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The two-band Emery model has been reduced to an effective singlet-triplet model to describe
the low-energy electronic properties of the CuO2 plane in oxide superconductors. The effective
Hamiltonian is written in terms of Hubbard operators, projecting onto local singlet and triplet
states of a doped hole. The projection method for two-time Green’s functions (GF’s) is applied to
obtain the band structure and the density of states in the paramagnetic state. It is found that a
singlet band that is mainly of oxygen character is located between the antibonding copper and the
nonbonding oxygen bands. The triplet part in the singlet band has been found to be very small. This
is due to the small mixing parameter and because the local singlet-triplet transition is forbidden due
to time-reversal symmetry. The results are in good agreement with a random-phase-approximation-
like decoupling for the GF’s of the original problem including the singlet operator [R. Hayn, Z. Phys.
B 85, 169 (1991)]. With doping, a transfer of spectral weight occurs from the copper and the triplet
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to the singlet band.

I. INTRODUCTION

One important problem concerning the normal-state
electronic structure of the high-temperature supercon-
ductors is the reduction of the complex problem to a rel-
atively simple, effective Hamiltonian that describes cor-
rectly all the low-lying excitations. An important step
into that direction has been done by Zhang and Rice!
who reduced the Emery model? of the copper oxide plane
to an effective t-J model. For that purpose they used the
local singlet state of a doped oxygen hole. Unfortunately,
this reduction procedure raised some controversy.> 8 For
instance, the neglect of local triplet states, whose effects
are of the same order in the small parameter t/A, was
criticized. Here A = €, — ¢4 is the difference between the
oxygen (&p) and the copper (¢4) atomic energies, and ¢ is
the hybridization between neighboring copper and oxy-
gen orbitals. Further, it is even very questionable if this
spin fluctuation regime A >> t is realized in the consid-
ered materials.

To overcome the above-mentioned objections, two of
the present authors” extended the reduction procedure of
Zhang and Rice to the charge fluctuation region, which
deals with much smaller values of A than the original
work. Moreover, they included the triplet states and de-
rived an effective singlet-triplet model. In the present
paper we want to continue the analysis until we reach
quantitative results for the band structure and the den-
sity of states of the copper oxide plane. Independently
from our paper, the same “cell perturbation method”
was used by Jefferson, Eskes, and Feiner® for an elab-

47

orate derivation of the single-band t-J model. Unlike
our work, they calculated the effects of the triplet states
only perturbatively. But the singlet-triplet model gives a
much more complete picture of the electronic structure.
This will be shown in the following for the density of
states. The main purpose of the present work is the de-
velopment of a technique to deal with such complicated
Hamiltonians as the singlet-triplet model.

Several quite unexpected details of the electronic
structure of the copper oxides have been revealed
experimentally.®1® Particularly, it was found that with
increasing hole doping, oxygen states in the charge-
transfer gap between the antibonding copper and the
nonbonding oxygen states are filled up with holes. The
nature of these “midgap states” is still an open question.
There are some attempts to explain such states within
strongly correlated models. For example, such states
have been found due to the scattering of holes at spin
fluctuations!! or with the help of the projection method
starting from the antiferromagnetic ground state!? and
by a random-phase-approximation (RPA) -like decou-
pling of the equations of motion for Green’s functions
(GF’s).1% In our opinion the peculiarities of the band
structure mentioned above, are closely connected with
the singlet state of Zhang and Rice.! To make this point
more clear, we present here numerical results of the elec-
tronic structure, including the singlet band, which show
good agreement with our former RPA procedure,!3 which
deals directly with the Emery model.

First we repeat shortly the derivation of the singlet-
triplet model in a more transparent notation in Sec. II.
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The model contains two different kinds of degrees of free-
dom: The local singlet or triplet states, which can be
occupied by doped oxygen holes, and the localized spins
associated with copper holes, which are already present
in the undoped compound. In an attempt to treat the
band structure of the doped CuO, plane with no long-
range order of localized spins, we assume a classical para-
magnetic ground state and neglect any antiferromagnetic
short-range spin correlation.

In Sec. IV we derive the equations of motion for the
singlet and triplet GF’s. To take care of the difficult com-
mutation relations of Hubbard operators in which the
effective problem is written down, we employ here a pro-
jection technique for two-time Green’s functions.!4 This
is much better than the approximation of Hubbard oper-
ators by Fermi operators as in Ref. 6, where the influence
of the singlet-triplet mixing has also been considered. To
derive the equations of motion it is helpful to consider the
time-reversal symmetry of the problem (Sec. III), which
is also one reason for the relatively small effect of the
singlet-triplet coupling. Finally, in Sec. V we present the
numerical results.

II. DERIVATION OF THE SINGLET-TRIPLET
MODEL

The idea of reducing the original Emery model? to an
effective singlet-triplet problem is a very general one. We
divide the original problem into small clusters, which will
be diagonalized, but only the most important low-energy
states will be incorporated into the relevant subspace.
The hopping Hamiltonian between the clusters will be
considered as a perturbation and the irrelevant subspace
will be projected out. This has been done up to second
order in the effective hopping parameter in Ref. 7. Now,
we will repeat this procedure in a slightly changed, more
transparent notation. We will restrict ourselves here to
first order because we are not interested in the magnetic
structure of the CuO; plane. In the following we briefly
derive the most important formulas, which will be needed
in the numerical analysis.

A. Starting Hamiltonian

Let us begin with the Emery model in its minimal ver-
sion

H=-AY dl,dig +t Y Sim(dl,pms +H.c))

i,0 %,m,o
+U Y dlidird] diy (1)
i
where d}La and pf,, denote the creation of a copper or

oxygen hole, respectively. The signs S;,,, = £+1 have been
chosen in agreement with Ref. 1, and the energy of the
oxygen level ¢, will be our energy zero. Now we will
bring the Hamiltonian (1) in a more convenient form to
start with our procedure. First of all, we will project
out doubly occupied copper states because the Hubbard
U is the largest energy in the system. Furthermore we
consider in the following only the symmetric combination
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of oxygen states:
P = Z SimPmo - 2)

There is yet an antisymmetric combination, which does
not couple to the copper system and gives rise to a dis-
persionless nonbonding oxygen band at energy zero. We
mention this nonbonding band only in the final results.
So we obtain from (1)

H=-A Z X7 + 2t Z(X”Opﬁj) +He)

4
tAZ(

with & = —o and where we used Hubbard operators,

X% =nip(1 = niz), X% =dl dis ,

X27p{Tple) —

X7y (3)

(4)
X70 =dl,(1 - nis)
with n;, = d,j;adig .
The symmetrized oxygen operators (2) are not orthog-

onal. It is more convenient to go over to orthogonal Wan-
nier operators c¢;j, in the familiar way:

1 1 _
P = D N oy Ny = ~ > 37
J k

with

eik(l—j) (5)

F = 24/sin?(kz/2) + sin(k, /2) ,

where N is the number of copper atoms and the dis-
tance between neighboring Cu atoms has been chosen to

be one. After the replacement of p in (3) by the or-
thogonal Wannier states c;, one can see that there exist
corresponding hopping parameters ~ A;; at any distance.
But, in fact, the hopping parameters are rapidly decreas-
ing functions of the distance (! — j).” In the numerical
calculations we will take into account only

Ao =i =0.96 ,
A =-0.14 for (i —j)==xazor ta,,
A2 =-0.02 for (i —j) = *+(a, +ay) or = (a; —ay) .

This restriction will be confirmed by additional argu-
ments in Sec. IV C. In the new variables, the Hamiltonian

will be divided into a diagonal part Héi) and a nondiag-
onal one H%". After substitution of (5) into (3) and

int
neglecting three center terms we obtain

N
H= Z HY + Z HI) (6)
g %3

HP =—A ZX"" +Vo 3 (X7, + H.c.)

(-4

+JZ(X"" clocio — X2%cl cio) (7)

and



47 ANALYSIS OF THE SINGLET-TRIPLET MODEL FOR THE. ..

HSD = Vi 3 X700 + 1(X{%clyeio — X2, c50)
(-4

+H.c] (8)

with Vj; = 2tA;; , Vo = 2tAo and where the abbreviations
__W _ W

T=v-x ""v-a ®)

have been used. In the following we will diagonalize (7),
and we will consider the hopping term (8) as a pertur-
bation. This leads to the small parameter V; = 2t\;,
which is more appropriate as expansion parameter than
the hopping t of the original work.!

B. Diagonalization within one elementary cell

Fortunately, the diagonal part of the Hamiltonian (7)
can be simply diagonalized, distinguishing between states
with one or with two holes per site. For one hole one
finds two degenerated ground states of mainly copper
character for every spin o (site index is dropped):

|fo) = cos6; d}|0) —sind; c}|0), (10)
_M%
tan26; = A
with the energy
A A2 2
Ef—-5-~ —4—+VB (11)

The one hole states with mainly oxygen character have an
energy of the order A higher than Ef and are projected
out in the following.

The lowest state with 2 holes is a singlet:

[¥) = cos b, |1/7) —sinfy |q§) ,

(12)
2v2 Vo
tan 202 = m,
where
- 1 -
9) = —5 (die] —dle) 0) and [§) =ce] [0) .
The energy E, of this singlet state,
2
By =2t JOIEY e )

is separated by an energy of the order t2/A (in the spin
fluctuation regime A >> ¢ ), more exactly by

t2 12
8 (K too A)
from the energy E. of the triplet states. These are given

by

1
ITo) = = (dicl +del) 10), |m0) = dich |0) (14)

with the energy
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Er=-A. (15)

The low-energy subspace of the two-hole-sector consists
of these singlet (12) and triplet (14) states. It is sepa-
rated by an energy of the order of A from the remaining
doubly occupied oxygen state |¢). In the following we
will concentrate on the low-energy subspaces (10), (12),
and (14) only.

Now, we will construct an effective Hamiltonian by
projection of the hopping term (8) onto the low-energy
subspace. But we have to distinguish if the hole creation
operator changes the hole number from 1 to 2 or from
0 to 1. The first sector describes the singlet and triplet
bands and will be derived first. The latter case corre-
sponds to the lower occupied copper band and was not
considered in Ref. 7.

C. Effective singlet-triplet problem

The projection on the relevant subspace in lowest order
of 2tA1 /A is equivalent to the replacement of the oxygen-
and copper-hole creation operators by’

el =20AY Y¥° + AT Y7,

(16)
X0 =20A4Y YV? + AT Y™
with o = +1/2 and
YY7 =) (fol »
(17)

To _ 1 2
Y -—% l70)<fa|+\/;IT25><fal .

The parameters in (16) are given by

w

1
AT = —4/—sinb, |, Ag’ = ———5in#; cosfs,

z 2 \/E

Al = ——\/gcos 6 (18)

AY =sin 6 sin b, + % cos 61 cos 6.

The new operators (17) are either a projection opera-
tor or the sum of two projection operators. Due to this
similarity to the original Hubbard operators (4) we will
denote these new operators as Hubbard operators as well.
Note that they contain only transitions from the one-hole
state (10) to the singlet and to the triplet states. The
three triplet states are not independent from each other
because they will be created only in the combination of
Y7?. If we deal with each of the components of Y7°
separately we end up with a linear dependent system of
equations of motion in the paramagnetic case. To avoid
this, we present the further analysis in terms of the com-
bined operator Y77, which has been normalized in such
a way that the resulting equation of motion (see Sec. IV)
will occur in symmetrized form.

Now, if we put (16) into the hopping part of the Hamil-
tonian (8) we get the effective singlet-triplet Hamiltonian:
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H=E_f Zyiaa + Ew Zif;ﬁ'ﬂ! +E7'Zg K:TUYiUT
i,0 i 1,0

i#j

+ 2 ViglKyp Y 7Y7Y — 20Ky (VYT + YY) + K YOV

1,5,0

with Y77 = Y7%Y¥% and Y*¥ = Y¥°Y7Y and with

the following singlet-singlet, triplet-triplet, and singlet-
triplet hopping parameters:

Kyy =2A%AY |, AY = AY —V2ycosb;cosbs ,
K, =2ATAT, (20)
Kyp = AV AT + ATAY .

Contrary to the previous derivation? of the singlet-triplet
Hamiltonian (19), we chose another notation in terms of
the combined triplet creation operator (17). If one ne-
glects in (19) the triplet states and considers only the
overlap to next neighbors then it corresponds to the hop-
ping part of the ¢t-J model.! In the limit A > ¢ the ef-
fective hopping parameter teg = V1 Kyy goes over to the
value found by Zhang and Rice, as was shown in Ref. 7.
But in the intermediate region our method (which agrees
with Ref. 8) gives much better values for teg than the
original procedure. The exchange part of the t-J model
was not derived here because we are not interested in the
magnetic structure of the copper-oxide plane.

D. The copper band

Now we derive an effective Hamiltonian for the lower
copperlike band which is occupied with holes. We need
it for the comparison with results of our direct decou-
pling procedure.!® We have to project the Hamiltonian
(8) onto the low-energy subspace in the sector of transi-
tions between hole-occupation 0 and 1. In that case the
creation operators can be replaced by

c’; = —sinf; Y°°, X°° = cosb, Y°° (21)
with
Y0 = |f,)(0]

and correspondingly
Yo7 = |f0)<fa| .

The replacement (21) gives simply the following effective
problem (which was not derived in Ref. 7):

1#]
H=EFE;Y Y77 =Y Visin26; Y700 . (22)
1,0 1,J,0

We derived the effective problems for the singlet-triplet
sector and for the copper band separately. These two
sectors are separated by an energy of the order of A.
Therefore, coupling effects between these two sectors are
of second order in the small parameter 2¢\1/A. These
second-order contributions to the effective Hamiltonian
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(19)

[

were calculated in Ref. 7, but we neglect these effects in
our first analysis of the singlet-triplet model.

III. TIME-REVERSAL SYMMETRY

The singlet-triplet mixing term in the effective Hamil-
tonian (19) depends explicitly on the spin o. Neverthe-
less, the Hamiltonian (19) is invariant with respect to
spin-reversal symmetry. That can be seen explicitly by
taking into account that the operator of spin reversal K
acts differently for the singlet and triplet operators:

KY™) =-Y7,
but
K(Yla'r) _ YlaT’

(23)

(24)

which is clear from the different definitions (12) and (14).
Equations (23) and (24) can be considered as the defini-
tion of spin reversal within our effective problem (19).
There is yet another symmetry in our problem, namely,
the symmetry with respect to complex conjugation. The
operator of complex conjugation Ky acts in the same way
for singlet and triplet operators; for instance,
Ko(Y7) =y . (25)
Both symmetries, spin reversal and complex conjugation,
build the time reversal with the operator

T = KoK . (26)

Because both symmetries are fulfilled independently
within our singlet-triplet model, the time-reversal sym-
metry is fulfilled also. This symmetry simplifies the cal-
culation considerably and gives rise to some restrictions
of the final result. Therefore, it is worthwhile to inves-
tigate this symmetry in more detail. Let us discuss one
important consequence of it.

We consider such a ground state, which does not break
the spin-reversal symmetry (paramagnetic state). Then
one can conclude from (23) and (24),

YY) =~y 27
Furthermore, from the symmetry (25), it follows that the
expectation value (27) is a real quantity. Due to the
projection property of the Hubbard operators (17), the
singlet-triplet transition amplitude (27) cannot depend
on the spin o for ¢ = j. Therefore, this quantity must
vanish at the same place:

(¥Povemy =o0. (28)

This could also be concluded because the singlet and the
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triplet states represent the exact eigenstates within one
elementary cell, and no local transitions between them
are allowed. On the level of the effective Hamiltonian
(19), however, it is a consequence of spin-reversal sym-
metry, or more generally a consequence of time-reversal
symmetry.

IV. THE EQUATIONS OF MOTION FOR THE GF

The effective Hamiltonian (19) is a difficult problem
due to the more complicated permutation relations for
Hubbard operators. Therefore, one has to apply some
approximations, which, perhaps, are not as justified as
the model itself. The approximation by ordinary Fermi
operators as in Ref. 6 neglects, in our opinion, very im-
portant effects of strong correlations. The projection
technique!41¢ is more suitable for treating problems in
terms of operators with unusual commutation relations.
We explain now the method in the simplest approxima-
tion neglecting finite lifetime effects.

A. The projection method

We do not want to derive the formalism in a detailed
way, but we give only the most important formulas for
the special case of the singlet-triplet Hamiltonian (19).
At first we have to choose the relevant basic operators.
In our case these are the singlet and triplet creation op-
erators Y;¥° and Y;°. With these operators we build the
susceptibility matrix

XapB,ik = ({Yiaa»ykﬂab ’ (29)

where {---, .-} denotes the anticommutator, (---) the
ground-state average, and the indices o and 3 are either
1 or 7. The susceptibility matrix and the frequency ma-
trix,

w = Q_Khla
(30)
Qap,ix = (Y7, HL, YD),
]
Qi = bik <(E¢ 5 (T BEwxe ;
[
where
11
8By = o S Ve (Ko Mo = Ko i)
35
1 1% 3 e
AE, = oN ; Vij <~§K¢¢M¢¢,w‘
+2(20) Kyr Myr.ij
1
_EKTTMTT,ij> .

(Er —Ef + AET)XT) + (1= ba) Vi (("20)K¢TX¢XT
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determine the GF
o0
Gop,ik(w) = —i/ dt eHON (Y (1), YY)
0

(31)
by means of the matrix equation
(w+i0t —w)G = x . (32)

Equation (32) represents only the first step in a hierarchy
of equations of motion!® and neglects, for instance, finite-
lifetime effects altogether. However, it already displays
some important effects of the strong correlation, as will
be seen in the following consideration.

B. Susceptibility and frequency matrix

While calculating the matrix (30), higher-order corre-
lation functions appear. They have to be approximated
in a reasonable way. In the following, all higher-order cor-
relation functions will be decoupled to such correlation
functions, which can be calculated self-consistently. The
decoupling of the spin-spin correlation function is con-
sistent with the assumed classical paramagnetic ground
state. We choose the number of holes h in the region
h > 1, which corresponds to a slightly doped case. Then
the singlet states should be partly occupied with holes.
To simplify the resulting expressions one has to use the
time-reversal symmetry mentioned in Sec. III. So one ob-
tains for the susceptibility matrix

_s, (Xxv O

Kik_6’k< 0 X‘r) ’

xv = (¥77) + (YY), (33)
1 oo 2 o0 TOYOT

xr =5 (Y77) + 3 (V%) + (Y7oY2)

and for the frequency matrix

KyyX3 (—20)KyrxyXr
KrrX3 ’

(34)

The energy shifts (35) depend self-consistently on the
singlet-triplet GF’s itself by

m
Mag; = (YoY7P) = —% / dw Im Gga,ji(w)
)

(36)

with the chemical potential pu.

The doping dependence in (33) and (34) consists in
a change in spectral weight (33) and the energy shifts
(35). This will be discussed in detail in Sec. VB. In the
undoped case (h = 1) one has
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The off-diagonal elements of (34) are proportional to the
spin o. This can be understood by using the spin-reversal
symmetry (23) and (24), which acts differently for the
diagonal and off-diagonal GF’s,

Gyy(—0) = Gyy(a) , Gyr(—0) = =Gy (o),

and for the Mg (36) correspondingly. These relations
are valid in the paramagnetic region.

To solve the equations of motion (32) we apply now
the Fourier transformation to the frequency matrix:

wik) =D _wiime™ " (38)
m
and to the susceptibility matrix (33). Using the definition

(5) and the notation

I#5
Y = ;?k — 2A0 =2 Z Aljezk(‘?_l), (39)
J

we get the following equation of motion for the GF:
, A B G G
+_ X+ vy Gyr
o= (5 &)} (& &)
= (X O 4
(% o) @

A=E¢+AE¢-—EJ¢+X¢ Kv,b«/)t'Yk»
B=-Kyrt v, (41)
C=E,+AE, —Ef+xr Ker t v .

with the matrix elements

This 2 x 2 matrix can be solved very easily. The eigenval-
ues of (40) are the energies of the singlet and the triplet
band

A+C A—-C)?
Er/s = 2 i\/( 4 ) + xyxrB?, (42)

and the singlet and triplet GF’s may be represented as
G o Xy Es-C
YW= w¥i0t — BEs Es - Br
+ Xop Er-C
w+i0+t —Ep Er—Eg’
_ Xt Es— A
—w+iO+—Eg Es — Er
Xr Er— A
w+i0t — Er ET—Es’
Xy Xt B
Gvr = SFi0t —Bs Bs - Br
Xy Xr B
w+i0+—ET ET—ES.

GTT

+ (43)

These GF’s describe the singlet and the triplet band.
They can be thought of being totally empty (for A = 1) or
the singlet band is partly filled (for doping values A > 1).
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C. The Green’s function of the copper band

The application of the projection technique in this sec-
tor is much more easy. We choose the relevant operator
Y?% and we obtain

Xik =5ikX7 X = (Y;o’o’> )
(44)

wik = Wik /X = Efbix — (1 —bik) Vik sin26; x .

Here, the same approximations as above, i.e., the param-
agnetic case and the neglect of antiferromagnetic corre-
lations have been applied. The value of x, which deter-
mines the spectral weight of the copper band, depends
on the doping (see Sec. VB) and it is 1/2 in the undoped
case. To solve the equation of motion we use the Fourier
transformation (38) and obtain from (44):

w(k) = Ey —sin26; x t vk . (45)

From (32), (44), and (45) one finds the GF of the lower
band in the form
X

Gk) = w+ 0t —w(k) (46)
with w(k) from (45). The only correlation effects in our
simple approximation are the reduction of bandwidth and
spectral strength of the lower band to one half of the
original value. This implies already that in the half-filled
case h = 1 the lower band is completely filled and we
have a charge-transfer gap.

Now we will determine the number of relevant Fourier
components for v in the sum (39). We tested our proce-
dure in the simple case of an uncorrelated tight-binding
model, i.e., the problem (1) at U = 0. Then the exact
dispersion of the lower band

2
E(k) = —% - AT + 8252 (47)

with the 4, of (5) is very well known. The above-
described procedure is applicable even at U = 0. For
one hole one finds the same ground state (10) with the
same energy (11). Projecting the hopping part onto the
lower subspace (10) we obtain an effective Hamiltonian
like (22). However, the lower band can be occupied with
two holes, and thus we have to choose Fermi operators
instead of Hubbard operators. The projected Hamilto-
nian can be simply diagonalized and gives a dispersion
like (45) but with the full bandwidth (x = 1),

E(k) = Ef —sin20; t v (48)

with the v of (39). This corresponds to the Taylor ex-
pansion of (47) around Fy. In Fig. 1 we compare the ex-
act result (47) with the approximation (48) taking into
account in the sum (39) either all Fourier components
[which restores 4 in the form (5)] or only the components
A1 and A2. The consideration of all Fourier components
is in favor only near to Ey but shows large deviations
near k = 0, which is clear from the properties of the Tay-
lor expansion. Therefore, in the following we will take
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FIG. 1.

Test of the Wannier expansion in the lower band
of the uncorrelated case (U = 0, A = 2, t = 1). Comparison
of the exact dispersion relation with the Wannier expansion
taking into account all or only the next (A; and Az) expan-
sion parameters. The points in k space are M = (m,7),I" =
(070)1X = (017")'

into account only A; and Ag, which display the overall
shape of the band much better.

V. NUMERICAL RESULTS
A. Band structure and density of states

As already mentioned, the doping has no qualitative ef-
fects on the band structure in our procedure (because we
fixed the magnetic structure). Only the spectral strength
and the positions of the different bands change with dop-
ing. That will be discussed in the next section. Now we
present the results for A = 1.

Let us first discuss the band structure calculated from
the poles of (43) and (46). That is the singlet, the triplet
(42), and the copper bands (45). In Fig. 2 we show the
results for U = 00,A = 4,t = 1 and compare them
with our former RPA procedure.!® In that case the pa-
rameters of the effective singlet-triplet Hamiltonian (19)
are Ef = —4.77, Ey — Ef = —0.6, Kyy = —0.355,
K,r =1.038, Ky, = —0.077.7 The negative sign of Ky
guarantees that the singlet band has qualitatively the
same dispersion as the copper band. Only the singlet
bandwidth is reduced compared with the copper band-
width. In the doped case A > 1 one finds the Fermi level
within the singlet band.

The ordinary band-structure calculations!” interpret
the spectroscopic data!®19 as if the Fermi level is lo-
cated in the antibonding (in the electron picture) cop-
perlike band. This can be justified by the similarity of
the dispersion and the Fermi surface shape in spectro-
scopic measurements and theoretical calculations.!” The
only difference is that the experimental value of the band-
width of the band crossing the Fermi surface is smaller
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FIG. 2. Dispersion relation for U = oo, A =4, ¢t =1 (full

line) compared with the RPA result Ref. 13 (dashed line).

in comparison with the theoretical one. In our calcula-
tion we found the same dispersion for the singlet and the
copper band. This allows us to propose another inter-
pretation of the spectroscopic data with the Fermi level
situated in the singlet band.

Such a band as the singlet band in our calculation has
also been obtained starting from the antiferromagnetic
ground state in Ref. 12 or within the paramagnetic case
as in Refs. 11 and 13. In the present analysis the singlet
band already exists in the extremely small doping region.
This is in agreement with Refs. 12 and 13 but in contrast
with the results of Matsumoto, Sasaki, and Tachiki.!?
There, the singlet band arises only with increasing dop-
ing, which seems to be due to their special decoupling
procedure.

To check our results we compared them with our for-
mer results.!® In Ref. 13 we applied a GF-decoupling
scheme to the Hamiltonian (3) in the limit U — co. We

introduced the singlet operator p{*f — pz(-;)TX{’ @ addition-

k1o

ally to the copper and oxygen creation operators X¢° and
pgiﬁ and decoupled the problem in a RPA-like manner.!3
Thus, we reached a reasonable description of the singlet
band. The agreement of our present results with the RPA
procedure is rather good, especially for the copper and
the triplet band. Only the singlet band does not appear
at the correct place in the RPA, namely, it is shifted to
higher values of the energy.

Next we calculated the density of states. For that we
had to transform the singlet and triplet GF’s (40) back
to the original copper Gpp and oxygen GF’s Gpp. With
(16) we obtain

Gpp =2(AY)*Gyy + 2(A7)’Grr + 4(AY AD)Gyr
(49)
Gpp =2(AY)*Gyy + 2(A])°Grr + 4(AYAD)Gyr

in the singlet-triplet sector. For brevity we introduce the
notation
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Gpp+Gpp = CyyGyy + CrrGrr + CyrGyr.
(50)
For the lower band one has simply, from (21),

Gpp = 2sin2 01G, GDD = 2COS2 91G . (51)

To obtain the density of states we use (49) and (43) and
carry out the k sums with the help of a two-dimensional
analogy of the tetraeder method.2® The result is shown
in Fig. 3.

One can also calculate the spectral strength of every
band. From (43) and (49) one finds the spectral strength
of the triplet band

1 [“ 1
OT=—;/ ﬁ ;Im (GPP+GDD)dw=CrT XT

Wiy
(52)
and of the singlet band

1 Wso 1
Os=_—/ ~ 2 Im (Gpp+Gpp) dw = Cyy Xy,
k

™ Wsu
(53)

where wyy,, wto and wsy,, ws, denote the band edges of the
triplet and of the singlet band. In the undoped case (h =
1) of Fig. 3 these values are O = 1.5 and Og = 0.62.
Please note that, in contrast with O, the value of Og at
h =1 depends on the parameters. It approaches 1/2 in
the limit U = oo, A > t. The reason for this difference
is not well understood.

The spectral strength of the copper band can be com-
puted from (46) and (51):

singlet nonbonding triplet
band band band
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] .
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- :
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FIG. 3. The total and the copper density of states for
U =00, A =4,t =1 compared with the RPA result. Note
that the spectral weights of the singlet and the triplet bands
are 0.62 and 1.5, respectively.
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FIG. 4. Triplet part in the singlet band and vice versa for
the parameter values of Fig. 3.

Ocu = 2 (cos?6; +sin?6;) x =2 x (54)

and it is unity in the undoped case, as it should be. The
spectral weights Or, Og, and O¢, depend on the doping
as will be discussed later (Fig. 5).

It is seen very clearly from Fig. 3 that both methods
give a singlet band of predominantly oxygen character
in agreement with Ref. 9. And also the results for the
spectral strength agree more or less.

Next, in Fig. 4 we show the triplet part ~ Im G,,
of the singlet band and vice versa. This contribution is
very small (please note the different scale in Fig. 4). The
triplet contribution is only one fifth of a percent of the
total weight of the singlet band. This small contribu-
tion is due to the small value of K,. Furthermore, the
contribution vanishes exactly in the middle of the band.
This is because the local singlet-triplet coupling is forbid-
den (28) due to the time-reversal symmetry as mentioned
above. The mixed GF G, changes its sign in the middle
of the band, and due to (28) it fulfills the sum rule

> Im Gy, (k) =0 (55)
k

in every band separately.

B. Influence of doping

Last, we discuss the results of a self-consistent solution
for finite doping (1 < h < 2) with the chemical potential
4 in the singlet band. The formulas to determine the
energy shifts AE, and AE, are already given in (35).
To determine also the change in x,, and x, (33), we must
note that (¥;7% +Y;?%) is the density of elementary cells,
which are occupied with exactly one hole. This density
decreases with increasing doping values. In our simple
procedure (without coupling between the one- and the
two-hole sector) it is given as
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voy _ 1 B
= () =1-3. (56)

The density of holes can be calculated from

1 [ 1
h = _;/_oodw ~ ;Im (Gpp + Gpp), (57)

which has a contribution from the one-hole sector (51)
and from the two-hole sector (50),

h=2 X+C¢.¢, X S’t/l +Crr Xr ST+C¢'T Xy Xt Sd;r s
(58)

where the following sums over the occupied k values have
been defined

:\ﬁj Es-C 1N EBs—A
Sy =% Es— Er’ Sr=x Es - E7’
and
1 occ B
S¢T_Nzk: m (59)

From (56) and (58) one finds

1
h=145 (Cyy Xy Sy+Crr Xr Sr+Cyr Xy Xr Syr) -
(60)
Using the expression (60) in (33), which also can be writ-
ten as
h
Xp=1=5+xv Sy,

(61)
h
XT=1_§+XT Sr,

one obtains two coupled equations to determine ), and
xr. Their solution is

X X

=125 =d x=i2g (62)
with
oo b ¥ e
X= "% 402 a
and
a—‘Sz/)‘rCZT )
C..r
b=(1—S¢)(1—S,,.)+(1—— ™4
+(1 - Sﬁ&p% ; (63)

e=—3(1-8y)(1~5,).

For a numerical solution we fix the number of occupied
k values, and determine in every step the energy shifts
AE, and AE; from (35), as well as x and x, from (62),

using the sums (59) until we reach self-consistency. The
doping dependence of the spectral strength Og, O, and
Ocy (52)—(54) is given in Fig. 5. For illustration we show
also the fraction F' = N /N of occupied k values Nj.

In the undoped case the spectral strength of the sin-
glet band is 0.62. But one expects that the singlet band
can be filled up to A = 2, since one can replace |f,)
by |¢) at each site. Therefore, the spectral strength
of the singlet band should increase with doping. Due
to a sum rule the spectral weights of the copper and
the triplet bands should decrease. Our results in Fig.
5 display this expected behavior very nicely. Such a
transfer of spectral weight has also been found in spec-
troscopic measurements?! and in exact diagonalization
studies.??724 Eskes, Meinders, and Sawatzky?? took this
transfer of spectral weight as a sign of strong correlation.
They plotted the integrated spectral weight of the singlet
band up to the chemical potential CyyXxySy versus the
doping A — 1 and found a proportionality factor a = 2
only for large enough ¢,4q. We find here in any case o = 2,
since we neglected the direct oxygen-oxygen hopping t,p.

One also can see from Fig. 5 that the filling of the
singlet band occurs in an asymmetric way and that it
is already half filled (FF = 0.5) for h = 1.24. Only
for that special doping value the original Fermi surface
from ordinary band-structure calculations will be recov-
ered. We think that the strong dependence of the Fermi
surface on doping is a drawback of our method. It is
in contradiction to experimental results'®® and to the
Luttinger theorem. Let us note, for comparison, that
the slave boson calculations?%:28 or the similar Gutzwiller
approximation?” fulfill the Luttinger theorem. However,
on the other hand, they cannot display any transfer of
spectral weight. Perhaps in the present approach the
Fermi surface can be fixed if we calculate the lifetime of
the quasiparticles.
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FIG. 5. Doping dependence of the spectral weights of the
copper (c), singlet (s) and triplet (¢) bands. The parameter
values are U = oo, A = 4, t = 1 and the fraction F' of occupied
k values in the singlet band is also shown (f).
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The other shortcoming of our analysis is the neglect
of antiferromagnetic correlations. The spin background
is expected to have a large influence on the electronic
structure. Indeed, the analysis of the one-hole-motion
in the antiferromagnetic state?® gives another dispersion
than we found. It is determined by next-nearest-neighbor
hopping rather than the nearest-neighbor hopping, in our
case. But we expect that at moderate doping values
the character of the dispersion changes to the nearest-
neighbor hopping. This was shown by the diagonaliza-
tion of small clusters.?? Our present method also cannot
divide the coherent from the incoherent part of the spec-
trum, which is quite important.?8:2% But the momentum
sum of the spectral function (with contributions from
both parts of the spectrum) is roughly the same if one
starts from the AFM background as in Ref. 12, or if one
considers our results in the paramagnetic case.

VI. CONCLUSION

We analyzed the recently derived singlet-triplet model
in the paramagnetic case. This effective model is an
extension of the Zhang-Rice procedure to the charge-
fluctuation regime, also including the triplet states. We
developed these ideas up to a detailed calculation of the
band structure and the density of states. The general

idea of the procedure, i.e., the exact diagonalization of a
small cluster and the consideration of the hopping term
such as a perturbation, while projecting out some higher
states, seems worthwhile to also try on other problems.
It has been shown that the projection technique is a very
convenient way to derive the equations of motion for dif-
ficult effective problems in terms of Hubbard operators.
The numerical results show that the Fermi level is situ-
ated in the singlet band, which is mainly of oxygen char-
acter and has the same dispersion as the copper band.
The spectral strength of every band was calculated and
a transfer of spectral weight has been found with dop-
ing. This seems to be in agreement with some experi-
ments in the doped, paramagnetic region. The mixing
between singlet and triplet bands has been found to be
very small. This is a further argument for the validity of
the t-J model. On the other hand, our procedure gives us
the possibility to study in a systematic way the relation
between the two models and to investigate some minor
effects of the singlet-triplet coupling. This was shown
here for the density of states.
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