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The finite-temperature properties of Bose quantum fluids are studied by applying a variational
density-matrix approach. Our ansatz for the density matrix is similar to that introduced by Camp-
bell, Kiirten, Ristig, and Senger [Phys. Rev. 30, 3728 (1984)j but has been generalized to include
three-body correlations. An expression for the finite-temperature elementary-excitation energy, e(k),
is derived from an ansatz for the variational entropy. At zero temperature e(k) reduces to the same
expression obtained by Brillouin-Wigner perturbation theory. The hypernetted-chain (HNC) equa-
tions provide the relations between the n-particle distribution functions and the correlation functions.
A substantial set of elementary diagrams have been included to minimize the loss of precision as-
sociated with the HNC approximation. We report values for the static structure function, radial
distribution function, excitation energies, particle-hole interaction, Helmholtz free energy, entropy,
and isothermal sound velocity. We present a detailed study of the spectra, three-body correlations,
and elementary diagram dependence of the thermodynamic spinodal curve. For relevant densities, we
find that three-body correlations tend to increase the liquid-gas critical temperature T, while adding
elementary diagrams tends to reduce T, . Including multiphonon terms in the spectrum produces
several features in the variational entropy that were not observed at the Feynman level of excitations.
Entropy isotherms show a rather abrupt transition from a low-density regime, where multiphonon
contributions are insignificant, to a high-density regime where the isotherms are strongly influenced
by multiphonon scattering processes.

I. INTRODUCTION

Recently, high-precision neutron-scattering measure-
ments have been done in superfluid and normal 4He at
saturated vapor pressure (SVP) by Stirling and Glyde, i

and at 20 bars by Talbot et al. ~ Momentum transfers
of Q = 0.4 and 1.925 A. were probed. In the Feyn-
man theory of elementary excitations in 4He, these wave
vectors correspond to that of a phonon and the ro-
ton minimum, respectively. As a result of these mea-
surements precise data are now available for the tem-
perature dependence of the dynamic structure function
S(Q, w). Stirling and Glyde report the following: For Q=
0.4 A. i, S(Q, w) contains a single sharp peak, the well-
known Bijl-Feynman (BF) phonon-roton collective mode.
This peak is superimposed on a nearly temperature-
independent broad background, which originates from
the quasiparticle-quasiparticle scattering (multiphonon
contributions). The Bijl-Feynman peak broadens and
diminishes in strength as the temperature is increased
through the A transition temperature Tp (T~=2.17 K at
SVP) but does not fully vanish into the background un-
til the system is deep into the normal phase. At the
roton minimum, the sharp component in S(Q, w) has a
noticeably different temperature dependence; it vanishes
or at least changes abruptly as the temperature is in-
creased through Tp. This confirmed earlier observations
of Woods and Svensson.

These experimental observations led Glyde and
GrifBn4 to propose a novel interpretation of the ex-
citations in liquid He. Using the dielectric formula-
tion of many-body theory, 5 they suggest that phonons
(Q ( 0.7 A ) and rotons (Q —1.9 A ) really in-
volve separate excitation branches, which are hybridized
by the presence of the Bose condensate. As a result of
the level crossing, the lowest-lying excitations are those
observed in the experimental phonon-maxon-roton spec-
trum, but the nature of the excitation depends critically
on the wave vector.

This picture differs from the traditionally accepted
picture of the experimental BF spectrum being a den-
sity fluctuation (collective mode) not only in the phonon
regime, but for wave vectors extending beyond the roton
minimum. This interpretation, which originated with
Feynman, has been supported by numerous theoretical
calculations. s i2 In this picture, while the condensate is
present, it is assumed to have no special connection with
the low-lying elementary excitations. The present work
is based on this interpretation of the spectrum.

It remains a challenge for the low-temperature physi-
cist to reconcile the traditional picture with the con-
vincing arguments proposed by Glyde and GriKn. The
dielectric formulation has the advantage that it works
equally well for zero- and finite-temperature many-body
systems. In contrast, all correlated basis functions (CBF)
and variational calculations done to the degree of preci-
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sion needed to resolve these issues have been done at
zero temperature only. One of the goals of this work is
to extend to higher precision, previous finite-temperature
calculations based on a variational principle. While the
presently investigated density matrix provides a proper
description of the superfluid only, and thus precludes the
possibility of studying the superfluid-normal transition
needed to reconcile the two pictures, it is a necessary step
in the development of statistical mechanics for strongly
correlated systems.

The solution to the many-body problem by a varia-
tional approach was extended to finite temperatures in
the pioneering work of Campbell et at. s At the heart of
that work is the Gibbs-Delbriick-Moliere minimum prin-
ciple for the Helmholtz free energy. The principle states
that the trial Helmholtz free energy F& is bounded from
below by the true free energy Fp and is given by

1
Fp & Eg = tr(Hpg) + —tr(pt, ln pq),

where P = 1/k&T, H is the many-body Hamiltonian,
and pq is a trial density matrix. The first and second
terms are contributions to the free energy coming from
the trial internal energy and entropy, respectively. In
configuration space H is given by

where m is the bare mass of the Bose particle and v(r)
is a two-body interaction potential. [In our numerical
calculations, v(r) is the potential of Aziz et at. i

]

The density matrix introduced by Campbell et al. , and
discussed in more detail below, is called the Penrose-
Reatto-Chester-Jastrow (PRCJ) density inatrix. s It is
expressible entirely in terms of two-body variational func-
tions:

1 1
p& exp —) u2(r, , r~) exp —) cu2(r, ,

r'. ) exp

=0,

At zero temperature u2 vanishes and pq reduces to a
product of Jastrow wave functions. The optimal free en-
ergy follows after solving a set of coupled Euler-Lagrange
(EL) equations:

=0, '' (1.4)
bug b(u2 „

a calculation that is similar in spirit to that used to find
the optimal ground-state energies in the zero tempera-
ture limit. ~ Solutions to these equations were used to
study the temperature dependence of the elementary-
excitation spectrum. In the following work of Senger
et al. , the thermal behavior of microscopic quantities
such as the static structure function S(k) and the isother-
mal sound velocity was calculated. They also calculated
many thermodynamic functions including the Helmholtz
free energy, internal energy, entropy, pressure, and the
chemical potential. The solutions of the EL equations fail
to give (unphysical) solutions in regions of phase space
that are mechanically unstable (regions of diverging com-
pressibility). Consequently, they were able to determine
the thermodynamic spinodal curve.

The qualitative success of those calculations provided
incentive for further work: The procedure has been ex-
tended to include Bose mixtures and inhomogeneous
Bose systems. is A density matrix, which properly de-
scribes the normal phase (temperatures above the A tran-
sition) has been postulated, and EL equations have been
derived. ~ 7 Finally, an alternative formulation, which
results in exact expressions for the EL equations for the
PRC3 density matrix, has been introduced.

Yet another line to follow, which is the intent of the
present work, is to extend the PRCJ density matrix by

adding three-body correlations to both the u and the
In Sec. II, we introduce the extended PRCJ density

matrix. Closed form expressions for the internal energy
and entropy are derived in Sec. III. EL equations are
derived in Sec. IV. In doing so, we show that a finite-
temperature version of the Brillouin-Wigner (BW) per-
turbation theory excitation spectrum follows from the EL
equations. Having the BW expression for e(k) emerge
from the formalism adds credence to the method em-
ployed for introducing the spectrum, which is through
the entropy expression. The present work goes beyond
that previously done in another important way. In the
evaluation of the EI. equations it is necessary to invoke
the hypernetted-chain (HNC) resummation of diagrams.
We have included a set of elementary diagrams that are
consistent with keeping u3 correlations. In earlier finite-
temperature calculations these have been ignored. Keep-
ing u3 and elementary diagrams is known to be important
in obtaining correct ground-state properties. 22 zs A brief
review of the thermodynamic functions studied in this
work are given in Sec. V. Numerical solutions are given
in Sec. VI, and conclusions are stated in Sec. VII. We
begin by reviewing the density matrix formalism.

II. DENSITY MATRIX

At finite temperature a many-body quantum system is
completely determined by the statistical density matrix
p. As is well known, the expectation value for any oper-
ator, 8 may be expressed as a quantum-mechanical trace
over the product of p and the operator:
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(8) = tr(p8). (2 1) (ri rNI@) = @(» ",riv)

Since Bose quantum liquids are strongly correlated in
configuration space, it is advantageous to expand all state
vectors ~@) and operators, including p, in terms of real
space basis vectors:

(2.2)
p pi&~~P~X'l, . . . , ~&~ = P~~l,

In the superfiuid regime pi may be decomposed into
two positive-definite pieces:

n n p p a a n a p p p ppi(ri, . . . , ry, ri, . . . , ry) = e(r], . . . , rg)q(ri, . . . , rg, ri, . . . , rg) e(ri, . . . , rg), (2.3)

where 4 has the form of the Feenberg wave function:

@(ri, . . . , r&) = exp —) u&(r;, r~) + — ) us(r;, r~, rk)
''&j&k

(2 4)

An important distinction exists between @ and the true Feenberg wave function in that the latter describes the
many-body ground state, while at finite temperature the correlation functions, uz, us, . . . are temperature dependent.
Conversely, the dominating correlations at zero temperature are expected to be equally important at low temperatures.
Consequently, one expects that these functions will have a rather weak temperature dependence. At zero temperature
4' reduces to the ground-state Feenberg wave function. In contrast to Jastrow calculations previously reported, is i7

in the present work we truncate the u„series at n = 3.
The incoherence function Q couples the r~ and rP coordinates. As the temperature approaches zero, Q is expected

to go smoothly to unity. The incoherence function currently studied has the form

Q( i ''' N i ''' N) ~P ~ ) ~ (z@)(Fk+- k++kF k—+k+ k +k+—k)2N
(2.5)

where Ak(4—vrN/V)k q/q —+ &us/~z. (2.9)

1 ~s(q, k —q)
~ (k)q

(2.6)

The density fiuctuation operator, p&~, is the Fourier trans-
form of the local number density operator:

1V

pa ) eikr
j=l

(2 7)

The density matrix is properly normalized by dividing by
the corresponding trial partition function:

= 0. (2.10)

It is immediately apparent from Eq. (2.5) that one ob-
tains higher powers of ids/wz, revealing that ids cannot
itself be regarded as a component of the Feenberg ex-
pansion. Equation (2.5) is computationally easier to use,
and for that reason it is chosen in the current work.

Finally, the optimal u~ and cu„ for n = 2, 3 are deter-
mined by the solutions of the EL equations:

Zi —— d(ri, . . . , r~)@ (ri, . . . , r~). (2.8)
III. INTERNAL ENERGY AND ENTROPY

Equation (2.5) requires a certain amount of discus-
sion in that it is not a straightforward generaliza-
tion of the form studied by Campbell et aL In that
work only one variational function, cu2, was used, tan-
tamount to setting F& —— p&. The most straight-
forward way to include higher-order correlation func-
tions in the incoherence function would be to in-
clude the terms (with the appropriate permutations)
cJ3(r, , r~, rI ), u4(r, , r~, rP, r& ), ~ ~ ~ . The generated se-
ries would have the standard "Feenberg form" for the
incoherence function. While Eq. (2.5) is a proper repre-
sentation for the incoherence function, the ratio of us/(uz
is more closely related to the variational generalization
of the "backHow" form used by Battaini and Reatto. 24

The association follows from their Eq. (8):

To perform the functional derivatives required by the
optimization conditions [Eq. (2.10)] it is first necessary to
find closed-form expressions for the trial internal energy
Ui and entropy Si. The calculation of U& is facilitated
by using the Jackson-Feenberg (JF) expression for the
kinetic energy T:

2 N

TgF = ) (V,' V, —V, )b(r, —r', ),
t=l

(3.1)

where the 6 functions are to be evaluated after the action
of the gradient. The kinetic-energy contribution may be
split into two terms, which can be represented symboli-
cally as
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[V', V& —V', ]0 (R)Q(R, R')@(R')l~ R may immediately use the results of that analysis to ob-
tain the correct finite-temperature version,

= V', C (R') V&C(R) —C(R')V', 4(R) „„,
+l@(R)lz V', VgQ(R, R') —VgQ(R, R) R ~, .

U2 ——Np h

2
dr g(r) v(r) — V' [lng(r) —N(r)]4m

(3.4)

(3 2)

The internal energy then separates naturally into the fol-
lowing terms:

U, = tr(H p, ) = U& + U~„+ U, + U~ . where

/N = @(3)+ dr g(r)V'%'s(r) + &(r)l
5 p

(3.5)

At zero temperature, Krotscheckz2 has derived expres-
sions for the ground-state energy when the Feenberg
wave function [n = 2 and 3 in Eq. (2.4)] is used as
the variational ansatz. The kinetic energy evaluated by
Krotscheck is essentially the first term of Eq. (3.2). We

E3 [[ra —r2[~ ] = p f dra g(rz, rajg(ra, r3]83[I f Pg P3]

(3.6)

and

5 p
2 3

E(3) = dr j dr2 drs[gs(rz, r2, rs) —g(rz, r2) —g(rz, rs) —g(rz, rs) + 2](Vq + Vz + Vs)us(rz, rz, rs).2 2 2

(3.7)

In these expressions the radial distribution function g(rq, rz) = g(lrq —r2l) is given by

N(N —1)
g(lr~ —r2l) = d(rs, . . . , r~) p~(r~, . . . , r~, r~, . . . , rN).

p2
(3 8)

The nodal and elementary functions N(r) and E(r) in Eqs. (3.4) and (3.5) follow from the (exact) hypernetted-chain
representation of g(r):

(rb cup (v )+N(r )+Es (r)+E(r)
) (3.9)

(3.1O)

where equations are generalized to include the presence of three-body correlations: These equations are consistent
with the well-known relation that exists between g(r) and the static structure function S(k):

S(kj = 1+p jdr e'"'"[g(rj —1].

The ~ dependence follows from the second term of Eq. (3.2). The result is

(3.11)

U = ) (k)(4lV, E~ V,F ),l4).
2rnZ$

(3.12)

Expanding the Fj„ss in Eq. (2.6), separates the internal energy contributions into a term that depends on ~2 only,

U , = ) ec(k)(uz(k),
k

where eo(k) = h k /2m, and terms involving the three-body dependence of the incoherence function,

1 ) [~s(q k q)(@lp~p~-~(a —@0)p-) le) + (k ~ k)l
k,g

1 u)s(q, k —g)&us(-p, p —k)
+g N ). ',

k
'

(@lp~p~-~(& —&o)p-~pm-~l@).
cuz(kZN

(3.13)

(3.14)
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In this equation Eo =—(4~H]4)/Z&.
The calculation of the trial entropy Sq is a straightforward generalization of the entropy calculation in Refs. 13

and 17. Following that work, we know that it is possible to map the entropy expression onto the evaluation of a
o.-component configuration integral by using the replica identity

d
Sq —— k~—tr(pq ln pq) =— k~— intr(p, )d cr=1

The trace of powers of the density matrix can be written in the compact form

(3.15)

1
tr(p~ ) =

g (d(rl ' ' ' rN) (rl ' ' ' rN)) exp ~ ) +k™o'pFt-
v=1 k)0 ( a,p=l )

(3.16)

where M is a o. x o matrix,

M p(» ~) = ~&(k)(~,@+i(0') + & +i,p(~) 2b,p(~)} (3.17)

The Kronecker 6 functions obey the cyclic condition that b~ p~ (o) = b'~ p(o). The many-body integral in Eq. (3.16),
with pk in place of Fj„was evaluated by invoking a separability approximation. Consequently, we may immediately
apply the analysis of Ref. 17 to find a closed-form expression for the entropy. We simply state the results. Relating
the variational functions to the momentum distribution n(k),

n(k)(n(k) + 1) = ~2(k)(e~Fi, F i, ]@)
1

1 1=
Z ~~z(k)(@lpkp-~l@) + Z ~, ).[~s(q k —q)(@lp~p~-~p-~l@) + (k ~ -k)]

t t

1 vs(q, k —q)us( —p, p —k)+ s ) . '
( )

'
(@Ipapk —~p —i pp —i ~@)~ (3.18)

allows the entropy to be cast in the form of a gas of noninteracting Bose quasiparticles:

8& ——k~ ) ([n(k) + 1] ln[n(k) + 1] —n(k) ln n(k) }. (3.19)

We may now introduce the elementary-excitation energies e(k):

n(k) = 1
8P~{k) —1

(3.20)

An important point is that while we assume Eq. (3.19) remains correct when three-body correlations are accounted
for, we expect that e(k) will no longer be the finite-temperature version of the Feynman spectrum, but rather will be
modified by higher-order self-energy corrections:

e(k) = eBF(k) + Z(k, e(k)). (3.21)

In Sec. IV, where the EL equations are derived, we will show that Z is a finite-temperature generalization of that
obtained from second-order Brillouin-Wigner perturbation theory. A discussion of the thermodynamic conditions for
which Eq. (3.19) can be expected to be reliable is deferred to Sec. VI.

IV. EULER-LAGRANGE EQUATIONS

Having obtained closed-form expressions for the Helmholtz free energy, one can immediately evaluate the functional
derivatives in Eq. (2.10). It has become standard to choose g(r) rather than u2 for an independent variational function.
We begin with the u2 and &us EL equations. Functional differentiation leads to the coupled set of equations,

= 0 = eo(k) —s"(k)S(k) — ) '
z,„' (@~p~pk ~bH'p pp~ k~@),

b~2 k

= o = (@lp~»-~~H p-i I@) + p). 'k (@Ip~pk-~~H'p-~pp-i I@) (4.2)

where e'(k):—e(k) tanh[Pe(k)/2] and 6H"—:H —Eo —e'(k). The p = q term can be separated out of the summations in



5244 CLEMENTS, KROTSCHECK, SMITH, AND CAMPBELL 47

Eqs. (4.1) and (4.2). The ratio of us(p, k —p) / cu2(k) can then be solved for by iterating Eq. (4.2). Substituting the
resulting expression into Eq. (4.1) and keeping only the leading contribution yields a finite-temperature generalization
of the energy expression obtained in Brillouin-Wigner perturbation theory:

«(k) 1 ) - l(@lpapk-~~H p-kl@) I'coth[P&(k)/2]
S(k) Z, N - S(k)S(k —q)S(q)[e'(k) —6»(q) —eBF(k —q)]

' (4.3)

where 6'H:—H —Ep —t»(k) and f»(k) = «(k)/S(k). In obtaining this result we used

—(@Ipapk-~~H'p-QPQ-kl@) = S(p)S(k —q) [~»(Q) + ~»(k —q) —~"(k)].
t

The matrix element in the energy numerator can be written in the computationally convenient form

1 'Ii N—(@~p~pk ~b'Hp k~4') = (k + k (k —q)[S(q) —1]+k q[S(k —q) —1])—~BF(k)Ss(q, k —q, —k),

(4.4)

(4 5)

where

1
Ss(q, k —q, —k) =—g (@]p~pk-~p-kl@).

t
(4 6)

«(k) + 4e"(k)S(k)n(k) [n(k) + 1]

«(k) + 2v„ p„(k)
(4.11)

Similarly, variation with respect to g(r) and us pro-
duces two EL equations that are coupled nontrivially by
the ~ and u3. As a first approximation we break the
coupling by assuming that terms in the free energy that
contain ups can be neglected. For that case, evaluation of
the EL equation for u3, i.e.,

where v~ h(k) is the Fourier transform of

and

p k(r) = g(r)[v(r) + Av(r)] + [V'gg(r)]-
+[g(") 1][~(r)+" (")] (4.12)

bFt
6us(ki) kz) ks) g ~ ~

(4 7)
2 6U~„
p 6g(r) „ (4.13)

is completely equivalent to the zero-temperature
calculation. We simply state the result

u3(kl, k2, ks) ~ —6ky+kg+ks, p

ki kzX(ki)x(kz) + cyc. perm.
kzi/S(ki) + k22/S(k2) + ksz/S(ks)

'

(4.8)

where A (k) = 1 —1/S(k). In this form the temperature
dependence of us comes entirely through the S(k). This
expression for us was shown by Chang and Campbells to
yield the correct density dependence for e(k) in their zero
temperature BW perturbation calculation of the spec-
trum. The connection to the energy numerator [Eq. (4.5)]
is given by the approximation

S3(ki) k2& ks) ~ ~kg+kg+ka, p

x S(ki)S(k2)S(ks) [1 + us (ki, k2, ks)].
(4.9)

is the correction term due to three-body and elementary
diagrams. m(r) is the induced interaction

6(k) = —zi~p(k) [2S(k) + 1][S(k)—1]zS z(k),

and v*(r) is a contribution from the entropy

bSt

6g(r) „.

(4.14)

l,k., „„n(k)[n(k) + 1]
(2n)s p S(k)

V. OPTIMAL THERMODYNAMIC FUNCTIONS

(4.15)

Equations (4.3), (4.11), and (4.12), along with the HNC
equations [Eqs. (3.9) and (3.10)], provide a closed set of
equations that can be evaluated numerically. The solu-
tions are discussed in Sec. VI. First we comment on the
thermodynamic functions, which we calculate.

Omitting us in Eq. (3.18) reduces u2 back to the form
used by Campbell et al. ,

~

n(k) [n(k) + 1] = ~z(k)S(k). (4.10)

We now evaluate the variation of the free energy with
respect to g(r) The result can b. e expressed conveniently
in terms of a finite-temperature particle-hole interaction:

Perhaps the greatest importance of the present ap-
proach is that it allows thermodynamic functions to be
calculated from a purely microscopic basis. This presents
us with a unique opportunity to study the microscopic
mechanisms, which are responsible for the thermody-
namic behavior of the system.

Using the decomposition for the optimal internal en-

ergy in Eq. (3.3), it is apparent that, with Eqs. (3.4),
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(3.5), and (4.8), U2+ U~„ is completely specified. Fur-
thermore, using the same approximations that lead to
Eq. (4.11), one finds easily that the U~ contribution to
the internal energy [Eq. (3.12)] reduces to

U = —) e'(k)n(k) [n(k) + 1], (5.1)

Eq. (5.1) and the optimal entropy [Eq. (3.19)],completely
determine the optimal Helmholtz free energy [Eq. (1.1)].

Another quantity of interest is the isothermal sound
velocity c. In the present formalism, c is most easily
obtained from the long-wavelength limit of the particle-
hole interaction:

Sp h(0) = inc . (5.2)

p
pry Bp z

(5.3)

where p is the pressure. Similar to the calculation
of Campbell et al. ,

i at finite temperature, the long-
wavelength limit of S(k) [Eq. (4.11)] is related to c by

The vanishing of c signals that the system has become
mechanically unstable against long-wavelength fiuctua-
tions; the system can no longer support phonons. This
instability corresponds to a divergence of the isothermal
compressibility K~.

coth [Ps(k) /2]

gl + 28p h(k)/ep(k)
(6 2)

These equations are consistent with setting ua equal to
zero in the trial density matrix. The radial distribu-
tion and static structure functions are generated in the
HNC-5-Us approximation. Throughout this work, when
the distribution functions are calculated at the HNC-5-
U3 level, the same is true for v~ h (r) . For example, in
the HNC-5 approximation Kv(r) is calculated by tak-
ing functional derivatives of the appropriate fourth- and
fifth-order elementary diagrams. A detailed discussion is
given in Ref. 22.

The Feynrnan HNC-5, Feynman HNC O-Us, -and Feyn
man HNC Olevel-s. These are similar to the Feynman-
HNC-5-Us level but with us, elementary diagrams, or
both set equal to zero, respectively. The Feynman-HNC-
0 level was previously investigated by Campbell et aL s

CBF HNC 5 -Us le-ve-l. At this level all distribution
functions are calculated in the HNC-5-Us approximation.
The spectrum is obtained by the full self-consistent so-
lution of Eq. (4.3). The Ss dependence in the energy
numerator [Eq. (4.5)] follows from Eqs. (4.8) and (4.9).

Having specified our nomenclature, we now proceed to
present and discuss our results. We begin with the mi-
croscopic functions; the distribution functions, excitation
energies, and the particle-hole interaction.

(5.4) A. Radial distribution and static structure functions

The locus of points in the temperature-density plane de-
fined by the diverging compressibility is the thermody-
namic spinodal curve. In the following section we discuss
the effects that the spectrum and distribution functions
have on the spinodal curve.

VI. RESULTS AND DISCUSSION

e(k) = coth[Pe(k)/2]. (6.1)

In this limit Eq. (4.11) reduces to

Before presenting our results we establish a nomencla-
ture corresponding to the various approximations that
can be invoked for solving the full Euler-Lagrange equa-
tions. The radial distribution function g(r) and static
structure function S(k) can be generated by various ap-
proximate solutions of the HNC equations [Eqs. (3.9) and
(3.10)]. We let HNC-0 denote the approximation that
neglects elementary diagrams [E(r) = 0] in the HNC
equations. This approximation is improved by keeping
a portion of the fourth- and fifth-order elementary dia-
grams; the HNC-5 approximation. Including u3 in the
distribution functions is denoted by Us. To distinguish
the various approximations for the spectra we adopt the
following nomenclature.

Feynman HNC-5-U3 level. We will refer to the first
term of Eq. (4.3) as the (finite-temperature) Feynman
spectrum:

The effects of including elementary diagrams and
three-body correlations in the static distribution func-
tions is well understood at zero temperature. z2 zs Com-
pared to a g(r) calculated from an HNC-0 approxima-
tion, a g(r) determined at the HNC-5-Us level has an
enhanced first-neighbor peak followed by a slightly deep-
ened first trough. At finite temperatures, one can again
examine these effects. The radial distribution functions
for two temperatures at SVP are shown in Fig. 1. They
are calculated at the CBF-HNC-5-Us level. Also shown in
the same figure are the experimental points of Svensson
et at.zs The good agreement with experiment is readily
apparent. Although not shown in the figure, the g(r)
generated at the Feynman-HNC-0 level, at T = 1.0 K,
shares the same behavior as the zero-temperature func-
tions: The Feynman-HNC-0 level g(r) has first-peak and
trough values of 1.34 and 0.91 contrasted to values of
1.41 and 0.87 at the CBF-HNC-5-Us level. This shift
in magnitude is essentially the same as that observed at
zero temperature. Consequently, finite-temperature ef-
fects are nearly the same for the two diferent levels of
approximation used to calculate g(r).

The temperature and density dependence of the static
structure function S(k) are shown in Figs. 2 and 3. S(k)
in both figures are calculated at the CBF-HNC-5-U3
level. Only quantitative difFerences exist between these
S(k) and those determined at the Feynman-HNC-0 level.
We refer the reader to Ref. 13 for a detailed discussion
on the temperature and density dependence of S(k).
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FIG. 4. Theoretical and
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HNC-0 level. The two CBF
curves are calculated at the
CBF-HNC-5-U3 level; however,
in one case the u3 dependence
in the energy numerator of
Eq. (4.5) is dropped.

correction term does have an appreciable effect on the
spectrum for most momenta, however. Figure 4 shows
a comparison of spectra at T = 1.1 K and SVP. The
experimental spectrum is that of Cowley and Woods, z7

and the Feynman and CBF spectra are calculated from
Eq. (6.1) and Eq. (4.3), respectively. We also show the
CBF spectrum, but calculated with us set equal to zero in
the energy numerator [Eq. (4.9)j. Excluding us in the en-

ergy numerator actually produces better agreement with
experiment near the maxon, but including us improves
the agreement near the roton and should produce a bet-
ter density dependence. We remind the reader that our
u3 dependence has been greatly simplified by our decou-
pling approximation that lead to Eq. (4.8). This fact
may produce an inconsistency in our approximations. In
fact, these results are somewhat similar to the findings of
Manousakis and Pandharipande. In a zero-temperature
BW-type calculation, those authors found that using a
Green's-function-Monte Carlo (GFMC) generated g(r)

I

as input gave considerably poorer agreement with exper-
iment, near the maxon, than a g(r) generated by a vari-
ational calculation. Consequently, using our g(r) deter-
mined at the HNC-5-Us level may, in fact, require more
precise approximations, than the corresponding HNC-0
level g(r).

The three-phonon processes are clearly most important
for momenta exceeding that of the maxon. The temper-
ature and density dependence of the spectrum are shown
in Figs. 5—7 . For clarity the density dependence of the
spectrum has been divided into plots for the high- and
low-density portions of the phase diagram. Below 2 K the
spectrum is very nearly temperature independent. As in
the Feynman-HNC-0 level calculation, ~s the temperature
dependence of the roton gap energy is qualitatively incor-
rect; it increases with increasing temperature.

Another aspect of the multiphonon contribution, which
will be considered more fully in our discussion of the en-
tropy, is the rapid jump and then leveling off of e(k) for

20
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FlG. 5. The temperature
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excitation energies. The curves
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tion is inversely proportional to ImZ. This of course is
simply the statement that the multiphonon excitations
provide a decay mechanism for the quasiparticle states.
In the present work we have not calculated ImZ. Conse-
quently, this portion of the spectrum is only qualitatively
correct.

C. Particle-hole interaction

0
0.0

FIG. 6. The density dependence of the elementary-
excitation energies in the high-density regime. The curves
are calculated at the CBF-HNC-5-U3 level.

momentum above the roton minimum. This behavior is
best displayed in Fig. 7. The jump in the spectrum can
be traced to an abrupt change in the CBF correction term
associated with a predominance of intermediate scatter-
ing states yielding a sign change in the energy denomina-
tor [Eq. (4.3)] when going from low to high momentum
k. The spectrum leveling can be attributed to the disso-
ciation processes mentioned above. Intermediate states
with a large single-particle density of states (the maxon
and roton) will be most infiuential. For example, near
SVP, leveling occurs at energies approximately twice the
roton gap energy.

One Gnal point needs to be made concerning the multi-
phonon corrections. If one associates the CBF correction
term with a single-particle self-energy as in Eq. (3.21)
or (6.4), then formally, the vanishing of the energy de-
nominator is accompanied by the emergence of a complex
self-energy, ImZ. Iterating the full (complex) spectrum
will shift the energy pole off the real-energy axis by an
amount proportional to ImZ. The lifetime of the excita-

As seen in the present formalism, the particle-hole in-
teraction plays a fundamental role in determining the
static properties of the system. It is also the primary
driving interaction in the calculation of the dynamic re-
sponse function, y(k, cu). In Fig. 8, G~h(k) is displayed
over a broad range of densities for T = 5.5 K. The me-
chanical stability of the system decreases as the isotherm
is traversed from high densities to densities near the spin-
odal. Moving away from the spinodal, on the low-density
side, increases the mechanical stability again. This is the
cause of the crossing at zero wave vector observed at the
lowest two densities shown in Fig. 8.

The microscopic quantities previously discussed pro-
vide the input for calculations of the thermodynamic
functions. We now discuss the entropy, Helmholtz free
energy, and isothermal sound velocity. These functions
are all determined at the CBF-HNC-5-U3 level. We close
this section with a discussion of the thermodynamic spin-
odal curve.

D. Trial entropy

An obvious benefit from having a simple ansatz for the
trial entropy [Eq. (3.19)] is that the microscopic mech-
anisms, which govern the entropic behavior of the Quid,
are quite transparent. The link, of course, is provided
by the elementary-excitation energies e(k). Figure 9 is
a plot of entropy density isotherms for densities up to
0.02185 A s. The thermodynamic spinodal curve is
also shown. The view taken in the present work is that
Eq. (3.19), which is exact in the limit of noninteract-
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FIG. 9. Entropy density isotherms calculated at the CBF-
HNC-5-U3 level. The theoretically determined spinodal curve

is also shown.

ing Bose quasiparticles, is adequate when the number
of excitations per unit volume are small. For the liq-
uid phase (the high-density side of the thermodynamic
spinodal curve) this condition places an upper limit on
the temperature for which Eq. (3.19) is reliable. Partial
support of this view can be found in the comprehensive
tables of Brooks and Donnelly, zs where the entropy for
temperatures up to 2.2 K and positive pressures up to
25 atm is calculated from Eq. (3.19) when experimental
data was not available. At still higher temperatures, one
must expect quasiparticle interactions to be increasingly

prevalent. For this case, one cause for our results to de-
viate from the experimental entropy can be attributed to
the breakdown of Eq. (3.19). Parenthetically, it is for this
reason that Clements and Campbell were lead to a re-
formulation of the variational problem that precluded the
need for introducing an explicit ansatz for the entropy.

Even within the domain of validity of Eq. (3.19), dis-
crepancies between our entropy and the experimental
value arise because of spectra differences. For example,
the experimentally determined e(k) at 1.1 K and SVP of
Cowley and Woods has a roton energy gap of b, = 8.68
K. This is to be contrasted with 4 = 20.0 K for the Feyn-
man spectrum and 4 = 12.18 K for the CBF spectrum.
These spectra lead to entropies of 0.029 J g i K i, 0.008
J g

i K, and 0.014 Jg i K i for the experimental, zs

Feynrnan, and CBF spectra, respectively.
The multiphonon contributions introduce new physics

into the entropy that is not present at the Eeynrnan level.
Most noticeable is the substantial shift in the entropy
density on the low-density side of the spinodal curve.
For example, for the T = 5.5 K isotherm, the shift oc-
curs approximately between low and high densities of
pr, = 0.005 A. s and pH = 0.00875 A s, respectively
The origin of the entropy shiR is the changing nature of
the spectrum (Fig. 7) that occurs as the density changes
from p~ to p~. Above pH the spectra are largely influ-
enced by multiphonon processes in the CBF correction to
e(k). Below pL, multiphonon processes are insignificant.
In fact, for the densities less than pr, the entropy den-
sity in Fig. 9, matches the Feynrnan level values. Above
pH the nature of the entropy isotherms difFer consider-
ably for the two difFerent levels of calculation; the rather
flat entropy density isotherms in Fig. 9 should be con-
trasted with the Feynman isotherms, which are always
monotonically decreasing functions of increasing density.
Experimentally, the T = 5.5 K entropy density isotherm
vanishes for low density and increases with increasing
density.

The values of the entropy in the vicinity of the en-
tropy density shift are likely to be quite susceptible to
error because of the neglect of the imaginary part of the
self-energy, as was discussed in Sec. VIB. In that den-
sity regime it is apparent from Fig. 7 that multiphonon-
dissociation processes (the flattening of the spectrum for
momenta above the jump) shift toward momenta that are
highly relevant in determining the behavior of the the mo-
mentum distribution, n(k), and ultimately the entropy.
Finally we mention that in our numerical investigations
of this region we also observed that it was possible to it-
erate along "metastable-like" solutions, and care had to
be taken to choose the true isotherm that minimized the
free energy. Once again, further investigation of this ef-
fect is not warranted at the present because incorporating
the complex self-energy is expected to have a significant
impact in this region.

E. Helrnhaltz free energy

The Helmholtz free-energy-density isotherms are
shown in Fig. 10. At the lowest densities, the free-energy



5250 CLEMENTS, KROTSCHECK, SMITH, AND CAMPBELL 47

0.0

I

0

—02—

T=.01 K
T=3.0 K

T=3.5 K

T=4.0 K

T=4.5 K

FIG. 10. Helmholtz &ee-
energy density isotherms cal-
culated at the CBF-HNC-5-U3
level. The theoretically deter-
mined spinodal curve is also
shown.

T=5.0 K

T=5.5 K
I ~ I I I ~ I I I ~ I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I

0.000 0.002 0.004 0.006 0.008 0.010 0.01 2 0.01 4 0.01 6 0.018 0.020 0.022 0.024 0.026

(& )

density reduces to the Feynman-HNC-0 level values. This
is a consequence of the results of Sec. VI D and the fact
that the internal energy reduces to the Jastrow-HNC-0
value at very low densities. Near SVP, the free-energy
density is appreciably more negative than the Feynman-
HNC-0 values. The addition of the CBF correction, ele-
mentary diagrams, and three-body correlations, all con-
tribute to the lowering of the free energy near SVP. The
zero-temperature free-energy isotherm has a minimum at
p —0.021 85 A. s and a value of —7.2 K.

F. Isothermal sound velocity

The isothermal sound velocity, c is calculated directly
from the long-wavelength limit of the particle-hole inter-
action [Eq. (5.2)j. Figure 11 reveals that c is qualita-
tively similar to the sound velocities calculated by Sen-

ger et al. ~~ Rather than repeating the discussion found
in Ref. 17, we mention only those facts that differ from
their calculation.

At the CBF-HNC-5-Us level there exists a rather sub-

stantial uncertainty in the values of c for hc 1.0 A. K.
For the most part, hc shown in Fig. 11 that are less
than 1.0 A. K are obtained by extrapolating from values
neighboring hc = 1.0 A. K. The reason for the difficulty
is entirely technical and can be attributed primarily to
complications arising in the elementary diagram calcula-
tion. In principle, this problem can be reduced by using
a much larger real-space box size. In this work, our ob-
jective was to study a large amount of phase space rather
than to strive for a precise mapping of the spinodal curve,
which is defined by the locus of points where c vanishes.
At the CBF-HNC-5-U3 level, we estimate the uncertain-
ties in the densities of the location of the spinodal curve
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6

FIG. 11. Isothermal sound
velocity isotherms calculated at
the CBF-HNC-5-U3 level.
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to be +0.0005 A. s for the gas side and +0.0002 A. s on
the liquid side. The uncertainty in the temperature is es-
timated at +0.2 K. At the Ileynrnan level, the uncertain-
ties are considerably smaller. The uncertainty associated
with locating the spinodal curve is considerably less for
the other approximations.

G. Spinodal curve
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FIG. 12. Diferent theoretical approximations to the ther-
modynamic spinodal curve.

Finally, the role of the spectrum and the distribu-
tion functions on determining the location of the spin-
odal curve is investigated. The results are shown in Fig.
12. Each curve represents a different approximation to
the spinodal curve. The density and temperature corre-
sponding to the peak values are the critical point values
(T„p,). The experimental values for 4He are at T, —5.3
K and p, —0.010 A. s. The best agreement with the
experimental critical values is obtained at the Feynman-
HNC-0-Us level. This result was anticipated from the
earlier work in Ref. 17, since an increase in T, indicates
a more strongly bound system, and adding three-body
correlations increases the binding energy of the system
by a substantial amount. What is less obvious is the ef-
fect of adding elementary diagrams into the calculation.
The elementary-diagram contribution reduces T„ inde-
pendent of the choice of the spectrum. In the case of the
Feynman spectrum, there is a net increase in the values of
(T„p,) when both elementary-diagram and three-body
correlations are taken into account. In principle, our
best calculation of the spinodal curve, the CBF-HNC-
5-Us level, difFers the most from the experimental T„
while p, is improved. There seems to be a fortuitous
agreement with the experimental data at the Feynman
level. In the next section we will point out, that view
may be incorrect.

VII. CONCLUDING REMARKS

Clearly, including three-body correlations, us and us in
the PRCJ density matrix have important consequences
on the microscopic and thermodynamic functions of a
strongly correlated Bose liquid. For liquid densities, and
temperatures less than 2.0 K, the microscopic and ther-
modynamic functions are most certainly in better agree-
ment with the experimental results. In that regime, the
CBF corrections to the spectrum make a substantial dif-
ference, but still leave room for further improvement.
While higher-order CBF terms can be systematically cal-
culated, it would be a formidable task to do so.

Above 2.0 K, the extended PRCJ density matrix is
qualitatively incorrect because single-particle (SP) states
are not properly accounted for. Altering the PRCJ den-
sity matrix to include the normal phase of the Bose ljq
uid has been pursued. is' s Unfortunately, those results
are inconclusive in regard to the quantitative aspects of
the SP states. A simpler but illuminating calculation,
which should be qualitatively correct for T T~, has
recently been reported by Blendowske and Fliessbach. 2s

Their results indicate that the anomalous increase in the
first peak of the static structure function for T c Tp,
and then its reversal for higher temperatures, is caused
by the temperature dependence of the SP states. We
would modify their conclusions somewhat, in that we find
collective excitations probably dominate the anomalous
temperature dependence of S(k) for T ( Tq„while above
T~, the SP states and the attractive nature of roton-roton
interactions are responsible for the reversal of the behav-
ior. This actually does not disagree with the findings of
Blendowske and Fliessbach, since their SP behavior be-
low T~ produces a temperature anomaly for S(k) that
is substantially less than the experimentally observed
anomaly.

The role of the SP states is expected to be of increas-
ing importance with decreasing density. The fact that
our free energy and entropy densities do not vanish at
zero density, can of course, be attributed to our neglect
of the relevant SP physics. From this work it seems rea-
sonable that the thermodynamic phase diagram for the
correlated Bose fiuid (at temperatures in the neighbor-
hood of those studied here) can be thought of as consist-
ing of essentially four regions. Each region is mediated by
somewhat difFerent physics. At very low densities (to the
far left of the spinodal curve in Fig. 12) SP states dom-
inate the physics. At higher densities and above several
degrees Kelvin, SP states remain important, but collec-
tive efFects become increasingly prevalent. A superficial
glance of the CBF-HNC-5-U3 level spinodal curve in Fig.
12 may lead one to believe that collective modes miss
much of the relevant physics in that regime. That inter-
pretation may be wrong. If multiphonon contributions
had fully diminished slightly to the right of the tran-
sition temperature rather than to the left (Fig. 9) and
the elementary diagram had shown a similar increase in
falloK then the location of the spinodal curve would cor-
respond to the Feynman-HNC/0-Us level curve. This
change in the density dependence of the multiphonon
and elementary diagram contributions is clearly within
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the range that could be achieved by a more precise calcu-
lation. Consequently, we propose that the second region
extends between the approximate densities of 0.001 A s

and 0.015 A. s and is mediated by SP states and Feyn-
man single-phonon excitations. The third region encom-
passes still higher densities, and temperatures above the
A transition temperature. Multiphonon and SP excita-
tions are both relevant. Below this temperature, in the
fourth region, the SP states begin to lose their signifi-
cance.

ACKNOWLEDGMENTS

The authors would like to thank T. Ainsworth for
discussions on this work. The work was supported, in
part, by the National Science Foundation under Contract
Nos. PHY88-06265 and PHY91-08066, and the Texas Ad-
vanced Research Program under Grant No. 010366-012.
Support from the Minnesota Supercomputing Insitute is
gratefully acknowledged.

W. G. Stirling and H. R. Glyde, Phys. Rev. B 41, 4224
(1990).
E. F. Talbot, H. R. Glyde, W. G. Stirling, and E. C. Svens-
son, Phys. Rev. B 38, 11 229 (1988).
A. D. B. Woods and E. C. Svensson, Phys. Rev. Lett. 41,
974 (1978).
H. R. Glyde and A. GrifBn, Phys. Rev. Lett. 65, 1454
(1990).

S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Sov.
Phys. JEPT 7, 289 (1958)j; N. Hugenholtz and D. Pines,
Phys. Rev. 116, 489 (1959); J. Gavoret and P. Nozieres,
Ann. Phys. (N.Y.) $4, 291 (1965); A. Griifen and T. H.
Cheung, Phys. Rev. A 7, 2086 (1973); P. Szepfalusy and I.
Kondor, Ann. Phys. (N.Y.) 82, 1 (1974).
E. Manousakis and V. R. Pandharipande, Phys. Rev. B 30,
5062 (1984).
M. Saarela and J. Suominen, Condensed Matter Theories,
edited by J. S. Arponen, R. F. Bishop, and M. Manninen
(Plenum, New York, 1988), Vol. 3, p. 157; (private commu-
nication) .
C. C. Chang and C. E. Campbell, Phys. Rev. B 13, 3779
(1976).
D. K. Lee, Phys. Rev. 162, 134 (1967).
H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686
(1962).
E. Krotscheck, Phys. Rev. B 31, 4258 (1985).
B. E. Clements, J. L. Epstein, E. Krotscheck, M. Saarela,
and C. J. Tymczak, J. Low Temp. Phys. 89, 585 (1992).
C. E. Campbell, K. E. Kiirten, M. L. Ristig, and G. Senger,
Phys. Rev. B 30, 3728 (1984); Condensed Matter Theories,
edited by F. B. Malik (Plenum, New York, 1986), Vol. 1, p.
153.
R. A. Aziz, V. P. S. Nain, J. C. Carley, W. L. Taylor, and
G. T. McConville, J. Chem. Phys. 70, 4330 (1979).
C. E. Campbell and B. E. Clements, in Elementary Exci-
tations in Quantum Fluids, Solid-State Sciences, Vol. 79,

edited by K. Ohbayashi and M. Watabe (Springer-Verlag,
New York, 1989); B. E. Clements, doctoral dissertation,
University of Minnesota, 1988 (unpublished).
C. E. Campbell and E. Feenberg, Phys. Rev. 188, 396
(1969); J. W. Clark, in Progress in Nuclear and Particle
Physics, edited by D. H. Wilkinson (Pergamon, Oxford,
1979), Vol. 2; C. E. Campbell, in Progress in Liquid Physics,
edited by C. A. Croxton (Wiley, New York, 1978).
G. Senger, M. L. Ristig, K. E. Kurten, and C. E. Campbell,
Phys. Rev. B 33, 762 (1986); Condensed Matter Theories
(Ref. 13), p. 158.
K. E. Kurten and M. L. Ristig, Phys. Rev. B 37, 3359
(1988).
K. A. Gernoth and M. L. Ristig, Phys. Rev. B 45, 2969
(1992); K. Gernoth, Diplomarbeit, Univeritat zu Koln, 1987
(unpublished).
G. Senger and M. L. Ristig, Condensed Matter Theories,
edited by V. C. Aguilera-Navarro (Plenum, New York,
1990), Vol. 5, 133; G. Senger, M. L. Ristig, C. E. Campbell,
and J. W. Clark, Ann. Phys. (N.Y.) (to be published).
B. E. Clements and C. E. Campbell, Phys. Rev. B 46,
10957 (1992).
E. Krotscheck, Phys. Rev. B $3, 3158 (1986).
C. C. Chang and C. E. Campbell, Phys. Rev. B 15, 4238
(1977).
S. Battaini and L. Reatto, Phys. Rev. B 28, 1263 (1983).
E. C. Svensson, V. F. Sears, A. D. B.Woods, and P. Martel,
Phys. Rev. B 21, 3638 (1980).
H. W. Jackson, Phys. Rev. A 4, 2386 (1971).
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177
(1971).
J. S. Brooks and R. J. Donnelly, J. Phys. Chem. Ref. Data
6, (1) 51 (1977).
R. Blendowske and T. Fliessbach, J. Phys. Condens. Matter
4, 3361 (1992).


