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Polaronic superconductivity in the absence of electron-hole symmetry
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A major drawback of theories of superconductivity based on small polarons has been that the effective
mass of the carriers becomes extremely large in the parameter regime where the effective interaction is
attractive. An implicit assumption in these theories has been the existence of electron-hole symmetry.
We consider here the Holstein model for small polarons and show that inclusion of electron-hole
symmetry-breaking perturbations leads to a pairing mechanism that circumvents the above-mentioned
difficulty. Such perturbations arise from a dependence of coupling constant and vibrational frequency
on the density of carriers, as well as from anharmonicity in the vibrational potential. The possibility of
using such a polaronic model arising from purely electron-phonon interactions to describe superconduc-
tivity in high-T, oxides is considered. It is concluded that experimental evidence disfavors it, while it
favors an electron-hole asymmetric small-polaron model arising from excitations with energies of elec-
tronic scale together with a small admixture of electron-phonon effects.

I. INTRODUCTION

Polaron models to describe various properties of high-
temperature oxide superconductors have been proposed
by several authors. ' Most efforts have centered around
polarons arising from electron-phonon interactions, '

although spin-polaron ' as well as electronic polaron
models have also been discussed.

Perhaps the most comprehensive work to date has been
that of Alexandrov and Ranninger, ' who have studied
both normal and superconducting properties. In the
model considered by Alexandrov' (a Holstein model for
small polarons' ) as well as in most other studies, tightly
bound pairs exist above T, (bipolarons) that Bose con-
dense into the superconducting state as the temperature
is lowered. "' A major drawback of these models is that
the pair effective mass becomes extremely large in the pa-
rameter regime where the polaron-polaron interaction is
attractive, resulting in very low transition temperatures.

One approach proposed to circumvent this problem,
pursued by Emin, has been to consider a parameter re-
gime that gives rise to large polarons rather than small
ones, which are expected to have higher mobility. How-
ever, it appears that achieving this regime would require
extreme fine-tuning of parameters, since the transition
from a weakly coupled system to the small-polaron re-
gime as a function of electron-phonon coupling appears
to be extremely sharp. ' Another proposed approach has
been to use more complicated variational states than
those associated with the usual Lang-Firsov transforma-
tion, involving two-phonon coherent states. ' ' In our
opinion it has not been convincingly established that
these states are closer to the exact eigenstates of the
Hamiltonian than the conventional ones.

In this paper we explore a third possibility, which in-
volves adding to the conventional Holstein Hamiltonian
various electron-hole symmetry-breaking perturbations.
One such modification has already been discussed brieAy

elsewhere. ' Our motivation is that there is no funda-
mental reason why a Hamiltonian describing a real sys-
tem should be electron-hole symmetric, and hence we ar-
gue that the conventional Holstein Hamiltonian is
nongeneric. These symmetry-breaking perturbations give
rise to a kinetic pairing mechanism, which, depending on
the sign of the perturbation, leads to pairing of carriers
either at the bottom or top of the band. Physical argu-
ments are presented to the effect that the sign of these
perturbations is always such that pairing occurs at the
top of the band, i.e., for holes. The resulting polaron
pairs have a mobility that can be considerably larger than
that of the individual polarons, in contrast to the situa-
tion in the conventional pairing mechanism where the
pair mobility is always smaller than the single-particle
mobility. In addition, the single-polaron mobility here
can be substantially larger in the parameter regime of at-
tractive pairing interactions than in the conventional one.

One such electron-hole symmetry-breaking perturba-
tion is found to be anharmonic corrections to the
harmonic-oscillator potential. There has recently been
considerable interest in the possibility that anharmonic
effects associated with oxygen vibrations may play a fun-
damental role in the superconductivity of high-T, ox-
ides. ' Our treatment here suggests another reason
for the possible importance of anharmonic effects besides
the ones given by previous authors: We find that anhar-
monicity of less than 1% can induce superconductivity in
the presence of substantial Coulomb repulsion.

It should also be pointed out that the possibility of
asymmetry between electron and hole polarons in quasi-
one-dimensional materials has recently been raised as an
explanation for observed optical-absorption spectra. '

Various tight-binding Hamiltonians have been proposed
to model it. '

This paper is organized as follows. In Sec. II we briefly
review the conventional pairing mechanism for bipola-
rons. Section III explains how electron-hole symmetry-
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breaking perturbations give rise to a new source of pair-
ing energy while at the same time enhancing the pair mo-
bility. In Sec. IV we discuss the various generalizations
of the Holstein Hamiltonian that give rise to this effect
and argue that they are generic, i.e., that they will gen-
erally exist in real systems. We also give quantitative es-
timates for the magnitude of these perturbations that is
required to give rise to superconductivity. In Sec. V we
discuss the isotope effect arising in these Hamiltonians.
Section VI discusses other physical aspects of these mod-
els, and Sec. VII considers the applicability of these mod-
els to high-T, oxide superconductors. Concluding re-
marks are given in Sec. VIII.

with t the bare hopping amplitude for a carrier and
co = i/K /M the vibrational frequency. This antiadiabatic
regime can only occur if the condition

t& &Ac@

is satisfied, so that the lattice deformation instantaneous-
ly adjusts to the motion of the carrier. Pairing in this
model will arise if the condition

U, ff &0

is satisfied. From Eqs. (3), (5), and (7), we obtain

t &th (8)
II. PAIRING OF SMALL POLARONS:
THE CONVENTIONAL MECHANISM

We consider a Holstein Hamiltonian describing the
coupling of carriers (electrons or holes) to a local vibra-
tional degree of freedom q;. This degree of freedom can
be thought of as either an internal vibrational coordinate
of a molecule or a lattice displacement of the atom associ-
ated with an optic mode. The Hamiltonian for a site i is
given by

2

H;= +—Kq; +aq;n;+ Un, &n, &,
1

with n; =n;~+n;& the number of carriers at a nondegen-
erate orbital at the site (0, 1, or 2) and p; the momentum
canonically conjugate to q;. U is the electron-electron
repulsion at the site. Note that this Hamiltonian is
particle-hole symmetric: The transformation
n; ~1—n;, q;~ —

q, , leaves it invariant except for ir-
relevant additive terms.

On completing the square, one obtains
2 2

1 cz aH= +—K q+ n+—U n n — n, (2)2M 2 ' K eff iy ig

with

It can be seen that the resulting hopping amplitude is un-
physically small, for a typical vibrational frequency of
Ace-1000E, and electron-electron repulsion U of the or-
der of electronvolts.

Nevertheless, one may consider the occurrence of su-
perconductivity in this model. If

~ U, ft~ & t~ (and U, fr & 0),
it will be described by the usual weak-coupling BCS
theory. This requires extreme fine-tuning of parameters
due to the smallness of th and the fact that U,s [Eq. (3)] is
the difference of two large quantities. In the more likely
case of

~ U,s.
~
))ti„superconductivity will arise through

Bose condensation of preexisting pairs (bipolarons) above
T, . ' In the former case, T, is proportional to t& and in
the latter case to tf, /~ U,s ~. In both cases, but particular-
ly in the latter one, Eq. (8) indicates that the magnitude
of the resulting critical temperatures would not be
relevant for real systems.

One may consider more general models than Eq. (1) in-
volving intersite phonons and intersite pairing. However,
the basic difficulty remains: Electron-phonon interac-
tions that are strong enough to overcome the local static
Coulomb repulsion between carriers will generally lead to
localization of the pairs rather than superconductivity
except at unphysically low temperatures.

Q 2

U =U—
eff (3)

III. PAIRING
OF ELECTRON-HOLE ASYMMETRIC POLARONS

so that the equilibrium value of the coordinate depends
on the site occupation

We denote by ~n ) the ground state of the site oscillator
with n carriers at the site and define

q„=——n, . (4)
s=(oil), (9a)

(9b)

tA tS

=8 —a /'4&Aco

(5a)

(5b)

For that value of q;, the energy per carrier has been re-
duced by the polaron binding energy c = —a /2K. In
addition, the electron-phonon coupling has caused a
reduction of the electron-electron repulsion from U to
Ueff

The small-polaron (self-trapped) regime occurs when
the lattice deformation follows the motion of the carriers
from site to site. In that regime the effective hopping am-
plitude for a small polaron at zero temperature is

The Hamiltonian [Eq. (1)] leads to

S=exp — (qo —
q &

)
K

(1Oa)

T=exp — (q, —q2)
K

4Am
( lob)

so that S = T since qo
—

q &

=q &

—
q2 =a/E. This is due

to the fact that the Hamiltonian is electron-hole sym-
metric. Any perturbation that breaks particle-hole sym-
metry will lead to SAT. In that case the hopping ampli-
tude for a carrier in the absence of other carriers is
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th =STt .

The resulting effective Hamiltonian is then

(1 lb)

th —S t,
while if another carrier is present at the site the first car-
rier is hopping to or from

tionally, the effective hopping amplitude for pairs is
larger than for single carriers in this model, as can be
seen intuitively from Eq. (12) and is discussed in detail in
Ref. 25. A major objection to bipolaronic superconduc-
tivity is thus removed.

IV. GENERALIZED HOLSTEIN MODELS

H, it= —g [th+At(n, +n, )][c, c, +H. c. ]
(ij)

+ U,s. g n, &n, i,
to first order in the intersite hopping t, with

ht=tS(T —S) .

(12)

We consider various generalizations of the Holstein
model [Eq. (1)] that give rise to electron-hole symmetry-
breaking terms. For definiteness, we work in a hole rep-
resentation, i.e., n; (2, 1, or 0) is 2 minus the number of
electrons at the site. Assume the various parameters in
the Hamiltonian [Eq. (1)] depend on the site carrier den-
sity n;:

ht eaU

th 2zth
(14)

(Strictly speaking, another term appears that applies to
hopping processes where three particles are at the two
sites involved, but it is irrelevant in the dilute regime of
interest here. ) We have studied this Hamiltonian exten-
sively elsewhere. It gives rise to superconductivity in
the dilute carrier concentration regime provided the pa-
rameters satisfy the condition

1/2
K(n)
fico( n).exp

K(n)
2A'co( n )

(q —q„) (19)

2

H, = . + —K(n, )q; +a(n, )q, n, + Un, &n, &

Pi 1

2M(n, ) 2

(allowing for n, dependence of U does not lead to any
new physical effect). The ground-state oscillator wave
function with n holes at the site is (we omit the site index)

e„(q)—= (q ~n )
' 1/4

T Uea1+S Dh

1/2

(15)

with

(z =number of nearest neighbors to a site) or, equivalent-
ly,

with

q, =—a(n)
K(n)

co(n) = K(n)
M n

' 1/2

(20a)

(20b)

Dh 2zth (16)

Uem& 1

Dh

or, in terms of the bare bandwidth D =2zt,

(17a)

the single-carrier bandwidth.
For T=S, the condition Eq. (15) reduces to Eq. (7).

However, for T )S pairing will occur in the presence of
an on-site repulsion. The binding energy for pairs arises
from the gain in kinetic energy of pairs compared to sin-

gle carriers caused by the hopping interaction At. For
sufficiently large T/S, pairing will occur even if the on-
site repulsion is considerably larger than the single-
carrier bandwidth. The optimal situation occurs for
T=1, i.e., when the oscillator wave functions with one
carrier and two carriers at the site are the same. In that
case, Eq. (15) yields

and the overlap matrix element of two such wave func-
tions with occupation numbers n and n ' is

(n ~n') = Idq4„*(q)W„(q)

2(a„a„)'
a, +a, .

a a
2X exp — (q„—q„.)2(a„+a„.)

K(n)a„=
%co(n)

(2 la)

(21b)

so that

(Oil�

) and (1~2) will, in general, be different
when the parameters are n dependent. For the particular
case where only the coupling constant o. depends on n,
Eq. (21) reduces to Eq. (10). We now consider some
specific examples.

(1—S
D

(17b)
A. Dependence of coupling constant on n

For a( n ) varying with n, we have
It is clear that for a given value of the Coulomb repul-

sion U this condition will be satisfied for values of the
electron-phonon coupling a substantially smaller than re-
quired by the condition U,z(0; thus, the single-carrier
hopping amplitude th can be substantially larger. Addi-

a(1)
qo

—q, =

2a(2) —a(1)
qi

(22a)

(22b)
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and SW T if a(1)&a(2). A possible parametrization is C. Dependence of mass on n

a(n) =a+ (n —1),
2

so that

u(1) =n,

a(2) =a+
2

and

a+ o",

q1

(23)

(24a)

(24b)

(25a)

(25b)

Just as inescapable as the change in electrostatic forces
with n is the fact that the ionic mass will increase as elec-
trons are added to the ion, so that M(n) is a decreasing
function of n =number of holes. This leads to an increas-
ing phonon frequency with n and a more widely spread
out oscillator wave function and, hence, to an increase in
overlap matrix elements and S & T (the equilibrium posi-
tion of the oscillator is not affected by changes in M). Of
course, this will be a quantitatively small effect due to the
smallness of electronic compared to ionic masses; never-
theless, it is interesting to note that the effect is of the
same sign as in the other cases.

D. Anharmonicity
For a and a' of opposite sign, the coupling Eq. (23) be-
comes weaker as holes are added. We believe that this is
the appropriate physical choice (in an electron rather
than hole representation, it would correspond to a and a'
of the same sign). The Hamiltonian [Eq. (18)j becomes

2
Pi 1+ —Kq, +aq, n, +(U+a'q;)n;&n;(,
2M 2

(26)

so that a nonzero a' can also be interpreted as arising
from a dependence of the on-site Coulomb repulsion on
the lattice deformation. This Hamiltonian has previously
been considered by Pincus. The choice n and o.' of op-
posite sign in the hole representation can be seen to cor-
respond to the physical effect that when electrons are
added to the site the electron-electron repulsion is re-
duced if the lattice is allowed to relax to its new equilibri-
um position. This choice leads through Eq. (10) to S & T
and hence to a tendency for holes to pair.

V(q)=2Kq +pq +aqn . (27)

To lowest order in P, the equilibrium position of the os-
cillator is now given by

a 4pa
q, = ——n+ n

K ~4

so that the relative displacements are

(28)

As mentioned in the Introduction, the possibility of
anharmonic lattice effects playing an important role in
high- T, oxides has been discussed by several au-
thors. ' It is reasonable to expect that in a soft lattice
that may arise for the case of nearly full bands, anhar-
monic effects will become particularly important (this is
related to the smaller values of the stiffness K alluded to
earlier). We consider then a potential as in Eq. (18) with
a small anharmonic term added:

B. Dependence of force constant on n a 4pa
q0 q1 (29a)

It is reasonable to expect a dependence of the stiffness
K on the number of carriers at the site. As electrons are
added to an ion, the electrostatic force between ions is re-
duced, leading to smaller K values. This corresponds to
the general physical fact that as bands in a solid become
filled, the lattice becomes less stiff, phonon modes soften,
and eventually a lattice instability can occur. It is also
associated with the fact that the higher-energy states in a
band are antibonding like while the lower ones are bond-
ing like. Thus, for our case, we expect K to be a decreas-
ing function of the number of electrons at the site or,
equivalently, in the hole picture to be an increasing func-
tion of n.

There are two competing effects associated with the
variation of K with n. As K increases with increasing n,
the harmonic-oscillator wave function becomes more
compact due to the increase in the factors in the ex-
ponent of Eq. (19), which would tend to lead to a reduc-
tion of overlap matrix elements. However, another effect
is that the change in the equilibrium displacement [Eq.
(20a)t becomes smaller as K(n) increases, leading to an
increase in the overlap of wave functions with different n

values. The latter effect is found to always dominate,
leading again to S (T and tendency for holes to pair.

a 28Pa
q1 q2= (29b)

1 ln T/S1—
2 ln1/S

1/2

(30)

For definiteness, let us assume that the polaronic reduc-
tion of the bandwidth S is a factor of ]g From the con-
dition Eq. (15), we have that when the effective repulsion
U,z equals the hole bandwidth D&, superconductivity will
occur if T/S) &2. Replacement in Eq. (30) yields a

Once again, the relative displacement decreases as holes
are added (note that p) 0 for stability), leading to an in-
creasing overlap matrix element (S & T) and a tendency
for holes to pair.

Let us now consider some quantitative examples of
these effects. The change in coupling constant with n is,
from Eqs. (24), (22), and (10),

a(2) —a(1)
a(1)
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bK K(2)—K(1)
K K(2)

(31)

However, this does not include the effect of the change in
the width of the oscillator wave function with K(n). To
obtain a numerical estimate, we assume a mass M =16
a.u. (corresponding to an oxygen atom) and

Ace = 1000K, (32a)

minimum value of ha/a=8. 2%. For U, tt twice the hole
bandwidth, the required change is b,a /a = 13.8%. These
values are further reduced if the polaronic mass enhance-
ment factor is larger, as seen from Eq. (30). Thus it can
be seen that a rather small dependence of coupling con-
stant on occupation is enough to give rise to supercon-
ductivity in the presence of appreciable hole-hole repul-
sion and only moderate polaronic mass enhancement.

For a change in the stifFness with n, if we take only into
account the effect in the equilibrium position of the oscil-
lator, we obtain an expression of the form Eq. (30), with
AK /K replacing Ae/o. '

V. ISOTOPE EFFECT

There have been several reported observations of a
change in the critical temperature of high-T, oxides upon
substitution of ' 0 by a heavier isotope. In the model
discussed here, the dependence of overlap matrix ele-
ments on phonon frequency leads to an isotope effect.
We use the weak-coupling approximation to the critical
temperature for the effective Hamiltonian [Eq. (12)]:

T, = 1.13zt,ttV n (2 —n )e

g =[1+k (1 n)]—

(34a)

(34b)

71
b =2k(1 —n)+k 1 —n +

2
(34c)

lead to pairing in the presence of appreciable Coulomb
repulsion, leads us to conclude that there is no
justification for ignoring them in treatments of polaronic
superconductivity as has been done in the past.

a typical optical frequency. We then have

K =28.6 eV/A

and assuming a polaronic reduction factor S =
—,'„

a=3.37 eV/A~ .

(32b)

At

u =
2zt~ff

and we have

(34d)

(34e)

13%co 1 —
[ 1 —

( ln T /S) /( in 1 /S) ]
'

K 961n1/S
(33)

and for U, tt/DI, =1 and 2, this yields I3iilco/K =0.15%
and 0.25%, respectively, for S =

—,', [the bare parameter

P is P=14 and 24 eV/A, respectively, for the parame-
ters in Eq. (32)]. Thus we find that a very small degree of
anharmonicity in the potential is sufficient to satisfy the
condition for superconductivity for large values of the
effective Coulomb repulsion.

For completeness, we also give a numerical estimate
for the effect of the change in ionic mass due to the
nonzero electron mass. For the parameters discussed
above, we find T/S =1.000018, leading to superconduc-
tivity in the presence of a repulsive interaction of up to
U,ff/D& =3.6X10 . Thus, even if all other electron-
hole symmetry-breaking terms are assumed to be absent,
the fact that electrons have a positive mass would lead to
pairing of holes in the presence of a repulsive U, ff in this
model.

In a real system, presumably a combination of all these
electron-hole symmetry-breaking perturbations will exist.
The fact that they are all of the same sign, and that they

We find using Eq. (21) that the required changes in
stiffness for given U,ff/D& are slightly larger than given
by Eq. (30): For U, tt/DI, =1, AK/K =8.6%, and for
U,s./Dt, =2, &K/K =14.5%. Again, we note that these
rather modest changes in stiffness with occupation are
likely to occur in real systems.

Finally, we consider the effect of anharmonicity as
given by the potential Eq. (27). The dimensionless anhar-
monicity parameter is given by

(35a)

(35b)

The isotope exponent is given by

d lnT,
d lnM

(36)

and it is —, in the conventional weak-coupling electron-
phonon theory. Here o,' is nonuniversal. Contributions to
it arise from changes in the prefactor and the exponent in
Eq. (34a). The prefactor decreases as the ionic mass in-
creases, leading to a positive contribution to a, which is
the dominant effect; the exponent a /b decreases in most
of the density range, leading to a negative contribution to
e that somewhat offsets the effect of the prefactor. At
high densities, however, the exponent increases with in-
creasing ionic mass, leading to an increasingly larger o. as
the hole density increases.

For a quantitative estimate, we take t =0.5 eV (which
corresponds to the free-electron mass for the actual
oxygen-oxygen spacing in high-T, oxides) and a polaron-
ic mass enhancement factor of 10 as in the previous sec-
tion. We choose the electron-hole asymmetry parameter
Ao. /a to give rise to a maximum T, of 100 K, for the
representative cases U,ff/D& =2 and 4 as examples. Fig-
ure 1 shows T, versus n for U, ff/DI, =2 and ionic masses
of 16 and 17 a.u. , and I"ig. 2 shows the isotope exponent
o: versus n for U,ff/D& =2 and 4. It can be seen that the
obtained isotope exponent is larger than the conventional
value —,

' and much larger than what is found experimen-
tally in high-T, oxides.

For very low hole densities, the weak-coupling expres-
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latter effect dominates. The behavior is different in the
model discussed here because the coupling constant
k =Et/t, ~ changes less rapidly than u due to the fact
that both At and t,z depend on overlap matrix elements.
On the other hand, in the usual bipolaronic model in
strong coupling the isotope effect is positive, because the
Bose condensation temperature is inversely proportional
to the pair effective mass, which increases as the ionic
mass increases.

VI. SOME FURTHER REMARKS

We address here two other points in connection with
the class of models discussed in the previous sections.

FIG. 1. Critical temperature vs occupation for two
the ionic mass: M=16 (solid line) and 17 (dashed
Other parameters are Ace = 1000K, t =0.5 eV,
U, ff/Dh =2, and Aa/a=24. 6%.

values of
line) a.u.

g2 1

sion for T, [Eq. (34)] becomes inaccurate as the system
approaches the strong-coupling limit. The isotope
coeKcient in the strong-coupling limit is easily obtained
from the strong-coupling expression for T, :

1 —n
Tc Eb21n[(2 —n)jn]

1/2
Uea

c. = +4zhtb 4
Uea

2

(37a)

(37b)

The resulting a is 0.73 and 0.60 for the two cases above,
respectively, somewhat smaller than the weak-coupling
expression results as n~0 (0.96 and 0.68). The actual
value of a in this limit is in between these two estimates
and can be obtained from the numerical solution of the
BCS equation for T, in this model.

It is interesting to note that the usual bipolaronic mod-
el (S = T, U,~ (0) leads to a negative isotope effect in the
weak-coupling regime: The prefactor in Eq. (34a) de-
creases as the ionic mass increases, but the exponent also
decreases due to the increasing density of states, and the

A. Inclusion of nearest-neighbor Coulomb repulsion

A nearest-neighbor Coulomb repulsion can be included
in the model Hamiltonian [Eq. (12)] and the condition for
superconductivity [Eq. (15)] is easily extended. The net
effect of doing this for the considerations in this paper
may be rather small for the following reasons.

(i) We have only considered here contributions to b.t
arising from the on-site dynamics and the single-particle
hopping. Another contribution to At will arise from the
"hybrid" matrix element of the Coulomb interaction be-
tween electrons at neighboring sites. This contribution
should be included if the direct nearest-neighbor repul-
sion is included and will tend to cancel the effect of the
nearest-neighbor repulsion.

(ii) We have treated the hopping between sites only to
first order here. Second-order contributions give rise to a
nearest-neighbor attraction between antiparallel spin car-
riers that also tends to offset the direct nearest-neighbor
Coulomb repulsion. The most important second-order
processes here involve "vertical" transitions at the two
sites involved, giving a contribution proportional to
t /Ace with t the bare hopping amplitude. These terms
can be important as they are not offset by the polaronic
band reduction factor. An example of the importance of
these terms for a related spin model can be seen in Fig. 1

of Ref. 30 (the difference between the curves labeled 1

and 2 in that figure).
The combination of these two effects should make the

net effect of including a direct nearest-neighbor Coulomb
repulsion rather small, in particular with respect to the
condition on the magnitude of the particle-hole symme-
try breaking necessary to give rise to superconductivity.

B. Nature of the phase transition

0 I I

0 0.1 0.2
I I I I I I

0.3
I

0.4

FICs. 2. Isotope exponent [Eq. (36)] vs occupation for two
sets of parameters that give rise to a maximum T, of 100 K.
Solid line, same parameters as in Fig. 1; dot-dashed line,
U, ff/Dq =4, Aa/a =42.4%; other parameters as in Fig. 1.

In the usual bipolaronic pairing mechanisms, the tran-
sition to the superconducting state occurs through Bose
condensation of preexisting pairs. ' This is because the
pair mobility is much smaller than the pair binding ener-
gy. In the models discussed here, the pair mobility is
usually larger than the pair binding energy and the tran-
sition is of the usual BCS type except for extremely low
density of holes.

The situation is illustrated most simply in the strong-
coupling limit, where the polaron mass is so large that
single polarons are essentially localized and two polarons
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delocalize upon pairing. This limit should be applicable
to high-T, oxides in the low-hole-concentration regime.
The relation between pair binding energy Eb and pair mo-
bility t is found to be

cb =2zt —V (38)

in this limit. Here V is the nearest-neighbor Coulomb
repulsion. Equation (38) expresses the fact that pairing is
driven by the kinetic-energy gain of delocalization (2ztz)
in this model, while it is opposed by the static Coulomb
repulsion. The size of the pair in this limit is a single lat-
tice spacing. The pair mobility is found to be

2(b, t)'
U„—V

' (39)

for At «U, ~
—V, which should be quite generally valid.

It is clear from Eqs. (38) and (39) that t can be much
larger than e„(as V increases, Eb approaches zero, while

t~ remains finite). In that regime, which we believe is
applicable to high-T, oxides, the superconducting state
containing pairs of small spatial extent is destroyed by
the unbinding of these pairs rather than Bose deconden-
sation as the temperature is raised.

VII. APPLICABILITY TO HIGH-T, OXIDES

CXzt(1 —S ) &
2K

(40)

for the small-polaron carrier to be energetically favored.
Thus the largest bare hopping t for which small polarons
will form satisfies the equality in Eq. (40). The effective
bandwidth is then

SD„=2zt& =2fico ln(1/S )
1 —S

(41)

The largest D& occurs for S~ 1, D& =2%co, yielding
Dz =0. 17 eV for a typical optical-phonon frequency
Ace = 1000K. Even this value of D& is too small compared
with the estimated effective bandwidth in high-T, oxides
D& -0.5 eV. Since the polaronic bandwidth reduction

We have argued in Sec. II that the usual small bipola-
ronic model is inapplicable to describe superconductivity
in high-T, oxides (or any other real system) due to the
fact that the large energy difference between the local
Coulomb repulsion and the phonon frequency leads to an
extremely large carrier effective mass for the values of
electron-phonon coupling required to make the interac-
tion attractive. This difficulty does not occur in the ex-
tensions of the model discussed here.

Nevertheless, it does not seem possible to describe
high-T, oxides with a purely phononic small-polaron
model. One problem is the isotope effect, which as seen
in Sec. V is much larger than observed experimentally.
Another problem arises from the condition on the param-
eters for small polarons to exist in the first place. ' Corn-
parison of the energy of a carrier that moves without dis-
torting its background and a small-polaron carrier leads
to the condition

factor S is expected to be considerably smaller than 1,
Eq. (41) indicates that the energy scale fico involved is
considerably larger than optical-phonon frequencies and
hence likely to be of electronic origin.

We conclude that for small polarons to be energetically
favored requires an electronic polaron mechanism to ob-
tain a bandwidth compatible with observations in high-
T, oxides. Such a mechanism could arise from distortion
of the electronic charge cloud in oxygen anions by the
conducting holes, as discussed, for example, in Ref. 9. In
Ref. 9, this physics was described by an effective spin
model, but it may be equally well describable by the
electron-hole asymmetric Holstein models discussed in
this paper. Taking into account also the oxygen ionic
motion would then result in a combined electronic-
phononic small-polaron model, with the effective overlap
matrix elements [Eq. (9)j being

S =S)S2,
T = T1T2

(42a)

(42b)

where the indices 1 and 2 refer to the overlaps of the elec-
tronic and phononic parts of the site wave functions, re-
spectively.

In such a model, the polaron binding energy would be
provided principally by the electronic part of the polaron,
for which the constraints resulting from Eqs. (40) and (41)
are easily satisfied with an electronic energy scale Ace.
With a resulting bandwidth of D& -0.5 eV, the constraint
of being in the antiadiabatic regime for the phonon de-
grees of freedom is still approximately satisfied [Eq. (6)
with co an optical-phonon frequency]. The considerations
of the previous sections concerning electron-hole asym-
metry would still apply, with S and T resulting from the
combined effects as in Eq. (42). The degree of phononic
contribution to the polaron may be inferred empirically
by the observed isotope effects. The results obtained in
Sec. V for a purely phononic polaron compared to experi-
mental observations indicate that the phononic com-
ponent of the small polaron would be rather small.

VIII. CONCLUDING REMARKS

Because of the complex nature of real solid-state sys-
tems, physicists strive to study simple models that con-
tain the essential physics of the phenomena of interest.
The correct treatment of symmetries has often played an
important role in the progress of physics. If the real sys-
tem under study possesses a certain symmetry, it is usual-
ly not useful to study model Hamiltonians to describe the
system that lack this symmetry, as essential physics could
be missed. By the same token, it is likely not to be very
useful to confine one's attention to model Hamiltonians
where a certain symmetry is present if the real systems
that the Hamiltonians are intended to describe do not
possess that symmetry.

Real solid-state systems, and in particular those sys-
tems for which small-polaron models are used, are not
electron-hole symmetry, ultimately due to the basic fact
that electrons and protons have vastly different masses.
Thus to confine one's attention to Hamiltonians that are
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electron-hole symmetric is not justifiable in our opinion.
We have seen in this paper that a variety of generic
electron-hole symmetry-breaking perturbations to the
Holstein model are likely to exist in real systems and that
they give rise to qualitative changes in the resulting phys-
ics. Furthermore, we have argued that all these
symmetry-breaking perturbations have the same sign and
thus will act cooperatively. In the presence of these per-
turbations, we have seen that superconductivity can exist
in these systems under conditions on the parameters that
are vastly less restrictive than in the electron-hole sym-
metric case.

It is interesting to note that one of the motivations for
Bednorz and Miiller to search for superconductivity in
oxides was to look for possible bipolaronic superconduc-
tors as proposed earlier by Chakraverty. " This paper, as
well as our previous work, suggests that such bipolarons,
albeit electron-hole asymmetric ones, may indeed play an
important role. As discussed in Sec. VII, however, it ap-
pears that rather than purely phononic, the dominant
component of the polarons may be electronic.

In connection with conventional materials, Alexan-
drov has argued that "strong-coupling" superconduc-
tor s, which are assumed to have dimensionless
electron-phonon coupling A, larger than 1, should be de-

scribed by small-polaron theory rather than by the con-
ventional Eliashberg theory. If one were to accept this
point of view, the discussion in this paper suggests that
those superconductors should exhibit predominantly hole
conduction, which is in agreement with the empirical ob-
servation of Chapnik. Of course, a purely electronic
polaronic mechanism could also provide an explanation
for Chapnik's observation.

We conclude by emphasizing two key differences be-
tween the electron-hole asymmetric polaronic supercon-
ductors discussed here and the conventional ones. ' (1)
The transition to the normal state occurs here through
pair unbinding rather than Bose decondensation so that
(essentially) no pairs exist above T, . (2) Spectral weight
in the optical conductivity is transferred from high to low
frequencies upon entering the superconducting state.
This does not occur in the absence of electron-hole asym-
metry. These differences should help to experimentally
distinguish between electron-hole symmetric and asym-
metric polaronic superconductors.
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