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We investigate the magnetic response of a two-dimensional system of resistively shunted Josephson
junctions to dc and ac magnetic fields. Treating screening effects self-consistently we obtain hysteresis
curves, ac susceptibilities, and higher harmonics of magnetization that are very similar to experimental

observations on high-T, superconductors.

I. INTRODUCTION

Ceramic samples of high-T, superconductors generally
show irreversible magnetic effects, which were attributed
by Takashige, Bednorz, and Miiller' to the existence of
tunneling junctions between superconducting grains.
Since then, networks of Josephson junctions have been
widely used to model magnetic properties’ 7 and
current-voltage characteristics®® of these materials. The
applicability of this model has been extended to crystal-
lite and single-crystal samples following the argument of
Deutscher and Miiller'® that due to a very short coher-
ence length in high-7, superconductors, twinning planes,
faults in stoichiometry, and other defects act like intrinsic
weak links between domains characterized by well-
defined phases of the order parameter. A positionally
disordered system of Josephson junctions may thus be re-
garded as a limiting case of a strongly disordered, inho-
mogeneous superconductor.!"!?  Intensive numerical
simulations®™° of such systems have indeed reproduced
many aspects of the physics of high-7, superconductors
and were instrumental in investigating such concepts as
“superconducting glass state”?~* and “vortex glass.”* ™’

The usual approximation mostly assumed in the work
mentioned was to neglect magnetic fields produced by the
superconducting currents induced in the system. On the
other hand, flux movement in high-7, superconductors
subject to an external ac field!>!* was successfully de-
scribed within the critical-state model developed for con-
ventional hard superconductors.!'>'® Similarly, the flux-
creep model'” has been applied to explain the logarithmic
time decay of the remanent magnetization in the high-T,
materials.'®* In both of these cases local screening
currents induced in a superconductor determine the ob-
served magnetic response.

In our previous work!® we have shown that these views
of strongly inhomogeneous superconductors may be com-
bined if one takes into account screening effects in a
Josephson-network model. We investigated a two-
dimensional lattice of superconducting grains with
nearest-neighbor grains coupled via Josephson junctions.
The magnetic flux through each mesh was put equal to
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the sum of the external flux and the flux of the field pro-
duced by the induced currents, which was approximately
taken as proportional to the current around the mesh.
We have shown that within such a simple model it is pos-
sible to reproduce a wide spectrum of magnetic proper-
ties ranging from a vortex lattice to spatial magnetization
patterns similar to the Bean model. '

In this paper we extend our model to disordered lat-
tices and allow for the dependence of the critical current
through each junction on the local magnetic field. Solv-
ing the overdamped equations of motion, we calculate
hysteresis curves and ac susceptibilities of the system.
Due to the nonlinearity of the equations of motion,
higher harmonics of the driving ac field are also present
in the magnetic response. Measurements of higher har-
monics of the ac susceptibility have been used to investi-
gate conventional composite, layered, and granular su-
perconducting materials.”® For high-T, superconductors
the existing data on higher harmonics is usually inter-
preted within the critical-state model'>!%2! or by model-
ing the sample as an ensemble of independent loops with
one weak link.??~2* Here, we are in principle able to re-
late the measured ac susceptibilities and their higher har-
monics to such intrinsic properties of the material as
characteristic grain sizes and coupling strengths of the
links. We therefore conclude our paper with a short dis-
cussion of the values of parameters which one should
take to make our comparison with experimental results
quantitative. The last point is the subject of further in-
vestigation.

II. MODEL

We consider a system of superconducting grains placed
on a two-dimensional lattice. Each grain is coupled via
Josephson junctions with its four nearest neighbors [see
Fig. 1(a)]. Generally, each junction may be characterized
by its maximal superconducting current I, its normal
resistance R, its capacitance C, and the gauge-invariant
phase difference O,

GZA(p—-;}O—f A-dl, (1)
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FIG. 1. (a) A schematic view of a network of weak links used
as a model of an inhomogeneous superconducting medium. (b)
Disordered network, generated from that of (a) by randomly
choosing new positions of the nodes within a square of side a /2.

where Ag is the difference in phases of superconducting
order parameters in grains forming the link, ¢,=&,/27
with the elementary flux quantum ®,=h/2e, A is the
vector potential, and the integral is taken across the junc-
tion. To describe the whole system we introduce ‘hor-
izontal” and “‘vertical” gauge-invariant phase differences
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As in the previous paper!® we consider here only zero-
field-cooled samples at temperatures below the supercon-
ducting transition of the grains. In this case the magnetic
flux ¢, ; through a single mesh (i, j) is given by?®

bo

Generally ¢, ; depends linearly on the external field (or
corresponding flux ?”}‘), the current I;; and all other
currents in the network. As in our previous work we

adopt the local approximation, putting

=3,;+6; ;173 41,76 - 4)

LJ

¢, ;=¢5—LI; . (5)
A continuous version of the system described by Egs.
(2)—-(5) is equivalent to the “Josephson medium’ as con-
sidered by Sonin?® and Sonin and Tagantsev.?’ Given

f’;‘, Egs. (2)-(5) are easily reduced to a system of coupled
ordinary differential equations for ©; j and ¢, ; only. In
the previous work!® we considered a regular square lat-
tice and hence took ¢{%=H,, S where H,,, is the exter-
nal field and S, the area of a single plaquette.

Here, two extensions are made. First we introduce dis-
order into our lattice. To generate disordered networks
we start with a regular square lattice with lattice constant
a and then randomly choose a new position of each lat-
tice point within a square of side a /2 centered on the reg-
ular position with its sides parallel to the starting regular
lattice. This construction is schematically depicted in
Fig. 1(b). Therefore we have

em_HextStj ’ (6)

where S; 3T the area of a mesh (i,j). Second, we allow for
the dependence of I, on the local magnetic field H,,, tak-
en as an average of the values in the adjacent plaquettes.

19,-,] and 9,»,], respectively, and, in the absence of external For the horizontal link described by ©; i Hie is thus
currents, describe all possible currents as superpositions given by
of elementary circular currents I;; [see Fig. 1(a)]. Since
we are interested in slow processes we turn to the over- P
damped (zero capacitance) limit and obtain H,. = 119 $ij—1 y 7)
218, 8-
¢0 dezj+1 b o
L =1, 1= Iosme,jﬂ-i——Rj dt , (2)
and by a similar expression for ¥; ;- With assumptions
I,—I,_, ,=I,sind, +ﬁ dd,; 3) specified in Egs. (6) and (7) we obtain the following sys-
bi im0 R dt ' tem of equations:
J
dﬁ[ ] R ext ?Xt L
b — SR R LY R - P
R i3 Gy, =20, +341;+0,;—6;,  ;+0, 1 ;11—6, ;4 + ¢o %o Bsmﬁi,j} , (8)
49, _R ] .
=T 0,;+1720,; 10, ; +3&,;—=F ; 1+ 1,1~ % ; T+ T_iﬁ_o —Bsin®;; |, 9)
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where B=pB(H .. )=LIy(H,,.)/¢y. The necessary bound-
ary conditions follow from Egs. (2)-(5) when I;;=0
everywhere outside the system:

%=% tz:jt —, 9701116y,
—Bsim?,,j‘ , (10)

%:% — (Z’f+e,.,2—e,-,1+19,~,1—1‘1‘,~+1,1
—Bsin®, ; (11)

Analogous conditions hold for the remaining two edges
of the network. Equations (8)-(11) are solved numerical-
ly for different forms of B(H,,.) and the external field of
the form

H, (t)=H4, +H, cos(wt) . (12)

Local magnetic fluxes and the time-dependent magnetiza-
tion M (t) of the system, defined as

M(n:?vl—izw,.,j(t)—d;fy(r)] (13)
]

(where N2 is the total number of plaquettes in the system)
are then calculated using Eq. (4). If the sweep of the field
is slow enough, steady oscillations are induced in the sys-
tem and, after some transient time, M (¢) is a periodic
function of time with period 27 /. It may thus be ex-
panded as a Fourier series,

M(t)=H,, i [x, cos(nat)+x, sin(nwt)] . (14)
n=0

The quantities y, and Y, are the real and imaginary parts
of the susceptibility y,,.

III. RESULTS AND DISCUSSION

Before coming to more realistic calculations within a
model containing both positional disorder and field-
dependent I, we first discuss the role of the two factors
separately. Figure 2(a) shows a hysteresis curve for a reg-
ular system (i.e., regular, square lattice) of 30X 30 junc-
tions with fB=5 (and field-independent), H4 =0,
H,.=100¢,/a’ (a is the lattice constant), and the ac-field
frequency @=4X10"* R /L. Spatial distribution of the
flux within the system for the conditions specified above
is similar to that predicted by the Bean model'® of hard
superconductors (cf. Ref. 19). Since the equations of
motion [Egs. (8)-(11)] contain nonlinear terms, higher
harmonics of the ac-field frequency are also present in the
magnetic response. Their real and imaginary parts X,
and Y, can easily be measured in real experiments or nu-
merical simulations and give more precise information
about the system than a hysteresis curve alone. The spec-
trum of the magnetic response corresponding to the hys-
teresis curve of Fig. 2(a) is shown in Fig. 2(b). For
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H 4. =0 the hysteresis curve [Fig. 2(a)] is point symmetric
with the origin as the center of symmetry I[i.e.,
M(H_,)=—M(—H_,)], therefore all even-order har-
monics in the spectrum of Fig. 2(b) are exactly zero
(|x2, =0 for all n). In general, this symmetry disappears
with H,.#0 and the even-order harmonics show up.

M L (a)

La 1
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IX,| (b)
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100k
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10-25
10'35
0%k
2 0 2 L 6 s 0 12w
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FIG. 2. Magnetization of a regular square lattice of 30X 30
Josephson junctions for constant S=5. (a) The hysteresis curve
for Hy =0, H,.=100¢y/a% and o=4X10"*R/L. (b) The
spectrum of the magnetic response corresponding to the same
conditions as in (a). (c) The absolute value of the second har-
monic |y,| =V y2+x4? as a function of the external dc field
H 4 ; other conditions as in (a).
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Within the Bean model, however, also for H,, 70 no even
harmonics are generated. With H ;70 the Josephson
network discussed here predicts small, nonzero values of
even-order harmonics for field-independent local critical
currents [i.e., S(H ,.)=const] although the correspond-
ing spatial-flux distributions are in this case similar to the
ones given by the Bean model. This is a clear indication
that the calculated magnetic states of our model are not
just “‘critical states,” but more complicated ones. As an
example Fig. 2(c) displays the absolute value of the
second harmonic |x,| =V x2+ x5 as a function of H 4,
for a regular lattice of 30X 30 Josephson junctions with
B=5. The characteristic periodic structure there results
from the exact periodicity of the lattice and is not
changed when the fixed value of 3 is replaced by some
distribution around its mean value, although some
features of |y,(H,.)| are then smoothed out. For a posi-
tionally disordered lattice, the additional periodic struc-
ture superimposed on the hysteresis curve disappears as
seen in Fig. 3(a) [cf. Fig. 2(a)]. There we present an ex-

M 25t (a)
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FIG. 3. Magnetization of a positionally disordered system of
30X 30 Josephson junctions for constant value of 3=5. (a) The
hysteresis  curve for Hy =0, H, =100¢,/a%, and
@=4X10"*R /L. (b) The absolute value of the second harmon-
ic |x,| as a function of the external dc field H.; and other con-
ditions as in (a). Results computed for different statistically in-
dependent realizations of the disordered lattice (circles); and the
fitted 10th-order polynomial (continuous line).
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ample of a hysteresis curve for a system of 30X 30 junc-
tions forming a disordered lattice [see Fig. 1(b)]. It is in-
teresting to note here, that positional disorder strongly
affects the spatial distribution of the remanent flux and in
weak fields causes some local magnetic moments (fluxes)
to assume a polarity antiparallel to the instantaneous
direction of the external field. Such a possibility has al-
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FIG. 4. The hysteresis curve for the system with field-
dependent  critical currents:  B(H,.)=5/(1+0.2|H,.|),
©=4X10"*R /L, and H, =0 for (a) a regular square lattice of
30X 30 junctions; (b) a positionally disordered system with
30X 30 junctions; (c) a regular lattice of 10X 10 junctions and
different values of A.
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ready been discussed by Malozemoff et al.?? (cf. also Ref.
4). The periodicity of |y,| versus H, disappears for a
disordered lattice. Except for the minimum at H, =0 all
other sharp minima disappear and the value of |y,| in-
creases slightly for large H,. as shown in Fig. 3(b). Each
point in Fig. 3(b) represents the result for one particular
realization of the disordered lattice and the continuous
line the 10th-order polynomial fitted to these points. The
error bars indicate the deviations of the data points from
the smooth curve, and are representative of the fluctua-
tions due to disorder. ‘

Measurements on ceramic samples show that |y,| first
increases and then, after reaching its maximum value, de-
creases smoothly with increasing dc field. This was attri-
buted?? 242 to the dependence of the critical current
through a single junction on the value of the magnetic
field. We followed this argument here. Numerical simu-
lations indicate that assuming in our model the form of
B(H,..) as given by the Kim model'®3°

Bo

H A
BlHo.) 1+Al|H,,.|

(15)

it is possible to obtain a magnetic response similar to that
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in the more exact model in which I,(H,,.) of each link is
taken as for the square Josephson junction of area s (cf.
Ref. 25)

| sin(x)|

(16)
|x|

I1y(H,,.)=1,(0)
with x =sH,,./2¢, and normally distributed junction
areas s5.>! In the following we therefore assume the
simpler form given by Eq. (15). Figure 4(a) shows a hys-
teresis curve obtained for the regular system of 30X 30
junctions with By,=5, Hy. =0, and A=0.2. Additional
small amplitude oscillations appear, again as a result of
the regularity of the lattice. In Fig. 4(b) we show the hys-
teresis loop for one example of a disordered system of
30X30 junctions with A=0.2 and H4 =0, H, =100.
With increasing A more flux enters the system and its
magnetization is reduced, as may be seen in Fig. 4(c)
where hysteresis curves for a regular lattice of 10X 10
junctions for H . =0 and two values of A are shown. A
comparison of Figs. 2(a), 4(a), and 4(c) show that the am-
plitude of the oscillations caused by the periodicity of the
lattice decreases with the size of the system.

With B(H,, ) given by Eq. (15) the amplitude of ), de-
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lx.| as a function of the external dc field for a system of 10X 10 junctions with B(H,.)=pB,/(1+A|H.|),

0=27X1073R /L, H,.=10¢,/a?, for (a) a regular square lattice with 3,=35, A=0.4; (b) a positionally disordered lattice, A=0.4 and
different values of SBy; (c) a positionally disordered lattice, Bo=>5 and different values of A; and (d) |x,| as a function of the external dc
field measured on a T1,Ba,Cu;0,, ceramic sample with H,.=2 Oe, frequency ®=6951 Hz (Ref. 32). In (b) and (c) each point
represents the result for one independently constructed disordered lattice.
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creases for large H,_ fields as displayed in Fig. 5(a), but
for a regular system the additional periodic structure still
remains. It disappears in the case of disordered lattice
[Fig. 5(b)].

A realistic model must contain a built-in positional dis-
order and is characterized by two parameters 3, and A.
In Fig. 5(b) we show |x,| as a function of H . for a disor-
dered system with A=0.4 and different values of 3,. For
increasing [3,, the peak height grows, whereas the peak
position remains unchanged. The values of 3, taken to
obtain curves shown in Fig. 5(b) lie within the realistic
limits for ceramic samples estimated independently from
the data on grain sizes and critical currents (cf. the dis-
cussion at the end of this section). In part (c) of Fig. 5,
the same quantities as in Fig. 5(b) are shown for B,=5
and different values of A. With increasing A, the peak
position shifts to smaller Hy, and its width is getting
smaller. In Figs. 5(b) and 5(c), similarly as in Fig. 3(b),
each point is obtained for an independently constructed
disordered lattice. Solid lines correspond to the 10th-
order polynomials fitted to the numerical results. For the
case A=0.1 in Fig. 5(c), where the statistical fluctuations
due to disorder are relatively large we also show our esti-
mate for the error bars [similarly as in Fig. 3(b)]. An ex-
ample of the experimental results for a T1,Ba,Ca,Cu;0,,
ceramic sample®? is given in part (d) of Fig. 5. Here, the
position of the maximum of the second harmonic has ap-
proximately the same value as the amplitude of the exter-
nal field H, , similarly to the results of our calculations in
the case A=0.4, see Fig. 5(c).

Up to now we concentrated on calculations and mea-
surements corresponding to the temperature value well
below the superconducting transition T, of the grains.
Increasing temperature destroys superconductivity of the
grains and thus diminishes the critical current I, through
a single junction from its maximal value at 7 =0 to zero
at T=T,. The functional form of I,(7T) depends on the
type of the junction, and is different for proximity333
and tunnel®® junctions. At the same time thermal fluctua-
tions of normal currents and of the superconducting or-
der parameter increase with temperature and lead to
thermally activated flux creep. The characteristic time
scale of flux-creep experiments3® except in a narrow vicin-
ity of T, is of the order of 10’ s which is much longer
than the time scale in ac-susceptibility measurements,
typically performed at frequencies 0.1-100
kHz. 122272432 We therefore expect that thermally ac-
tivated processes do not play an important role in ac
measurements performed at frequencies of that order,
and the main temperature dependence of the susceptibili-
ties should originate from the temperature-dependent pa-
rameter By(7T). The relative unimportance of thermal
fluctuations with respect to the shape of the hysteresis
loops has been confirmed by preliminary calculations,
where thermal noise terms have been added to the right-
hand side of Egs. (2) and (3), and as a consequence, also
to Egs. (8)-(11). A more detailed study of thermal fluc-
tuations and the associated time scales in flux-creep pro-
cesses will be the subject of a forthcoming publication.

Since in ceramics tunneling junctions between neigh-
boring grains determine the bulk properties of the sam-
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ple3® the parametrization of 8,(T) may be taken as
Bo(T)=PBx(0)\/1—T /T, tanh(1.54T,\/1—T/T./T),
(17)

where we substituted the general form of A(T) (A being
the superconducting gap parameter) as given by the BCS
theory®® into the Ambegaokar-Baratoff®> formula for
1,(T) and assumed the self-inductance parameter L to be
temperature independent. The first and second harmon-
ics of magnetization as a function of temperature are
displayed in Figs. 6(a) and 6(b). The data correspond to
the H,, field well above the critical field H,, for this sys-
tem and are very similar to the results of low-field—-low
ac-frequency measurements on sintered samples,*? which
a posteriori supports our assumptions concerning the role
of thermally activated processes in this case. In crystal-
lites and single crystals different types of weak links can
be formed between coherent superconducting domains
that are smaller in size than in the case of ceramics. It is
therefore difficult to find the proper form of the
“effective” B,(T). Due to substantially higher magnetic
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FIG. 6. (a) x, and (b) x, as function of temperature computed
for a positionally disordered system of 10X 10 junctions with
Bo(T) given by Eq. (17) with By(0)=35; other parameters are
A=0.4, Hy,=5¢,/a% H, =10¢y/a?, and o=27X10"3R /L.
Solid circles correspond to absolute values, triangles to the real
parts, and squares to the imaginary parts of y; and Y,. Each
point represents the result for one independently constructed
disordered lattice.



47 ac SUSCEPTIBILITIES OF A NETWORK OF RESISTIVELY . .. 5389

fields that are of interest there and smaller domain sizes
we expect fluctuations to play an important role in a
much wider range of temperatures below 7.

We conclude this section with rough estimates of the
values of the characteristic parameters of the model cor-
responding to the actual high-T, materials. Taking the
data on ceramics and single crystals from Refs. 37 and
38, respectively, we get 3,(0)=0.5-30 for ceramics and
B,(0)~0.05 for single crystals. The “natural” time unit
in the model [cf. Egs. (8)—(11)] 7=L /R ~10~'2 s for sin-
tered samples is to be compared with 1073 s as a typical
period of the ac field and 10° s—a characteristic time
scale for thermally activated processes.>® As a rough es-
timate of the corresponding magnetic inductance B we
take one flux quantum ¢, per one lattice mesh. This gives
B =10"%-1073 T for ceramics with grains some microm-
eters in diameter, and B =0.1-1 T for crystallites, if we
assume that domains of coherent-order parameter values
extend to distances not larger than a few coherence
lengths (i.e., 10-30 A). These values correspond very
well with the critical fields measured for the materials in
question. In summary, we considered a network of
Josephson junctions with self-inductance effects as a mod-
el of strongly inhomogeneous superconductors. Self-
inductances allowed us to describe local magnetic fields

in a self-consistent manner. Within this model we were
able to qualitatively reproduce ac susceptibilities of su-
perconducting samples. We calculate higher harmonics
of magnetization and discuss the role of disorder. In the
case of ceramic samples our model is also quantitatively
not far from the experimental results. We expect that
with further extensions allowing us to account also for
thermally activated processes (e.g., in the way it has been
done for a loop with one junction in Ref. 39) this model
will help us to understand the nature of the supercon-
ducting state in high-7, materials on the mesoscopic
scale.
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