
tion effects of charge-fluctuation type are very significant
especially for this mode.> Our calculations of the long-
range changes of the effective (screened) potential in the
CuO plane accompanying this mode give particularly
large values in the model for the insulating phase. A dis-
cussion of the importance of this phonon for an under-
standing of a nonconventional phonon-mediated pairing
mechanism in the HTSC, based on long-range electron-
phonon interaction effects, can be found in Ref. 23, using
the method presented in Sec. II and will be reviewed later
on in this work.

C. Implementation of the charge-fluctuation
degrees of freedom

Next we sketch the way we have implemented approxi-
matively the EDF of the charge-fluctuation type, simulat-
ing the screening effect in the HTSC. According to the
formalism developed in Sec. II, we have to calculate the
interaction of the charge-fluctuation degrees of freedom
(CFDF) with the ions (B®*A) and the mutual interaction
of the CFDF (C2,). In doing so, we have to observe that
the formalism presented in Sec. II is developed for a situ-
ation where the change in density P4 is fully described by
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the EDF according to the minimum principle for the en-
ergy. However, in our present model the main part of P4
is given explicitly by the movement of the rigid ions (see
the remark at the beginning of Sec. IIl A). The quantity
BP®*A then contains, besides the coupling of p, with the
potential of the ion core, as it is expressed by Eq. (17), an
additional contribution caused by the interaction between
p. and the ionic densities p, via F"’.

The important long-range Coulomb contributions can
be separated, i.e.,

3 Z,
BbrA] = , (32)
[ i ]c 8R,~A |RA_R2t }
[Co],=——t—— (33)
IRE—R2|

and can be dealt with exactly using the Ewald method.
In order to estimate the short-range part of B°*A we
identify the form factors p, with the Cu-d and O-p orbital
densities, respectively, and confine ourselves to the Har-
tree contribution in F”. The ionic densities p, are al-
ready known from the ionic model and the form factors
p, are calculated with our modified Herman-Skillman
program. In this way we get at least an idea of the order
of magnitude of the short-range contribution to B°*A.
The mutual interaction of the CFDF C®, according to
Egs. (12) and (13) contains contributions from the
Coulomb- and exchange-correlation interaction as well as
a contribution from the kinetic energy. The long-range
Coulomb part is given in Eq. (33) and the short-range
Coulomb part can be estimated in a similar way as in the
case of B®*, approximating the form factors p, and p,.
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by the Cu-d and O-p orbital densities.

Most important are the self-interaction terms V22,
They represent the change in Coulomb- and exchange-
correlation energy, which is connected with the charge
fluctuation on a certain ion. Small values of these quanti-
ties mean that it is easy to excite charge fluctuations at
the corresponding ion, while large values tend to suppress
such fluctuations. The mutual interplay of the self- and
interaction terms and their interplay with contributions
from the kinetic energy via the polarizability 7 in Eq. (14)
is very significant for our model and reflects the relative
importance of localization and delocalization properties
of the electrons in the crystal. Such features are strongly
related to electronic correlation effects, e.g., a large Cu
self-term on the one hand, and to specific characteristics
of the Fermi surface and band structure, e.g., nesting
features on the other hand.

Before discussing the approximate calculation of the
kinetic contribution in terms of the polarizability 72, we
would like to remark that the approach in Sec. II also al-
lows us to apply a semiempirical model concept by
parametrizing the short-range parts of B®*A and C2
(i.e., the strong local correlations), in contrast to the
parameter-free approach we have outlined so far. Such a
strategy is also useful because strong local correlations
are very hard to compute in a realistic way and so micro-
scopic model calculations of specific effects (like charac-
teristics in the dispersion) can help identify the relevant
quantities which reflect the correlations.

From its definition (—72%) means the change 8 of
the EDF £2 in response to a variation of the total self-
consistent potential at the position of the EDF £P. For
the calculation of 72 we use the tight-binding (or Wan-
nier) representation for the polarizability,®

m(q+G, q+G)=T 4,(q+Gle "OR'r_(q) A} (q+G eSO R (34)
s, 8"
with
A(n)=g;(r)p,(r—R%), s=(uva),R°=R{—R*, (35)
as overlap densities of the tight-binding (Wannier) functions and
(k)= fok+q) . s_RpS
wss,(q>=—l I 2T [Ch(K)C,, (k+q)][C},(K)C,, (k+q)]*e/ kT PR —RD) (36)

N %\ e (k)—¢,(k+q)

The fs, €’s, and C’s represent the occupation numbers,
the electronic bandstructure, and the expansion
coefficients of the Bloch functions in terms of tight-
binding (Wannier) functions. The CFDF are described
by a submatrix of w with uy=v=«, a=0, and
u'=v'=«k’,b=0, which then defines the Fourier trans-
form m,.(q) of 72%. Here the form factors have been
identified with the self-overlap densities A ,,(r).

For the calculation of 7,,.(q) we use a two-dimensional
tight-binding model for the band structure,?* which is in
qualitative agreement with the full three-dimensional re-
sults.>?* The basis set of this model consists of five 3d or-

f

bitals on the copper and three 3p orbitals on each of the
two oxygens (eleven-band model). In the 7 matrix we al-
low for charge fluctuations on the Cu and O,,, and only
the Cu a’xzfyz and the O,, O, p orbital pointing towards
the Cu are taken into account, yielding a 3 X 3 matrix.
Figure 2 shows our results for 7,,.(q) in the main sym-
metry directions in the two-dimensional Brillouin zone
for the undoped [Fig. 2(a)] and doped case [Fig. 2(b)], re-
spectively. In the undoped case we get a nesting peak at
the M point of the two-dimensional zone (X point of the
three-dimensional zone). See also the calculations report-
ed for the susceptibility in Ref. 2, yielding similar results.
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Generally, nesting properties of the Fermi surface are
reflected by peaks of the polarizability at the correspond-
ing nesting vectors. This can lead, if strong enough, to ei-
ther a charge density wave (CDW) or a spin density wave
(SDW), or to both.

The tendency for the development of an electronic su-
perstructure by a CDW transition (possibly accompanied
by a lattice soft mode in the system) occurs if, in addition
to the effect introduced through the nesting behavior in
7, we have a small or negative ¥(q) in Eq. (14). This can
only happen if the self-interaction terms 22 are not too
large. On the other hand, we know that a CDW transi-
tion is absent in La,CuQO, (and the other copper-oxide su-
perconductors) indicating that the copper self-interaction
is still large, even in the metallic phase. This fact will
prove to be important for the understanding of special
features of the phonon dispersion to be discussed below.
In context with a large copper self-interaction, it is fur-
ther interesting to note that the isotope exponent «, being
very small in the HTSC, is rather dependent on the na-
ture of the interactions among the electrons. For exam-
ple, following the treatment of the isotope effect as
presented in Ref. 26, we find that small values for a
correlate with large values of the intra-atomic Coulomb
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FIG. 2. Dispersion of the matrix elements ,.(q) of the po-
larizability according to Eq. (36) using the two-dimensional
tight-binding model for the band structure as explained in the
text. Figures 2(a) and 2(b) display the results for the undoped
and doped case, respectively. The different elements m,, are
represented by different line types. The two-dimensional Bril-
louin zone is shown as an inset.
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repulsion. Both the dependence of a on the electronic
structure (density of states, correlation) and the anhar-
monicity of certain phonon modes (see our findings in the
ionic model) will play a role for the anomalous behavior
of the isotope effect in the HTSC.

The position of the peak at M (X) is significant because
it coincides with the ordering wave vector of the antifer-
romagnetic state. In the doped case [Fig. 2(b)] the peak
in the polarizability in shifted to a smaller wave vector.
In both cases the dominant contribution to 7 arises from
the diagonal Cu-Cu polarizability (m;, in Fig. 2) for
which we recognize the nesting peak at M (X) in the un-
doped material, being shifted inward in the doped case.
The diagonal O-O polarizabilities [7,, (O,) and 733 (0,)]
are significantly smaller than 7, and do not show notice-
able nesting behavior. Next in magnitude are the off-
diagonal Cu-O polarizabilities 7, and ;. The off-
diagonal O-O polarizability ,; is practically zero. If the
Cu-O polarizability is large enough, it can reverse in cer-
tain phonon modes the direction of the charge transfer as
compared with a situation where the diagonal polarizabil-
ity dominates. For example, this can be achieved for the
axial oxygen breathing mode at the T point (O!') by arbi-
trarily increasing 7, and 7,3 in our model. Compare this
with the findings in Refs. 2, 15, where for this mode such
a counter intuitive shift of charge between the Cu and the
in-plane O, , is reported. For the O] mode in the metal-
lic phase, our calculations show no reversal in sign for
the charge transfer upon increasing 7, and m; but a
strong increase of the charge fluctuations on the Cu ions
at the cost of the charge fluctuations on O, .

In the case of the doped material, the Fermi energy
coincides with a Van-Hove singularity, leading to an in-
crease of the density of states at E. This fact is reflected
by the increase of the polarizability at the T" point [see
Fig. 2(b)]. From the band-structure model used for the
calculation of 7, we cannot expect to obtain “high quali-
ty”’ results for the polarizability. Our main concern is to
get an idea of the absolute and relative order of magni-
tude of the individual matrix elements, including their
dispersion as a function of the wave vector q. So, for the
practical use of 7 in Eq. (14), we parametrize our numeri-
cal results by a low-order Fourier decomposition.

An important question remains as to how to discrim-
inate between the density response of a metal and that of
an insulator. A general criterion follows from the
different analytical behavior of the Fourier-transformed
polarizability matrix w(q+G,q+G’) in the long-
wavelength limit (q—0) in both phases.?”?® We can
adapt this criterion to the formulation of the density
response as presented in Sec. IT and find

O(qg?) insulator
3 mla0= 1Z(£,) metal (37)

and

> 7,.,(q—0)=0(q) insulator. (38)
<

The expression in Eq. (38) is different from zero in the
long-wavelength limit in the case of a metal. Z(Ey) in
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Eq. (37) means the density of states at the Fermi level.
The left-hand side of Eq. (37) is proportional to the
compressibility k of the electronic system. The latter
provides a quantitative measure of the gap in the elec-
tronic spectrum because «; vanishes as a function of the
chemical potential in the gap region. It is just this rela-
tion which is expressed by Eq. (37) in the case of an insu-
lator. This equation can be considered as a closed form
to characterize the metal-insulator transition and we see
that such a transition occurs at a density as the control-
ling quantity where the static and long-wavelength limit
of the polarizability vanishes. We further realize that in
the insulating phase the charge fluctuations are strongly
restricted by Egs. (37) and (38), in the course of which the
incompressibility related to the gap in the energy spec-
trum of the system leads to a strong suppression of long-
wavelength density fluctuations. In the case of a metal
with no gap in the spectrum, the fluctuations are less re-
stricted. In particular, Eq. (38) does not hold, and long-
wavelength fluctuations become possible, and the
compressibility in the metallic phase of the HTSC can be
thought to be induced by ionic charge fluctuations in our
model.

D. Phonon dispersion including charge fluctuations

We now discuss our results on the influence of the
CFDF on the phonon dispersion. We first consider the
doped (metallic) phase of La,CuO, in Fig. 3(a). The
dispersion curves for the undoped (fictitious insulating)
phase displayed in Fig. 3(b) are obtained by requiring the
matrix elements of 7,,.(q) to fulfill the density-response
conditions provided by Egs. (37) and (38) for an insulator.

We begin with the highest frequency vibrations which
are the oxygen vibrations in the CuO plane. In accor-
dance with experiment, the highest A, branch is de-
creased below A, and now shows the characteristic dip of
the experimental dispersion midway in the A direction.
Also, the highest 3, branch is decreased relative to the
ionic model but still shows the correct increasing disper-
sion towards the X point. In order to get a better under-
standing of the behavior of these phonon branches, we
have performed calculations suppressing either the
charge fluctuations at the copper or at the oxygen, re-
spectively, by choosing arbitrarily large values for the
corresponding self-interaction terms 722 (U, for Cu and
U, for O). The results for the phonon dispersion [Figs.
4(a) and 4(b)] demonstrate the dominant influence of the
Cu charge fluctuations as far as the highest A; and 3,
branches are concerned. For the X-point breathing
mode, for example, by increasing U, the charge fluctua-
tions 8¢ [Eq. (21)] at the Cu are strongly suppressed and
the frequency is raised. There are no charge fluctuations
85 at O, , in this mode for symmetry reasons [see also
Fig. 4(b)]. This is quite in contrast with the situation at
the A; minimum. Here, beside the charge fluctuation at
the Cu responsible for the main part of the minimum
[(Fig. 4(a)], we have additional charge fluctuations at the
nonvibrating O, ions [Fig. 4(b)], further softening this
mode.

To get the results displayed in Fig. 5, we have investi-

gated the combined effect of the short-range part of the
force on the CFDF at the Cu ion if the O, or O, ion is
displaced (B, ), and of the self-interaction term U, at the
Cu on the dispersion of the highest A; and =, branch.
The results might help one to understand the experimen-
tal fact that in doped La,CuO, there is a pronounced
softening of the highest A; branch midway in the A direc-

(a)

(THz)

Freguency

(THz)

Freguency

Z AT z X

FIG. 3. Phonon dispersion of La,CuQ, taking charge fluctua-
tions at the copper and oxygen in the plane into account. (a)
gives the results for the metallic phase and (b) for the insulating
phase. The labeling of the curves is the same as in Fig. 1.
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FIG. 4. Phonon dispersion of metallic La,CuO, (a) suppress-
ing the charge fluctuations at the Cu (only oxygen charge fluc-
tuations are allowed) and (b) suppressing the fluctuations at O, ,,
(only copper charge fluctuations are allowed). For comparison,
the results of the full calculation (linetypes 1,
-2, +4) are also shown. Only the branches of sym-
metries allowing for charge fluctuations are shown.

tion.?%2! The tendency for such a behavior can already

be seen in Figs. 3(a) and 3(b). Physically we expect that
the charge fluctuations at the Cu and the corresponding
decrease in frequency are larger, the smaller U, happens
to be. The results of Fig. 5 confirm this expectation. A
negative value for B, weakens the charge transfer at the
Cu and thus increases the phonon frequency. Ignoring
B, and choosing a small enough value for U, increases
the charge fluctuations at the Cu and a decreasing disper-
sion of 2, towards the X point can result (see the broken
curve in Fig. 5). This contradicts experimental evidence
but points toward the direction of the “‘expected” result
in a normal high-density metal.!” It can be expected that
the self-interaction U, changes with increasing band-
width from a site-classified Coulomb interaction to a
screened Coulomb interaction at high doping. From our
discussion above, it is clear that reducing the self-
interaction U, will also soften the A; minimum because
of the enhancement of the charge fluctuation at Oy,
without increasing the frequency of the planar-breathing
mode. This is confirmed by the numerical results
displayed in the dotted curve of Fig. 5.

The second highest A; branch with OZ as its endpoint
and the A; branch with the steep dispersion are
influenced by charge fluctuations at both the Cu and O, ,
(Fig. 4), leading to an effective screening of the long-range
Coulomb interactions which are responsible for the high
frequencies of O and the highest A, branch in the ionic
and insulating model [Figs. 1 and 3(b)]. The intermediate
and lower lying branches are dominated by oxygen
charge-transfer effects.

Compared with the ionic model from Fig. 1, there is

32

(THz)

Frequency

26

z A r z X

FIG. 5. Dispersion of the highest A, and =, branch in the
metallic phase of La,CuQO, for different choices of the self-
interaction terms at the Cu (U,) and at O, ,, (U, ) as well as for
different values of the short-range part of the force on the
CFDF at the Cu if O, or O, is displaced (B,). The different
sets of parameters (U,,U,,B;) are characterized by different

linetypes: ——- (U;=7.6, U,=3.4, B, =-3.9), ——
(U;=5.5, U, =3.4, B;=—3.9, this set was used to obtain the
results displayed in Fig. 3), ---(U,=5.5 U,=17,
B,=-3.9), — — —(U;=5.5, U,=3.4, B;=0). U is in units
of (e?/a) and B, in e?/a’. e=eclementary charge and

a =lattice constant.
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further a drastic rearrangement of the phonon dispersion
in the metallic phase when charge fluctuations are taken
into account [see Figs. 1, 3(a), and 6(a)]. The LO-TO
splittings of the E, modes and the large 4,, discontinui-
ty at the I' point are vanishing as a consequence of the
metallic charge transfer. In connection with the removal
of the A4,, discontinuity, we observe a large decrease of
the second highest A, branch, especially at the Z point,
and of the highest A; branch. (A detailed discussion of
the charge fluctuations in OZ will be given later, see also
Table II). This results in the A, branch with the steep
dispersion, which quite recently?®?! also has been ob-
served in doped La,CuQO,. The very drastic renormaliza-
tion of the third highest and third lowest A, and Z,
branches is caused by the vanishing of the LO-TO split-
tings. So we have metallic behavior in the plane where
the E, modes are polarized, as well as in the z direction,
the polarization direction of the 4,, modes.

Looking a bit closer at the phonon dispersion of the in-
sulator [Figs. 3(b) and 6(b)], we find that the LO-TO split-
tings are reduced in comparison with the ionic reference
model because charge fluctuations are now possible, how-
ever, under the restricting conditions from Egs. (37) and
(38). On the other hand, the discontinuities of the A4,,
modes at ' do not change at all and the highest A,
branch, including O?, remains practically unchanged
from the ionic model. The reason for this behavior is be-
cause of the assumption of two-dimensional electronic
structure in our model. This confines, in the case of an
insulator, the charge fluctuations locally within the CuO
planes in contrast to the metallic phase where interplane
charge transfer is possible even if the electronic structure
is two dimensional. These interplane processes lead, in
the metallic phase, to the large renormalization of OZ, the
highest A; branch, and to the vanishing of the 4,,
discontinuity. See also the discussion below and note
that a macroscopic electric field in the z direction which
accompanies the longitudinal A4,, vibration cannot be
screened by local charge rearrangements within the
planes.
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A noticeable renormalization of O? and of the highest
A, branch in the insulating phase can, however, be
achieved by installing charge-fluctuation centers at O,
(see Fig. 7), thereby giving up the strictly two-
dimensional electronic structure. Inspection of the be-
havior of these phonon modes can give some insight con-
cerning the importance of the “third dimension” of the
electronic structure in the HTSC. Indeed, recent self-
interaction corrected local spin-density calculations for
La,CuO, (Ref. 29), which are in agreement with the ex-
perimentally observed antiferromagnetic and insulating
ground state, suggest that all oxygen degrees of freedom
should be incorporated in model studies of superconduc-
tivity.

E. Charge fluctuations in the axial breathing modes

In the final part of this paper we discuss the relevance
of nonlocal electron-phonon interaction effects of
charge-fluctuation type for the axial O,- and La,-
breathing modes at the T" and Z point (O7,0%,Lal,La?)
and demonstrate how the usual picture of electron pair-
ing has to be modified by including these nonlocal effects.
Both O, modes are symmetric breathing vibrations along
the z axis; however, in O, the O, ion pairs are vibrating
in opposite directions in consecutive layers while in OF
the vibration pattern of the O, pairs is the same in all lay-
ers.

From the general expressions of the electron-phonon
matrix elements given in Egs. (18)-(21) we find that the
charge fluctuations in a certain phonon mode 8£\9° pro-
vide the screening of the changes in the ion potential in
our model.

Within  this screening mechanism, long-range
(Madelung-like) changes of the effective potential will
survive, even in the metallic phase, when certain ions are
displaced. The discussion above has shown that these
changes are very important for an understanding of the
phonon dispersion. On the other hand, such effects are
ignored in the standard theory of electron-phonon in-
teraction based on the rigid-ion or muffin-tin approxima-

TABLE II. Results for the charge fluctuations 8£9°), according to Eq. (21), in insulating (first four
rows) and metallic (last four rows) La,CuO, for different symmetric axial breathing modes:
Of,07,Lal,LaZ. v (in THz) are the corresponding phonon frequencies. e * and el® represent the nor-

malized amplitudes of the eigenvectors. e 2 >0 (e'*>0) means that O,(La) is moving away from Cu.
The charge fluctuations at the Cu and O, , are denoted by 6{c, and 8fo , respectively. Negative
Xy

values for 8§ correspond to an increase of electronic charge at the ions.

oz La 8§Cu agox Sgo)’
v e e

10? 10? 10?
or 21.85 0.71 —0.02 —0.634 0.317 0.317
oz 27.31 0.67 —0.21 —0.396 0.198 0.198
Lal 9.26 0.02 0.71 0.400 —0.200 —0.200
LaZ 5.77 0.21 0.67 —0.792 0.396 0.396
orf 21.90 0.71 —0.02 —0.372 0.186 0.186
o? 21.24 0.69 —0.16 —1.696 —1.234 —1.234
Lal 9.28 0.02 0.71 0.234 —0.117 —0.117
LaZ 5.29 0.16 0.69 0.105 0.752 0.752
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tion, which otherwise constitute the basis for a quantita-
tive description of conventional superconductivity. In
these approximations, the picture of the electron pairing
mechanism is via a time-retarded interaction between the
two electrons (holes) of the pair where the “second” elec-
tron (hole) profits from the local change of the potential
at the displaced ion previously excited by the “first” elec-
tron (hole).

(THz)
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FIG. 6. Phonon dispersion of La,CuO, without (linetypes:

1, -2, -4) and with charge fluctuations. (a) me-

tallic phase; (b) insulating phase. Only branches for which
charge fluctuations are allowed by symmetry are displayed.
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FIG. 7. Phonon dispersion of insulating La,CuQO, adding
charge-fluctuation centers at 0,. The linetypes
——1,— — —3 represent the case without O, charge-
fluctuation centers and . . .1,3 represents the results if the latter
are considered.

For the following discussion we appeal to the treat-
ment presented in Ref. 23 and recall the “long-
wavelength sum rule” from Eq. (38), restricting the densi-
ty response in an insulator by coupling self-terms and
off-diagonal terms in the polarizability of the electronic
system. Using Eqgs. (14) and (16) in Eq. (21) and observ-
ing that for q parallel to the A~ (0,0, 1) direction (and in
particular at the Z point), we have

7TKK’(q”A):7TKK'(q_)O) ’ (39)

if the electronic structure is assumed to be strictly two di-
mensional (7 independent of g, ), we arrive with the help
of Eq. (38) at

X 85M7=0 (40)

for the charge fluctuations in the insulating material.
Furthermore, it can be shown that for the I'-point vibra-
tions considered here we obtain

3 85=0 (41)

for the insulating as well as for the metallic phase. Thus
for O} and LaZ in the insulating phase and O and La! in
the insulating and the metallic phase, charge transfer is
only possible between copper and oxygen ions locally
within the plane.

These general results have been confirmed by numeri-
cal calculations, which are summarized in Table II. The
values for 85197 in this table have been obtained with the
same model used as a base for the phonon dispersion in
this work. They deviate a bit from the values given in
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Ref. 23, where the ionic reference system is based on
slightly different ionic densities and slightly different
numbers have been used for the short-range part of B®<A,
72, and 7. (In Table I of Ref. 23 there is a misprint
concerning the values of 8§ for the La’ vibrations. The
correct 8§ values are obtained by correcting for an
overall minus sign.)

In the case of the metallic phase, there is no such re-
stricting condition as provided by Eq. (40) for the insula-
tor. As a consequence, in the metal, the OZ, and to a
lesser extent, the LaZ vibrations induce fluctuations at the
Cu and O, , that have the same sign in the whole plane
(compare with the numerical results in Table II). This
finally leads to charge fluctuations of alternating sign in
consecutive planes (denoted as ‘‘interplane charge
transfer”’) which provide an effective screening mecha-
nism for the long-range Coulomb interactions, being re-
sponsible for the high frequency of O in the insulating
and ionic models. Thus, compared with the ionic model
[v(0Z)=27.37 THz], we have a strong renormalization
of OZ in the metal but virtually no decrease in frequency
for OZ in the insulating model (see Table II) where the in-
terplane charge transfer, characteristic for the screening
in the metallic phase, is blocked completely by the strict-
ly two-dimensional electronic structure assumed. This al-
lows for local charge transfer only within the plane and
this is less effective for screening. So in this mode the
charge fluctuations compensate locally because of the gap
in the energy spectrum, while in the metallic phase it be-
comes favorable to have density changes of the same sign
in the whole plane. In the metallic phase the property of
an interplane charge transfer as displayed by OZ is
representative for the whole corresponding A, branch,
however, with decreasing strength when going from Z to
I', and vanishing at I'. We would also like to mention
that phonons with nonvanishing wave-vector components
orthogonal to the A direction can generate charge fluc-
tuations of the same sign only along certain directions of
the plane.

In context with the strong renormalization of OZ in the
metallic phase, we obtain an extremely flat dispersion all
over along I'-A-Z-A-T'-2-X in the frequency range of O?
[see Fig. 3(a)]. Such an Einstein mode-like behavior, cor-
responding to nonpropagating waves at an intermediate
optimum phonon region, provides an optimal situation
for maximizing T in the electron-phonon mechanism.

Ultimately the long-range changes of the effective
(screened) potential (accompanying in particular the O?
mode), which are possible within the charge-fluctuation-
dominated screening mechanism proposed in this paper
for the HTSC, but are suppressed by the good metallic
screening in the conventional superconductors, can gen-
erate an extremely favorable situation for pair binding of
electrons (holes). In case the off-diagonal Cu-O polariza-
bility is not too large, which is true for the tight-binding
model used here (Fig. 2), we find in the metallic phase of
La,CuO, for the O mode changes of the effective poten-
tial having the same sign at all ions in the plane. It is in-
teresting to note that the changes of the potential at the
O, , ions dominate by far the changes at the Cu ions.
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The following picture for pair binding results: an elec-
tron (hole) which comes to pass an ion that previously
has been pushed by another electron (hole) does not feel
only the local change in potential at the displaced ion (as
in the conventional mechanism of pair binding within the
RIA), but, additionally, the change in potential of the
same sign (mainly at the O, , ions) in a certain area of the
CuO plane. Accordingly, it can lower its energy if the
change in potential is attractive during a certain phase of
the ionic vibration. For the O2 mode, this is the case if
the O, ions are moving away from (towards) the plane
yielding an attractive interaction between the pair of elec-
trons (holes) essentially in the region of the oxygens in the
plane. This situation does not change qualitatively if the
Cu-O polarizability is increased in our model. The only
difference is that the changes of the potential at the Cu
and O, , now show different signs; however, the changes
at O, , having the same sign by symmetry dominate by
far. Consequently the favorable situation for pair binding
via the oxygens in the plane is improved.

We would like to note that the mechanism for pair
binding related to the strong nonlocal electron-phonon
interaction effects, based on the relatively poor screening
by charge fluctuations of the changes of the Madelung-
like potential induced by certain phonon modes, does not
necessarily presume the existence of apical oxygen ions
out of the planes.

From the characteristic properties of the screening
mechanism, we find the following features to be relevant
for the HTSC. The copper self-interaction U, must
remain large enough in order to suppress a charge-
density wave instability in the system. The polarizability
7 should not increase too much in the metallic phase in
order to guarantee the relatively poor screening via
charge fluctuations [compare Eqgs. (11) and (14)] of the
changes of the Madelung potentials in the CuO plane
provided by the displacements of the cations and anions,
particularly those in the intergrown nonsuperconducting
layers. Having these basic facts in mind, a particularly
simple and effective system for HTSC should contain as
key elements CuO planes alternating along the z axis with
cation layers (without oxygen). The cations should be lo-
cated above and below the centers of the copper squares
of the CuO plane for stability reasons and to provide the
attractive interaction for the pair in the region of the oxy-
gens in an optimal way, as discussed above. A favorable
situation could be achieved by variations of the composi-
tion of the cation layers resulting in certain variations of
the lattice parameters of the system and thus of the Cu-O
bond length and the cation oxygen bond length that, on
the other hand, influence the values for ¥ and 7 as well as
the strength of the changes of the Madelung potential in
the plane. In this context it is interesting to note that in
Ref. 31 the synthesis of such an “infinite-layer’” parent
compound of the superconducting system
A,B,Ca, ,Cu,04,,,, with 4 =TLBi and B =Ba,Sr,
has been reported, namely (Cag ¢St 14)CuO,. To our
knowledge this system has not been made to supercon-
duct as yet. Note also that our arguments are valid for
both the design of electron-doped and hole-doped super-
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conductors, so it is very likely that both types can be
found by proper combinations of the content of the cat-
ion layers. Indeed, very recently the isostructural com-
pound (Sr,_  Nd, )CuO, has been shown to be a 40 K su-
perconductor of presumably electron-doped type*? and in
Ref. 33 the authors succeeded in making the “infinite lay-
er” structure superconducting at 80 and 100 K in the Sr-
Cu-O system. The sign of the carriers has not been deter-
mined until now.

Finally, we would like to comment that our ideas of a
pairing mechanism reinforced by nonlocal, long-range
electron-phonon interaction effects could also apply for
the alkali-metal fullerides 4,Cq, Here we expect, on the
basis of the arguments presented in this paper, a favor-
able situation for pairing, in particular via intramolecular
symmetric breathing modes of the carbon balls vibrating
at intermediate frequencies against the surrounding A4 *
cations located at tetrahedral and octahedral sites, re-
spectively, of the fcc lattice comprising the (Cgy)*~ com-
plexes (see for example, Refs. 34 and 35) and generating
the poorly screened changes of the Madelung potential
on the carbon balls during their vibrations, which are
essential for our reasonings. The 4 * ion optical-phonon
mode should play a minor role because of its low frequen-
cy and because the corresponding change of the
Madelung potential on the carbon balls is of an alternat-
ing sign in this case.

IV. CONCLUSIONS

In this work we have pointed out the significance of
nonlocal, long-range electron-phonon interaction effects
of charge-fluctuation type for the phonon dispersion and
the pairing mechanism in the high-temperature supercon-
ductors using La,CuQO, as an example. As shown in this
paper, these effects are a consequence of the interplay of
structure, strong ionic forces, and a special type of
screening dominated by charge fluctuations and strong
localization features of the electrons dictated by the
Coulomb interaction. Some of our main results support-
ing these conclusions can be summarized as follows. The
importance of the ionic forces is demonstrated by the cal-
culation of the structural parameters and the phonon
dispersion in a purely ionic ab initio model. The calcula-
tions have shown that important qualitative features of
the ionic model, like the magnitude of the splittings of
the E, and A4,, modes, the relative position of the planar
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oxygen breathing mode, or the instability of the lattice
with respect to the X point tilt mode are in agreement
with the experimental facts. On the other hand, impor-
tant features of the experimental dispersion, like the
characteristic dip of the highest A; branch and at the
same time, an increasing dispersion of the highest X,
branch towards the X point, cannot be understood in an
ionic model or by using the ideas of a standard screening
approach for high-density metals. However, applying the
proposed screening mechanism based on charge fluctua-
tions and strong Coulomb effects, these features can be
explained. For the insulating phase of La,CuQ,, the
charge fluctuations lead to a reduction of the E, split-
tings in comparison with the ionic reference model. On
the other hand, the discontinuities of the 4,, modes do
not change at all. Also, the highest A| branch and in par-
ticular the OZ mode remains practically unchanged from
the ionic model if a strictly two-dimensional electronic
structure is assumed. This can be related to the fact that
the charge transfer between the ions is locally restricted
in this case within the CuO planes. This is in contrast to
the metal, where we have shown that interplane charge-
transfer processes lead to a large renormalization of OZ,
as well as the highest A, branch, and to the vanishing of
the A4,, discontinuity. As a result, we obtain a A,
branch of very steep dispersion, also seen in the experi-
ments. At the same time we obtain a flat dispersion all
over along the considered directions in the Brillouin zone
at about the frequency of OZ, which is optimal to achieve
high T,. Of course another drastic rearrangement of the
phonon dispersion generated by the charge fluctuations
in the metallic phase is the vanishing of the LO-TO split-
tings of the E, modes. Finally, we have pointed out the
relevance of the charge fluctuations accompanying the
axial O,- and La,-breathing modes at the " and Z point,
where in particular the OZ mode leads to changes of the
potential in the CuO plane having the same sign at all the
ions in the plane and generating a favorable situation for
pair binding because two holes (electrons), can share a
large, common region in space where they can lower their
energy.
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