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II. Temperature dependence and influence of final-state interactions
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The influence of final-state interactions on the electronic Raman scattering by pairs of quasipar-
ticles in disordered superconductors is presented using the formalism developed in a previous paper
[Phys. Rev. B 45, 12965 (1992)]. Below the gap, the effect of impurities on both the position and
strength of the bound state is calculated, while additional modifications of the Raman spectrum
above the gap due to final-state interactions are presented. Previous results for the position of the
bound state by Maki and Tsuneto are obtained, while it is additionally shown that the strength of
the collective mode diminishes rapidly with increasing disorder. While the Raman spectrum above
the gap sharpens with the inclusion of final-state interactions for small disorder, for larger disorder
the effects of final-state interactions become completely negligible. The temperature dependence of
the theory is investigated and it is shown that a non-BCS temperature dependence of the peak in
the Raman spectrum can be obtained for strong impurity scattering.

I. INTRODUCTION

It has been known for some time that when a Cooper
pair is excited to create two single-particle excitations,
residual interactions (final-state interactions, FSI) which
do not contribute to Cooper pair formation mediate the
binding of the two single-particle excitations to create a
bound pair which is orthogonal to the Cooper pairs. The
bound state would then appear at an energy below the
gap. The theoretical work concerning the effects of final-
state interactions (i.e., the residual phonon mediated
electron-electron interactions in channels with nonzero
angular momenta) in both clean®? and dirty®* super-
conductors has been well studied. It has been shown?®
that in the presence of impurities the energy of the bound
state decreases but is undamped. Since there has been
no experimental indication of a precursor excitation with
a strong disorder dependence it is inferred that the en-
ergy of the bound state must be very small and thus the
bound state must lie very close to the gap edge.® How-
ever, a bound state always exists for finite FSI. It was
shown that for clean superconductors FSI alter the spec-
tral weight distribution near the gap edge and thus can
provide a mechanism to obtain symmetry dependent Ra-
man spectra that make it difficult to distinguish between
the effects of gap anisotropy and FSI.2 It is the purpose
of the present paper to discuss the role FSI have on the
Raman spectrum of disordered superconductors.

Recently, a gauge-invariant description of the Ra-
man spectrum for disordered superconductors has been
given.® Special attention was given to the role of
anisotropic mass fluctuations arising from a nonparabolic
conduction band dispersion. It was shown that im-
purities dramatically affect the Raman spectrum, and
symmetry dependent Raman spectra can be obtained
for anisotropic impurity scattering. Further, the posi-
tion of the peak of the Raman spectrum does not co-
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incide with the gap edge for large impurity scattering,
2A7; < 1, where 7y is the mean free elastic lifetime
in crystal harmonic channel L reduced by vertex correc-
tions, i.e., 1/, = 1/7p=0 — 1/71. The channel L is the
symmetry channel corresponding to the point group of
the crystal selected by the orientations of the incoming
and outgoing polarization light vectors. Although Ref.
6 formally included FSI, for purposes of discussion the
main emphasis concerned the role of impurities on the
“pair approximation”” for the Raman response at zero
temperature, i.e., FSI were neglected. The present pa-
per completes the work of Ref. 6, and relies on the exact
eigenstate formalism developed for correlation functions
in arbitrarily disordered superconductors as presented in
Refs. 6 and 8. Therefore, the main technical details of
the calculations can be found in these references and thus
we will be brief.

The plan of the paper is as follows: Section II concerns
the disorder dependence of the Raman spectrum includ-
ing final-state interactions with special detail given to
the shape of the spectrum near 2A, while Sec. III con-
cerns the temperature dependence of the spectrum. In
particular it will be shown that a non-BCS temperature
dependence for the peak of the Raman spectra can be
obtained for large impurity scattering.

II. ROLE OF FINAL-STATE INTERACTIONS IN
DISORDERED SUPERCONDUCTORS

A. w < 2A: Bound states
The differential Raman cross section in channel L can
be written as

d’R 73 o
deg = _;0[1 + n(w)]XL(q,w), (1)

where 9 = mLZ; is the Thompson radius, q and w denote
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the momentum and energy transferred from the light to
the superconductor, and n(w) is the Bose distribution. In
this paper we will consider only small momentum trans-
fers, g¢ <« 1 where ¢ is the dirty-limit coherence length.
The response function ¥

X(q,w) = ([p(q), A(—D]) w) (2)
is formed with an effective density operator
pla) = > (el (k + a)e, (k) (3)
k,o

with electron creation, annihilation operators cT, c. Here
v(k) are the Raman tensor elements selected by the in-
cident and scattered polarization vectors e’, e®:

v(k) =Y e2va,8(k)ep. (4)
a,B
Besides the field terms, the Hamiltonian is written as

H=Hem+ Y e®)ch(K)eo (k)
k,o

+ 3 vimrel (K)e, (')
k,k’,o

+ 3 Viewel (1)l (~K)ey (<K)er (k). (5)

k,k’/

Here V'™P and V are the impurity and effective phonon-
mediated electron-electron interactions, respectively, and
the interaction only acts in the Cooper channel. Addi-
tional terms of the Hamiltonian correspond to electron-
electron interaction in the electron-hole (zero-sound)
channel, which have been considered for clean super-
conductors in Ref. 2, and Coulomb interactions. Since
Coulomb forces only couple to isotropic charge fluctua-
tions, we only need to consider them in the L = 0 chan-
nel. We shall for the time being neglect the zero-sound
channel as well, and return to it at the end of the sub-
section.

The response function X, is given by integral equations
depicted in Figs. 1 and 2 of Ref. 8. The integral equations
are solved by first expanding the vertices and interactions
in crystal harmonics, i.e.,

View = 3 Vi, i (0w (K),
L,L’

and then expanding the renormalized vertex in quater-
nions. It was found in Ref. 6 that ¥ can be given in
terms of three response functions of a superconductor,

Xr(q,iw) = 2CL(q,iw)/[1 + VLCL(q, iw)], (6)

CL (q, iw) = B+,L(q, iw)
+VL A% (q,iw)/[1 — VLB_ L(q,w)]. (7)

B, 1 is the “pair approximation” response, i.e., neglect-
ing FSI, while Ay, and B_ ; represent collective effects.

The position of the collective mode is given by the ze-
ros of the denominator in Eq. (6). For energies below
the gap, this always has a solution for nonzero V. In
the L = 0 channel, the collective mode is the Anderson-
Bogoliubov sound mode,® which is soft and lies in the gap
for neutral superconductors but is lifted to plasmon ener-
gies by long-range Coulomb interactions. The influence
of disorder on the position and residue of the collective
mode in the L = 0 channel has been investigated in Ref.
8. It was found that the only difference from clean super-
conductors is that the speed of the sound mode is simply
renormalized by the disorder. For large g, the mode in
neutral superconductors moves closer to the gap edge and
decreases in strength.

In the case of L # 0 channels, long-range Coulomb
forces do not couple to the anisotropic mass fluctuations
and thus the mode remains in the gap. Further, since
the quasiparticles are not screened (and thus the Raman
spectrum does not vanish for zero momentum), in the
limit of small momentum transfers the role of the wave
number q as the particle-hole width is replaced by the in-
verse of the impurity lifetime 1/7y,, which does not drop
out due to the nonconservation of anisotropic mass ten-
sor in channels L # 0. Consequently, Maki and Tsuneto3
have shown that the mode position strongly depends on
disorder, moving closer to the gap edge for increasing
disorder. Since no precursor excitation has been experi-
mentally seen to have such a strong disorder dependence,
it was inferred that the collective mode must have a very
small binding energy, with broadening making it indis-
tinguishable from the gap edge.® In this subsection, we
check these results and also calculate the residue of the
pole.

To obtain information on the collective mode, we need
the response functions Az, and B4 . The functions Ay
and By 1, are given in terms of integrals in Egs. (18)—(20)
in Ref. 6. The imaginary parts can be obtained analyti-
cally for all frequencies and are expressed in terms of com-
plete elliptical integrals in Egs. (28)—(30) in Ref. 6. The
corresponding real parts for frequencies below 2A can
only be obtained analytically in the limits of small and
large disorder, and for frequencies w = 0 and w =~ 2A.
For arbitrary frequencies the real parts of the response
functions must be first obtained numerically and then
the position of the divergence of Eq. (6) must be found.
However, we are only interested in the physically inter-
esting case of collective modes lying near the gap edge,
and thus we first present analytic results for this energy
region and then present numerical results for other re-
gions later in this section. Analytic expressions for small
(large) disorder, 1/2A7 < (>>)1, and for w = 0 can be
found in the Appendix.

Asymptotically close to the gap edge such that
V31— (w/24)? <€ 3 Alﬁ, the response functions can be

written as

B—,L(wa)
v

= 1/VL=() - Y(QA?L) - NFQA’?"L[E(O{) - F(a)], (8)
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with

Bra(aw) _ ny _ Np2A#[B(a) - F(a)), (9) )
L 1/95 =1/gp=0 — Y (2A7L). (15)
A Since gg and subsequently p;, increases with disorder, we
L—((g’_(i)- = 2AFLaNrF(a), (10) see that the effect of disorder is to exponentially push
L the bound state closer to the gap and to decrease its
with strength. This is similar to the behavior of the bound
1 state in the clean superconducting density response for

7 . .

Y(z) = ~2 N ————arccosh(1/z) for z < 1 large wave vectors ¢q.” Equations (12) and (13) predict
(@) =7Nr V1—2x2 (1/2) ’ that the bound state position is never more than 1% less
(11)  than the gap edge and that the strength of the bound
9 1 . state quickly decreases with disorder from 10~3 for small
Y(z) =7iN. F\/x—g-——_—l[ﬂ/ 2 —arcsin(1/z)] for z > 1. disorder to below 1076 for large disorder. Thus disorder

Here o = w/2A,~y, is the Lth component of the Raman
vertex expanded in either crystal or spherical harmonics,
F and E are complete elliptical integrals of the first and
second kinds, respectively, and Nr denotes the density
of states per spin at the Fermi level. For w < 2A the re-
sponse functions have no imaginary part. Similar expres-
sions for By 1, have been obtained previously,? and a brief
derivation of these results is given in the Appendix.l®
The real parts can also be numerically obtained from the
imaginary parts via a Kramers-Kronig transform. This
procedure is spelled out in Ref. 8.

Using Egs. (8)—(11) we now give analytic results for
the effect of disorder on the position and residue of the
collective mode near 2A. We write the collective mode
contribution to the Raman spectrum as X7 (q,w < 2A) =
Z1Npy26(w — wp), and define the dimensionless FSI pa-
rameter as g, = VL Nr. Expanding Egs. (8)—(10) for
frequencies near 2A we find that for go/gr > 1 the po-
sition of the collective mode is

wo = 2A+/1 — 16e—2rL

while the residue obtained by linearizing the denominator
in Eq. (6) around wp is

(12)

32mpre= 2L
Iy = —————= 13
b T—16e 2%t (13)
Here

_ 95 1
prL =14 207 1+ g3 (1 — 4A7L)

x [(1/gr — 1/g5)(1 + 1/g1) — (2A7L)?],
(14)

acts adversely to the collective mode, in agreement with
Maki and Tsuneto.?

In order to obtain the disorder dependence of collec-
tive modes lying further from the gap edge, we numer-
ically evaluate the real parts of the response functions
via a Kramers-Kronig transform from the analytically
obtained imaginary parts. The results obtained for the
position and residue of the mode for different values of
V1 /Vi=0 as a function of disorder are displayed in Ta-
ble I. Here we have chosen NpVi—g = 0.2. We see that
the collective mode is strongly affected by disorder and
moves closer to the gap edge for increasing disorder. This
effect has been previously presented in Refs. 3 and 4.
Additionally, we see that the pole strength is greatly re-
duced with increasing disorder. Except for strong FSI
(Vi/Vi=o0 > 0.9) the bound state has very little effect on
the spectrum below 2A even for only moderately large
impurity rates, i.e., 1/2A%;, > 0.5, and its influence di-
minishes rapidly for larger disorder. We estimate our
numerical error for the position of the bound state to be
better than 0.1%, while the error for the residue to be
better than 1.0%.1

B. w > 2A: Continuum

We now present analytic results for the response for
frequencies just greater than the gap edge. We can al-
ready obtain the behavior of the response at the gap edge
from Egs. (28)—(30) of Ref. 6. Since the spectral functions
all are constant at the gap edge, the corresponding real
parts must diverge logarithmically. We now demonstrate
this behavior analytically.

It is shown in the Appendix that asymptotically close
to the gap edge such that /(w/24)? — 1 < 575, the

real parts of A and B+ can be written as

TABLE I. Position wg and residue Z, of the pole in )'ZZ (q,w). The asterisk represents less than 0.01% less than gap edge.

ViL/Vi—0 =0.4 V5L/Vi—=0 = 0.5

VL/VL=0 = 0.6

VL/Vp=0 =0.7 VL/Vyp—0 = 0.8 VL/Vip=0 =0.9

2871 wo/2A Z1L wp/2A ZrL wo2/A Zr wo/2A ZL wo/2A Zr wp/2A Zr

0.0 0.998 0.000125  0.990 0.000338  0.974 0.00153 0.937 0.00611 0.857 0.0191 0.684 0.0605
0.1 0.999 <10—4 0.996 0.000191  0.987 0.000967  0.961 0.00375 0.900 0.0137 0.765 0.0458
0.2 1.0 <10~4 0.999 <10—4 0.995 0.000421  0.979 0.00245 0.935 0.0100 0.830 0.0350
0.3 1.0* <10—4 1.0* <10—4 0.998 0.000248  0.989 0.00152 0.959 0.00713  0.879 0.0268
0.4 1.0 <104 1.0 <10~% 0.999 0.000132  0.995 0.000762  0.975 0.00486  0.915 0.0205
0.5 1.0* <10~4 1.0* <1074 1.0* <10™4 0.998 0.000421  0.986 0.00277  0.943 0.0150
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Bl_%;"") =1/Vi—o — Y(2A71) — Np2A7(w/2A)[E(2A /w) — (2A/w)?F(2A /w)), (16)
5*“—%%‘—“-’3 = N — Np2A(0/28)[B@A/w) — (28/w)*F (24 /w)), (17)
AL(Z’ ©) _ 9AF NpF(20/w). (18)

While in general the resulting expression for ¥ is quite complicated, we can simplify the expression by only focusing
on the strong disorder limit, in which Eqs. (16)—(18) are good approximations. Also, as seen in Ref. 6, the spectral
functions in the vicinity of the gap edge become flat for large disorder and thus it is also an acceptable approximation
to replace the spectral functions in Eq. (6) by the value at the threshold:

7(2A) = B” [ (2A) = B{ (2A) = v} NprA7L.

These approximations lead to the following expression for the response for frequencies just above the gap edge for

large disorder 2A7, <« 1:

1-g91/95

— g1 B’

Zh(@yw ~ 20) = 242 NprAFs(1 - g1./g8)? (

where B’ = 2AFLF(2A /w) diverges logarithmically for
w — 2A. For g;, — 0 the “pair approximation” B is
recovered. The effect of the renormalization is that the
spectrum now turns on continuously at the gap edge and
then rises as 1/In%*(w — 2A), in agreement with the be-
havior for the clean case'? and both the clean and dirty
density responses.”® The peak of the spectrum is shifted
away from the gap edge for increasing g, while for in-
creasing disorder the spectral weight in the frequency re-
gion near the gap decreases. Further, the region of the
1/1n? rise becomes smaller for larger amounts of disor-
der. For 2A7F; ~ Tﬁ the turn on of the renormalized
spectrum looks very much like a jump rather than a con-
tinuous rise. At higher frequencies, Eq. (19) shows lit-
tle differences from B ;, Eq. (28) in Ref. 6 for strong
disorder. Thus the differences between the renormalized
and the unrenormalized spectrum is confined to a narrow
range of frequencies close to the gap edge which shrinks
for larger disorder.

Using the analytic expressions for the imaginary parts
of the response functions and the numerically determined
real parts we show the effects of FSI on the Raman re-
sponse for a larger frequency region above 2A in Fig. 1
and for general values of 2A7;. While FSI effects be-
low the gap quickly disappear for increasing disorder as
seen in the previous subsection, its effect can still be seen
above the gap. The numerically derived response shows
a continuous logarithmic rise from the gap edge rather
than a discontinuous jump for all values of disorder and
FSI. However, the effects of FSI only are evident for fre-
quencies close to the gap edge. FSI have little qualitative
effects on the spectrum for large frequencies. For large
disorder the spectrum is dominated by the impurity peak
at a frequency of roughly 1/7;. For small to moderate
disorder, FSI sharpen the shape of the Raman spectra in
the immediate vicinity of the gap edge, but as the value of

g3 B/ g%

2
+ (1 —g1/95)%(1 - gLB’)) ’ (19)

disorder is increased, the spectral weight is shifted from
the region near 2A to higher frequencies rather quickly
and the effect of g7 diminishes. This effect persists long
after the pole below 2A is no longer visible, but even-
tually disappears altogether for larger disorder. In fact
for 1/2A% > 5.0, except for extremely strong FSI, i.e.,
Vi /Vi=o > 0.99, FSI effects can be ignored for all fre-
quencies and the “pair approximation” becomes quite ad-
equate. This is similar to the effects of FSI on both the
clean” and dirty® density responses, which showed that
collective effects quickly lose importance for large q.

In real systems, broadening due to gap anisotropy, in-
elastic quasiparticle collisions, or experimental resolution
will cause the bound state to be indistinguishable from
the Cooper continuum for small binding energies. For
vanishing disorder, the bound state would be seen by ad-
ditional spectral weight below the gap and an effective
overall sharpening of the peak height and reduction of
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respectively.

Imaginary part of Xr(q,w) above the gap for
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spectral weight at large frequencies.? Therefore, for dif-
ferent L channels, different line shapes can be obtained.
Also, it has been shown in Ref. 6 that anisotropic impu-
rity scattering, i.e., 71 different for different L, can also
cause polarization dependent line shapes. We see from
Fig. 1 that disorder reduces the effect of gy and thus only
anisotropic impurity scattering can cause channel depen-
dent spectra in disordered superconductors. Since the
existing experimental data do not indicate a large bound
state, one can conclude that for strong disorder, FSI can
be ignored and its omission in Ref. 6 is justified in this
case. In the following section we will consider the tem-
perature dependence of the Raman spectra in the strong
disorder limit where FSI can be neglected.

III. TEMPERATURE DEPENDENCE OF
RAMAN SPECTRUM FOR LARGE DISORDER

We have seen in the previous section that the role
of FSI diminishes rapidly for increasing disorder. Ne-
glecting FSI, it was shown in Ref. 6 that in the limit of
1/2A7;, > 1 the peak of the Raman spectrum does not
coincide with the gap edge and moves to higher frequen-
cies with increasing disorder. Thus one would overes-
timate the gap energy if one identified the peak of the
Raman spectrum with the gap, as it is in the clean case.
Consequently, one would observe a non-BCS tempera-
ture dependence of the “gap” and it would appear that
there were states below the “gap” even at T = 0. In
this section we shall present a calculation of the Raman
spectrum in a disordered superconductor for T' # 0 ne-
glecting FSI and examine the temperature dependence of
the peak of the spectrum. As pointed out above, these
calculations should be most appropriate for strongly dis-
ordered superconductors.

Neglecting FSI, the Raman spectrum is given by the

imaginary part of By 1, which we take from Ref. 6 as
J

4Aw N 7':—1
Blplaw T =0) =% RO - 2A)wzi =
L
(w—2A)2
(2 me) +

where
JU— 2
L W20+ B 0s) oA

(w—2A)2 +772(1 - 485%) h=oron
L

Here O is the theta function and F, E, and II are complete
elliptical integrals of the first, second, and third kinds, re-
spectively. For all values of 77!, BY (T = 0) is discon-
tinuous at the threshold 2A. For w > 2A, BY ; (T = 0)

approaches the normal state susceptibility, Eq. (23).13
For large disorder, it was shown in Ref. 6 that the peak of
the spectrum moves to frequencies above the gap, similar
to the behavior seen in the large ¢ limit for both clean
and dirty L = 0 channels.®'4 The impurity scattering
rate replaces the role of momentum in L # 0 channels.

Fr2 4+ w? +4Aw
24+ w? +2Aw
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1
B, r(q,iw) = p /de de' @7 (q, € — €')be e (iw), (20)

with the spectral function

EE' — A + ¢¢ f(E') — f(E)

b ) =—FF  wiB-E
_EE' + A —e' 1 f(E') - f(E)
4EE' iw—E—E
+(iw — —iw). (21)

Here, E2 = €2 + A2, f denotes the Fermi function, and
(iw — —iw) denotes the addition of terms which differ
from the ones written only by the sign of w. ®7 is the ef-
fective Raman density Kubo function for noninteracting
electrons formed with the Raman vertex:

élIi (qa w) = Z’n‘bﬁp(q,w)’n. (22)
kp

Within BCS theory, ®7 is the only source of disorder.
For free electrons, the phase-space Kubo function &/
can be expressed in terms of the Lindhard function. The
Raman density Kubo function in the normal state has
been well investigated, since it connects to the Raman
susceptibility via the relation ®/ = x//w, which has
been calculated in Refs. 6 and 13:

~—1
wfp

" w) =y Np—L—. 23
XLns.(@w) =71 Fw2+7~';2 (23)

We rewrite Eq. (20) as the sum of two contributions:
B.,.,L(q,w) = B+,L(q7waT = 0) + B+,L(q,wa T 7é O)
(24)

The imaginary part of Eq. (20) for T' = 0 has been cal-
culated in Ref. 6, and we simply write down the result

8A%w?
(w2 + 77 2)2 — 44202

F(B) + mmm) (25)

The spectrum jumps at 2A to a value v2 NpmrAFy and
then rises linearly with w for large disorder.

We could not find a way to express BY (T # 0) in
closed form by tabulated functions. In the limits of small
and large frequencies, we find

BY L(q,w,T #0) = v NrfLw forw < T,

1
1+ea/T

(26)
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BY 1(q,w,T #0) = 1Z NpfL AK1(A/T)(1 + A/T),

for w > 2A, (27)

where K is a Bessel function. For arbitrary frequencies
at arbitrary temperatures, Eq. (20) must be evaluated
numerically.

We plot B ; for several temperatures in Fig. 2. We
normalized the response to the normal metal expression,
Eq. (23). We see that the scattering intensity for w < 2A
grows for increasing temperature due to the scattering
from thermally excited quasiparticles, while there always
exists a discontinuous jump at 2A(T") due to scattering
via pair creation. The results are qualitatively similar to
the results for the clean case for large q.1%

(a)

L(w.T)us

BY (w.T)se
7
+,

B

1.5

BY [ (w.T) s
BY L (w.T)ys

0.5 - .

0 1 L L 1 1
0 0.5

16 |-(¢)

B! | (w,T)sc
BY (wT)us

1 1

2.5 3

0 1 1

w/?Al('% =0)

FIG. 2. Temperature dependence of the Raman spectrum
normalized to the normal state value, neglecting FSI for
T/T. = 0.3 (highest curve), 0.8, 0.95, and 0.99 (lowest curve),
respectively. Values of 2A(T = 0)7. are (a) 1.2, (b ) 0.6, and
(c) 0.2, respectively.
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In real systems there always exists some form of broad-
ening of the Raman spectrum due to experimental reso-
lution, gap anisotropy, or inelastic quasiparticle collisions
that would smear the discontinuous onset of the spectrum
at 2A. In Fig. 3 we plot the Raman spectrum for various
temperatures for 2A7;, = 1.2 and 0.4 with a temperature
independent broadening width ' = 0.3 x 2A.1% We see
that (1) the spectrum inside the gap fills in for larger
temperatures recovering its normal state Lorentzian be-
havior, Eq. (23), and (2) that the peak does not coincide
with the gap for all temperatures and moves to higher
frequencies for larger values of disorder. In fact for large
scattering, the peak of the spectrum always occurs at the
energy corresponding to the impurity scattering rate (as
it does in the normal metal) which becomes the dominant
energy scale in the system.

We thus see that the identification of the peak of the
spectrum as the superconducting gap (as one would do
in the case of clean superconductors) would overestimate
the gap and lead to a temperature dependence which de-
viates substantially from BCS for large disorder. In Fig.
4 we plot the temperature dependence of the peak wy,(T')
of the Raman spectrum for various impurity lifetimes. It
can be seen that for large impurity scattering rates the
peak position saturates at one value — the impurity scat-
tering rate — for increasing temperatures. For impurity
concentrations such that 2A7; ~ 1, the peak position
decreases as it does in the clean case but gradually levels
off at a nonzero value for T' — T,. For larger concentra-
tions,lthe peak does not decrease at all and stays fixed
at 7 .

(a) T/T. =0.1

N
)

n

Intensity
(arb. units]

Intensity
[arb. units]
.

1
0 1 2 3 4 5 6
wTL,

FIG. 3. Temperature dependence of the Raman spectrum
neglecting FSI for (a) 2A(T = 0)7r = 1.2, and (b) 2A(T =
0)7 = 0.4, using a Gaussian width ' = 0.3 x 2A(T = 0).
Reduced temperatures (T'/T.) are indicated.
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FIG. 4. Temperature dependence of the peak position
wp(T") of the Raman spectrum. Solid line is the BCS result,
while the diamonds (crosses, squares) correspond to values of
2A(T = 0)7r = 1.2 (0.8, 0.4), respectively.

An accurate and parameter free determination of the
gap can be obtained from the static response. An im-
portant consequence of the static limit is that all vertex
corrections vanish, as can be seen from Egs. (6), (7), and
(A6). Thus the response is given solely by B .8 Taking
Eq. (26) and dividing it by its normal metal value (A =
0) we obtain

B} (q,w=0,AT) 9
BY (q,w=0,A=0,T) eAM/T 471’

(28)

and the impurity scattering rate drops out. Thus the ra-
tio of the superconducting and normal responses in the
static are given by a Fermi function and the full tempera-
ture dependent gap can be extracted independently from
disorder and FSI.'7

IV. CONCLUSION AND RELEVANCE TO THE
CUPRATE SUPERCONDUCTORS

We note that channel dependent, non-BCS behavior
for the Raman spectrum has been seen in several cuprate
superconductors.!® Using values of 2AF;, ranging from
0.9 to 1.2, both the temperature and polarization depen-
dencies of the Raman spectrum on YBayCuzO7 can be
fit using the above theory. We note that the polarization
orientations for which the temperature dependence of the
obtained gap showed the greatest deviations from BCS
also showed evidence for a finite density of states below

J

iz dx 1
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the “gap.” We note that this is consistent with the the-
ory, since the “gap” identified from a pure BCS fit will be
greater than the real gap and thus it would appear that
there exists a finite density of states down to energies
corresponding to the actual gap. While the magnitude
of the impurity rate used is similar to the value recently
needed to obtain fits to the changing phonon linewidths
in these compounds,!® we note that our fits require two
polarization gaps with energies of 193 cm™! and 310
cm~!. Also, similar non-BCS temperature dependencies
of the gap have also been seen in infrared conductivity
measurements.2® However, we note that the symmetry
dependent deviations from BCS in the present theory
are tied with the particular case of anisotropic mass fluc-
tuations which couple directly to a Raman probe which
selects many L channels, while an optical conductivity
probe selects only the L = 1 channel. Therefore while a
non-BCS “gap” can be obtained from the present theory
applied to the case of the infrared conductivity, it seems
unlikely that a similar explanation can be used to explain
the channel dependence of the anomalous temperature
dependence of the gap for the optical conductivity.?!

We conclude that unlike the case for clean supercon-
ductors, careful attention must be paid in order to ob-
tain information on the superconducting gap from Ra-
man spectra at large disorder. Similarly, we have shown
that FSI can be safely neglected in the limit of large dis-
order.
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APPENDIX: ANALYTIC EXPRESSIONS FOR
THE REAL PARTS OF A, AND B,

Our starting point in this appendix are Eqgs. (2.20)
and (2.21) of Ref. 8 for the response functions. We first
calculate the static response. From Eq. (2.21a) of Ref.
8 we see that Ar(q,0) = 0. For By r(q,0) we choose
a contour path that avoids a pole in the lower complex
plane as discussed in Ref. 8 and obtain

1

—~2 S
By ,1(q,0) = 7+NFIm/de/A

VI? — A2 te— iz e — iz —iF L

For B_ we can perform the € integral first and then the z integral to obtain

B—,L(qa 0) =1/Vi=o — Y(2A7L),
with Y given by Eq. (11) and

1/Vieo = N. /oo__dx_
0T s VaR— AT
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For B 1 performing the € integration first produces a result of the form 0-oco. To avoid this we perform the z integral
first and obtain

By,1(q,0) = ﬁﬂiz—élm / deleI (i€) + (i/ A, — )I(1/AFy, + ie)], (A3)
where
I(y) = s [w/2 + i arcsin(iy)].
Ny
The remaining integral can be done and we find that
B.,.(q,0) = 7i Nr (A4)

for all values of disorder.!® This is similar to the clean case calculation, which showed that the static response, which
reduces to B, 1, as seen from Eq. (7), has no terms in vrg/A to any order.”

We now calculate the real parts of the dynamical response functions in the limit of large and small disorders.
Instead of first summing over Matsubara frequencies and then integrating over energies to calculate the real parts, it
is convenient to first perform both of the energy integrations by using contours which are alternatingly closed in the
upper and lower planes, respectively, leaving a Matsubara sum which reduces at zero temperature to

) Q,.09_-A2? F1
N, 02 —AZ,/Q2 —A?
Byr(a,w) = LE / dQ— VYOI ZATY , (A5)
VO - A2+ 02 - A2 1R
2 NpwA
Ap(q,w) == LY (A6)

do 1
2 / \/Q?,_ - A2\/92_ - A2 \/91 - A2+ \/QZ — A% 47

with Q4+ = Q + w/2. To make a connection to previous results we note that B, 1, corresponds to —vZ - I, and B_
corresponds to vZ - I7; of Ref. 3. We next change variables of integration by letting Q = z(w —2A)/2 and then expand
the disorder dependent terms and take the real part of the expression. After performing the integral, we find that for

small disorder, 1/2A%;, <« 1, below the gap the response functions are given as

B_(q,w) arcsin(a) Nr E(a)
0z - 1/Vi=o + Nra Tt T 2AT 1_ o (A7)
By (q,w) N arcsin(a) Ng 2 —a?
R e vicar  @Am@ \I—ar @ @), (48)
Ap(qw) _ Nrarcsin(a)  Nr 1
3 Ji-a2 (2A7L)a \1 — a2 Ela) = F(a) ), (A9)

while for strong disorder, 1/2A7y, > 1, the real parts are
given by Eqgs. (8)—(11) of Sec. II.1° Here a = w/2A and
F and E are complete elliptical integrals of the first and
second kinds, respectively. We note that for frequencies
close to the gap edge, Egs. (A7)—-(A9) are not valid since
we have neglected disorder dependent terms which are
more singular in 1 — (w/2A)? than the ones retained. It
was shown in Ref. 6 that the imaginary parts of A, By
are constant at the gap edge and equal

Bffl-,L(qv 2A) = BZ,L(qa 2A)
= Al (q,2A) = Y2 NpmATL.

Therefore, the real parts are logarithmically divergent
at the gap edge. However, we find that the expansion
for the disorder dependent term in Egs. (A5) and (A6)
are also correct asymptotically close to the gap edge,
ﬁﬁ > /1 — a2, and thus the behavior for the response
functions is given by Eqgs. (8)—(11) in this limit. For
w/2A > 1 we can make a similar expansion of Egs. (A5)
and (A6) for the real parts and we arrive at Eqgs. (16)—
(18) which hold in the limit 53— > v/a® — 1. Thus the
response diverges logarithmically at the gap edge from
both directions. This completes the purpose of this ap-
pendix.
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