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Boson structure in the quasiparticle density of states of superconductors with nodes in the gap
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Within a generalized Eliashberg formalism, valid for exotic pairing states of a D-wave superconductor,
we have studied how details of the electron-boson spectral density responsible for superconductivity
manifest themselves as structure in the quasiparticle density of states. We find that the boson structure,
which is to be measured relative to the energy defined by the peak in this function, shifts very little when

resonant impurity scattering is introduced. Impurity scattering, however, can fill in the density of states
at zero frequency and in the region below the peak which defines a gap value. Finite-temperature eff'ects

further smear this low-frequency region, as is expected from the well-studied isotropic case. Some com-
ments on comparison with experiments are also given.

I. INTRODUCTION

In S-wave isotropic conventional superconductors, the
current (I) voltage (V) characteristics of a tunneling junc-
tion can be used to measure the quasiparticle density of
states as a function of energy co. At low temperatures,
this function shows a sharp onset at a definite gap (&)
value, which is followed by a square root type singularity
and boson structure at higher energies. ' This structure
corresponds to the detailed shape of the electron-boson
spectral density a F(co) responsible for the superconduc-
tivity, and the phonon spectral density in conventional
superconductors can be recovered from inversion of tun-
nelling data. In the high-T, oxides, even in the reprodu-
cible data of Valles et al. on YBa2Cu307, a large zero
bias anomaly is observed with considerable associated
smearing in the gap region and strong attenuation of the
expected peak at the gap position if interpreted in an S-
wave model. At higher energies, some bosonlike struc-
ture is observed. The precise origin of the smearing in
the gap region and of the bosonlike structure is not yet
known and it could have several possible explanations.

Recently, several authors have again put forward argu-
ments in favor of D-wave superconductivity in the copper
oxides stabilized through antiferromagnetic spin Auctua-
tions in the Cu-0 planes. ' In such theories, the gap
region is filled in naturally although, at zero frequency, a
zero value for the quasiparticle density of states is still
predicted. On the other hand, it is known from much
work on resonant impurity scattering in p-wave super-

conductors that the quasiparticle density of states at
co=0 becomes finite in the unitary scattering limit' of
normal impurity scattering.

In this paper, we wish to consider D-wave-like super-
conductivity within an Eliashberg formalism so as to
study several effects, not present in the BCS approaches
that have been used so far. First, we will be interested in
how boson structure gets reflected in the quasiparticle
density of states in a model superconductor which exhib-
its zeros in the gap as a function of momentum on the
Fermi surface. We also want to know how boson struc-
ture is changed when impurity scattering is introduced so
as to fill in the density of states at co=0. In the course of
this investigation, we are led to consider a density of
states which has many of the features measured in
present tunnelling data for YBazCu307 tunnelling. Such
data is certainly not inconsistent with D-wave-like pair-
ing with the stabilizing bosons presumably the antiferro-
magnetic paramagnons or spin fluctuations although re-
sults are quite independent of such an assumption. Final-
ly, we study how finite-temperature effects further smear
the gap region due to depairing.

II. FORMALISM

The pairing energy b, (co) for an electron of momen-
turn p on the Fermi surface, as a function of real frequen-
cy (co) and the renormalization co (co) (including impurity
scattering in a multiple scattering T-matrix approxima-
tion) are

b (i co )
hp(co) =nT g [Ap(co i co , )+ A,p—p (co+i co )]

m=o +co (ico )+bp(ico )

b, .(co —z)
+i' f dz a F,(z)[n(z)+f(z —co)]

+co (co —z) —b, , (co —z)

D(co)+twI
Co+D (co)+0 (co)
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and

co,(ico )
co (co) =co+nT g [A, (co —i' )

—
Ape

(co+icbm )]
m =o +co (ico )+b,~(i' )

cop (co —z) A(co)+i~ dz aFpp. z n z+ z —co +is.I
2 2oo +co (co —z) —b, (co —z) Co+D (co)+f1 (co)

P P

with a F (co) =cos(p, c)a F(co) cos(p,'c), (Sb)

a Fp .(Q)dQ
(co)=—

co —0+i 0+

b,
p (co)

D(co) = (4a)

and

9& (co)
A(co) = (4b)

$2e(k)=, (k +k )+t cos(k, c), (Sa)

where c is the distance between planes in the z direction.
For such a dispersion relation, the energy integrals in the
gap equations can be carried out with the density of elec-
tron states assumed constant and pinned at its value at
the Fermi energy [N(0)]. There is therefore nothing
specific to the model (Sa) in Eqs. (1) to (4) which apply to
any case for which the electronic density of states is near-
ly constant in the energy range significant for supercon-
ductivity around the Fermi energy. In that sense, (5a) is
introduced only to be more explicit. In the above equa-
tions, the angular brackets denote a Fermi surface aver-
age over angular parts and a F z (co) is the directional
electron-boson spectral density for electron scattering
from p to p' on the Fermi surface. It is this spectral den-
sity that mediates the pairing potential leading to super-
conductivity. Here it is modeled by an isotropic function
of frequency a F(co) times an angular function of p and
p'. To get a superconducting gap parameter exhibiting
nodes on the Fermi surface, the simplest model to take
for this momentum dependence is

where f (z) and n(z) are the Fermi and boson thermal
factors, respectively.

The band structure model used to derive these equa-
tions is one of free electrons in the x -y plane with
effective mass I * and a hopping probability t between
planes which are stacked in the z direction. The electron
dispersion relation is

neglecting all other terms. The simple angular depen-
dence assumed in (5b) for the pairing potentials is con-
sistent with the isotropic dispersion curves in the x-y
plane assumed in Eq. (Sa). The precise origin of the spec-
tral density (Sb) does not concern us directly and our re-
sults do not depend sensitively on the choice of angular
functions. What we are interested in here is the effect of
this spectral density on the quasiparticle density of state
when there are nodes in the gap as a function of direction
on the Fermi surface. For specific consideration of the
oxides, it would be more appropriate to consider a single
Cu-0 plane with a

[cos(k, a )
—cos(k~ct ) ]

dependence in the pairing potential ~ For this specific
case, it has been shown by Nicol, Jiang, and Carbotte
that in a BCS theory such a model can be mapped exactly
onto a a cos(8) model with a = —(2 —

p~ ) for tight bind-
ing dispersion curves ek = —2t [cos(k, ct )

+cos(k a)]—p with t the hopping integral and p, the
chemical potential, all this provided the Fermi surface
falls well away from the van Hove singularity in the elec-
tronic density of states. Also, p is dimensionless equal to
p/2t.

The density of states in the superconducting state
Ns(co) normalized to its constant value in the normal
state N(0) is given by

Ns(co) co=Re .x(oI '(~ & z&~ ~)

where b,„(co)—:cob, (co)/co (co). The Eliashberg equations
(1) and (2) contain a mixture of discrete Matsubara (ice„)
and real frequencies (co) with ice„=is.T(2n —1), n =0,
+ I, +2, . . . and T the temperature. To evaluate these
equations explicitly so as to get the real frequency quanti-
ties h&(co) and co&(co), we need to have as input the corre-
sponding imaginary quantities 6 (ice„) and co&(i co„)
which follow from the usual Eliashberg equation in
Matsubara representation. '

(ice ) D(n)Ap(ice„)=aT g A, ,(i'„ico )
— +nI

+co,(;~ )+g,(;co ) C +o[Q( )]n+[D(n)]

and

co& (1com ) A(n)cop(ice„)=co„+mT g A, (ice„—ice ) +~I
Qco2, (i' )+g2, (;co ) Co+ [O(n)] + [D (n)]
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co„(n)
A(n) =

't(/cop(n)+b, (n)
(10b)

1.0—
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The impurity parameters in the above equations are I

and Co. I measures the strength of the electron impurity
scattering and is proportional to the impurity concentra-
tion while Co is related to the phase shift 6o by'

0.0
0.0 10.0 20.0

co(meV)

30.0 40.0

Co =cot6O

For 60~0 Co gets large and we recover the Born ap-
proximation while the other limit Co=0 corresponds to
6o=~/2 and is the unitary limit. In the numerical work
that we present in the following section, we will use
Co =0 only because it gives the most significant filling in
of the gap region in the quasiparticle density of states
Ns(co)/N(0), near co~0 for fixed I . We have, of course,
done calculations for arbitrary values of Co.

For our simple D-wave-like ansatz involving only the
product cos(p, c) cos(p,'c) for the pp' dependence of the
spectral density a F .(co) on the Fermi surface, it is clear
from Eq. (1) and (2) and from (7) and (8) that b, and co

have the form

6 (co) =60(co)+b, , (co) cos(p, c),
co (co) =coo(co)+co, (co)cos(p, c),
6 (ico„)=b (0n) +b, , (n) cos(p, c),
$~(ico„)=coo(n)+co, (n) cos(p, c) .

(12a)

(12b)

(12c)

(12d)

Thus Eqs. (1) and (2) reduce to four nonlinear coupled
equations for b, o(co), b &(co), coo(co), and co&(co) which re-
quire that we first solve the similar equations (7) and (8)
for the four Matsubara quantities b.o(n), b, &(n), coo(n),
and co&(n). Note that we have assumed that the spectral
density (Sb) contains a single anisotropic term with no
corresponding isotropic contribution. For T =T„Eqs.
(1) and (2) and Eqs. (7) and (8) become linearized in the
gap and the first two terms in Eq. (1) and in (7), which in-
volve the electron-boson spectral density directly, make
no contributions to Ao. It is only the impurities that con-
tribute to this quantity. Our numerical work indicates
that this is also true to a very good approximation for all
temperature T(T, . Also, since there is no isotropic
term in our simple choice of a Fz&. (co), at T = T, the two
terms in Eqs. (2) and (8) involving the spectral density ex-
plicitly do not contribute to coo. This would not be the
case if an isotropic part had been added to Eq. (Sb). Such
model cases have been studied in the past. ' ' A new
parameter is, however, introduced into the theory, name-
ly, the isotropic part of the spectral density a F (co).

FIG. 1. Model electron-boson spectral density a F(co) used
in this work.

Due to our lack of information on this function, it is usu-
ally taken to be the same as the function a F(co) used in
the anisotropic part multiplied by some unknown scaling
factor g. For simplicity, here we have left this term out
entirely. To proceed with numerical work, we need to
make a choice for the electron-boson spectral density
a F(co). In this paper, we use a scaling factor A times a
function obtained by one of us (R.C.D.) from inversion of
tunnelling data in YBazCu307. This inversion is based
on conventional S-wave Eliashberg theory so that it is not
at all clear what such a procedure might mean when no
clear gap region is observed at small co in which there are
no states in the quasiparticle density of states. Neverthe-
less, since for definiteness we need to make some choice
for a F(co), we will use this data here, although the exact
choice for a F(co) is of little consequence to our main ar-
guments and results except, in as much as, we wish to
compare at the end with the data in YBA2Cu307. The
spectrum used peaks around 23 meV, is about 12 meV
wide and ends at 32 meV and is shown in Fig. 1.

We can now present numerical results.

III. NUMERICAL RESULTS

As measured by the conventional strong coupling pa-
rameter T, /col„, the spectrum of Fig. 1 is in the extreme
strong coupling regime with T, /col„-=0.4. Here col„ is
the usual Allen-Dynes characteristic boson energy cor-
responding to our spectral density a F(co). Because of
this, we have experienced great difficulties in converging
our real frequency programs, particularly when a finite
amount of impurities is included. For this reason, we do
not address first the specific case of YBa2Cu3O7 but rath-
er use the a F(co) of Fig. 1 scaled so as to produce a criti-
cal temperature value of 50 K. The corresponding value
for the strong coupling index T, /cot„ is now 0.21 which
leads to satisfactory rapid convergence on the computers
available to us. In Fig. 2, we show results for the resul-
tant quasiparticle density of states Ns(co)/N(0) as a func-
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from T/T, =0. 1 to 0.9 while Fig. 3(b) cover T/T, =0.9
to 0.985, the region very near T, . The curves of Fig. 3(a)
are similar, in the gap region around the peak and below,
to those shown by Pines which he obtained in a BCS
theory with planar D-wave anisotropy in the x-y plane in-
stead of the layered z axis anisotropy considered here. In
both theories, the peak position denoted by b~(T)/b. (0)
does not quite follow a BCS temperature variation. This
is shown in Fig. 5 where the solid line is BCS temperature
dependence and the open circles are our numerical re-
sults. These results fall substantially below the solid
curve and the gap does not open up faster in our theory
than in BCS. This is different from what is stated by
Pines about his work. Referring again to Fig. 3(a) the
size of the peak (which remains sharp even for
T/T, =0.9) decreases with increasing temperature, an
effect not seen in Pines curves. Around co=0, however,
our strong coupling results show little if any thermal
smearing, an effect absent in BCS but expected in strong
coupling. It was surprising to us that thermal smearing
did not lead to a significant value of the density of state at
co=0 even for T/T, =0.985. Note that T, /co „I=021 in
these curves. This is in the strong coupling regime and
would lead to much more thermal smearing of the curves
in the S-wave case. Of course, as T increases further,
eventually Ns(co)/N(0) at co=0 must go toward one. Fi-
nally, we note that as T increases towards T„the boson
structure is attenuated as is the case for an S-wave isotro-
pic superconductor.

If impurities are included in the unitary limit,
Ns(co =0)/N (0) will now be finite even for zero tempera-
ture. As the temperature is increased, we would expect
this value to increase further and tend towards 1 as T
goes towards T, . In Fig. 4(a) and 4(b), we show results
for I =0. 1 and 0.5 meV, respectively, for a system with
T, =50 K and T, /col„=0.21. As I is increased, it is
clear that finite temperature effects at m=0 become pro-
gressively more significant but only slightly so. For
I =0.5 meV, we see in Fig. 5 that the variation of the
peak position with temperature follows more closely the
BCS temperature variation of the gap than it did for the
same case with I =0.0 (clean limit) and that the gap
does, indeed, now open up faster than in BCS. The
differences are, however, always small, and at lower tem-
peratures, our results fall below the classic BCS tempera-
ture law. Even though our band structure model (5a) is
too simple to apply directly to the case of YBa2Cu307,
and no attempt has been made to include explicitly the
presence of chains, it is nevertheless interesting to choose
parameters that might lead to behavior similar to what is
observed in that case. This is done in our Fig. 6 which
holds for a finite impurity concentration with I =1.0
meV.

We begin, however, with a discussion of the pure case
I =0 in Eqs. (1) and (2), i.e., no impurity scattering. The
first interesting feature of such a calculation with a gap of
the form b, i(n)cos(p, c) is that the value of

=2J 0 [a.F(co)/co]de needed to get a T, =95 K is
quite modest, namely, 1.7. This is in sharp contrast to
the value of 5.1 needed to get the same T, in an S-wave
theory. We stress that if we had included an isotropic
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FIG. 4. The quasiparticle density of states N, (co)/N(0) as a
function of normalized frequency co/T, for various values of re-
duced temperature T/T, for a 50 K D-wave-like Eliashberg su-
perconductor. The curves are for T/T, =0. 1 (long dashed dot-
ted), 0.6 (short dashed dotted), 0.85 (long dashed), 0.95 (short
dashed), 0.975 (dotted), and 0.995 (solid). Frame (a) is for
I =0.1 meV in the T-matrix unitary limit for impurity scatter-
ing, while frame (b) is for I"=0 5 me V. In both cases,
T, /mI„=0.21 (fairly strong coupling case).

part to the spectral density in Eq. (5b) of the same order
of magnitude as the anisotropic part (say, a number g
times A, ), we would have required a larger value of A, to
obtain T, =93 K in the D-wave-like case. This can be un-
derstood as follows: In a crude BCS-like approximation,
the value of T, is very roughly proportional to

—1/A,
C

for our d-wave model, while it would have been propor-
tional to (again very roughly)

T —(1+A.g )/1,
C

in the second case with an isotropic contribution of
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FIG. 5. The temperature variation of the position of the peak
h~(T) in the quasiparticle density of states. The solid curve for
the dimensionless ratio A~(T)/A~(0) vs reduced temperature
T/T, is the usual BCS temperature dependence of the gap. The
open circles apply to our strong coupling case with T, =50 K,
T, /co&„=0.21, and I =0.0 (clean limit). The solid circles are
for I =0. 1 meV in the unitary T-matrix impurity scattering
case while the heavy open circles are for I =0.5 meV.

strength g times X included in (5b). For g&0, a larger
value of X is required to achieve the same T, value as for
the g =0 case. We warn the reader, however, that the
above agreement is not quantitative but does give some
insight into why we require a A, equal to only 1.7 in the
D-wave-like case as compared to 5.1 for S wave. Return-
ing to Fig. 6, which applies to an impurity concentration
I =1.0 meV, we see sharp boson structure in the quasi-
particle density of states falling at about the boson energy
in a F(co) plus the value of the position of the maximum
in the curve which falls around 2.6 in units of co/T, . If
the position of the peak is used to derive a value of the
gap to T, ratio 2h/k~ T„weget a value of approximate-
ly 5.2 for this ratio in agreement with experiment. We
stress that to obtain Fig. 6, we have not used Eqs. (1) and
(2) because of convergence problems. Instead, we have
worked in the Matsubara representation, i.e., used Eqs.
(7) and (8) to obtain solutions for b&(iso„)and co&(iso„)
and then used Pade approximants to analytically con-
tinue to real frequencies. This method is adequate for
some applications but is not very good for phonon struc-
ture. This is not a great limitation here since we have al-
ready discussed boson structure in our previous figures
where the real frequency axis solutions have been used.
What we want here is a curve that can be compared fairly
directly but only qualitatively with the data of Valles
et al. in YBa2Cu307. To this end, we have used the
a F(co) of Fig. 1 scaled so as to obtain a T, of 95 K with
an impurity content of I =1.0 meV. This impurity con-
centration reduces T, by about 30% over its intrinsic
pure value which would be well above 100 K in our mod-
el. On examination of Fig. 6, we can conclude that tun-
nelling characteristics quite similar to those observed in
YBazCu307, including the size and position of the boson
structure, can be reproduced in a gap model with nodes
on the Fermi surface due to the cos(k, c) variation in the
z direction, provided a small amount I -1.0 meV of im-
purity scattering is included in the unitary scattering lim-
it. Born impurity scattering does not fill in the gap re-
gion at all as eA'ectively and so this case has not been ex-
plicitly discussed here. We stress that the exact form tak-
en for the momentum variation of the gap over the Fermi
surface is not in any way critical to our results. Models
which include instead a D wave anisotropy in the copper
oxide plane with tight binding bands for the x-y direction
are expected to yield very similar results. Here we have
used a cos(k, c) form mainly for our convenience.

IV. CONCLUSIONS

FIG. 6. The quasiparticle density of states N, (co)/N(0) as a
function of normalized frequency co/T, for a D-wave like super-
conductor with T, =95 K using the a F(co) of Fig. 1. The solid
curve was not obtained from solutions of Eqs. (1) and (2) giving
directly the gap as a function of real frequency. Instead, it was
obtained from the Matsubara gaps upon solution of Eqs. (7) and
(8) with Pade approximants to analytically continue to real fre-
quencies. The impurity concentration needed to get a finite
value of N, (co=0)/N(0) =0.57 was I =1.0 meV. This reduces
the intrinsic T, value by about 30%%uo.

Within Eliashberg theory for an anisotropic supercon-
ductor with nodes in the gap, we have studied how struc-
ture, due to the electron-boson spectral density, enters
the quasiparticle density of states. For a spectral density
peaked around 23 rneV of width —12 meV with max-
imum around 32 meV, as is indicated in tunnelling exper-
iments, we find that a T, =95 K can be obtained with a
modest value of electron-boson mass renormalization pa-
rameter A. =1.7. This is to be compared with a value of
5.1 in an isotropic S-wave theory. In the D-wave-like
case, a clear sharp peak is found at an energy which
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would correspond to a gap to T, ratio 25/k~T, of ap-
proximately 5.2, and the boson structure falls at an ener-

gy measured with this peak position taken to be the zero
reference. At lower energies near co=0, N, (co)/N(0) is
found to go towards zero almost linearly. This is in con-
trast to experiments of Valles et al. in which a large
zero bias current is observed. A finite value of
N, (co)/N(0) at ~=0 can easily be obtained by introduc-
ing in the theory impurity scattering in the strong
scattering T-matrix limit with phase shift 50 near m/2
(unitary limit). The boson structure is not strongly
affected by the introduction of such impurity scattering,
and the curve for N, (co)/N(0) can be made to look very
much like the measured curve at low co, near the peak at
the "gap" value, and in the boson region at higher ener-
gies. It should be stressed, however, that the band struc-
ture we have used is not very realistic for the specific case
of YBA2Cu307, which exhibits a more complex band

structure and also contains chains as well as planes. The
proximity of these chains can introduce complicated
quasiparticle structure through the proximity effect.

As temperature is increased towards T„thermal
smearing is found to further fill the gap region near co=0
but the effects are sma11 except near T, . The amount of
the filling is further increased as impurity scattering is in-
creased. Temperature smearing is, of course, absent in
BCS theory as is all boson structure at higher energies.
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