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The static properties of vortices in an array of Josephson junctions are shown to be significantly
infiuenced by magnetic fields induced by the vortex currents. The energy barrier for vortex motion is
enhanced, nearly doubling for penetration depths on the order of a cell size. Moreover, we find that
correct calculation of the vortex current distribution, the magnetic moment, and the lower critical
field require modeling mutual-inductance interactions between all cell pairs in the array. To make
numerical simulation of the system feasible, an algorithm is derived that is sufficiently efficient to
allow study of large (500 x 500 cells) arrays.

I. INTRODUCTION

Vortices play a central role in determining the static
and dynamic properties of two-dimensional (2D) super-
conductors. Artificially fabricated networks of super-
conducting islands weakly coupled by Josephson junc-
tions are model systems to study the behavior of vor-
tices. These arrays have also been used to study
the superconducting-insulator transition, giant Shapiro
steps, and the Kosterlitz-Thouless-Berezinskii (KTB)
transition.

Studies of vortices in Josephson junction arrays gen-
erally neglect the magnetic fields induced by currents
Howing in the array, i.e., it is assumed that the pene-
tration depth for Aux A is much larger than the size of
the array. ~ For arrays of superconductor —normal-metal—
superconductor (SNS) junctions and for Al arrays of
superconductor-insulator-superconductor (SIS) junctions
that have been studied heretofore, this is a good approxi-
mation, especially near the KTB transition temperature.
However, at lower temperatures in these systems this ap-
proximation may no longer be valid. For example, in
the SNS arrays of Ref. 3 at low temperatures, A is about
15 lattice spacings, and for some of the SIS arrays made
of aluminum, 4 A is about 5 lattice spacings at the low-
est temperatures. Moreover, with the present selective
niobium anodization process (SNAP) all niobium arrays
have been made with A of the order of the cell size. s s

The efFect of induced fields must be considered for an
accurate description of these systems.

Taking into account a finite A entails solving for all
the currents and fields in a self-consistent way. To our
knowledge, only three numerical studies have been re-
ported which consider the effect of induced magnetic
fields (self-field efFects). Nakajima and Sawadar stud-
ied vortex motion in a Josephson array while Majhofer,
Wolf, and Dieterich have investigated the magnetic be-
havior of 2D arrays. In both calculations, only a self-
inductance term was used to describe the induced fields.

Very recently, Dominguez and Jose performed calcula-
tions which demonstrated that it is necessary to include
nearest-neighbor mutual inductances in order to explain
some of the features seen in experiments on fractional
giant Shapiro steps.

Considering only self- and nearest-neighbor mutual in-
ductances may not be sufficient to correctly determine
certain vortex properties. Pearl 0 has shown that for
continuous thin Glms of superconductor the full 3D spa-
tial dependence of the magnetic field in the region of
space outside the thin film changes the vortex structure.
In particular, the effective penetration depth becomes
larger and the vortex currents decay algebraically away
from the center of the vortex, instead of exponentially.

In this paper, we use numerical simulation to investi-
gate how a variety of vortex static properties are affected
by finite penetration depth A, and we calculate the self-
consistent current and magnetic fields from a vortex in a
2D array. We find that in order to calculate the correct
current and field distributions the full 3D behavior of the
magnetic fields must be accounted for by including nearly
all mutual inductance terms. However, to calculate the
energy barrier for cell to cell vortex motion, which was
first shown by Lobb, Abraham, and Tinkham (LAT)z to
be 0.2EJ, where EJ is the Josephson coupling energy,
including only self- and nearest-neighbor inductances is
sufficient. The LAT calculation neglected induced mag-
netic fields. We show that induced fields may increase
the energy barrier substantially above 0.2Eg. Our calcu-
lations also show that the thermodynamic lower critical
field of the array is enhanced when the computation self-
consistently accounts for induced magnetic fields; and
that by using only a self-inductance term to model the
induced fields the lower critical field is overestimated.

Self-consistently determining the currents and fields in
a Josephson-junction array is a difficult numerical prob-
lem as the fields induced by a junction current afFect the
current through every junction in the array. This dense
interaction implies that for an array having N cells, on
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the order of N words of computer memory are required
just to store the mutual inductance matrix, and if a di-
rect approach is used to compute the self-consistent so-
lution by factoring the inductance matrix, on the order
of N operations are required. For example, the induc-
tance matrix of a 100 x 100 array requires more than 400
megabytes of memory to store and on the order of loi2
operations to factor.

To make the computation tractable, we derive a simu-
lation algorithm which combines several numerical tech-
niques with an appropriate problem formulation. When
used to simulate an ¹ ell array, this approach reduces
the storage required to order N and reduces the computa-
tion time to order N log N, making it possible to compute
self-consistent array currents and fields in a 100 x 100 ar-
ray in a minute or so using a scientific workstation (IBM
as6000).

In Sec. II we present a method for analysis of general
networks of Josephson junctions, an example of which is
the square array. In Sec. III we discuss the calculation of
the induetances which describe the magnetic interactions
in the array. Section IV contains a description of the
numerical algorithm we use to analyze the array, and we
present the results of our calculations in Sec. V.

'c+2)g l'

FIG. 1. A possible network indexing for the square
Josephson array.

I, = I, sinqP, (4a)

Since any mesh current entering a node also leaves it,
by expressing the branch currents in this form we insure
that the requirement of current conservation is identically
satisfied at each node of the network. For Josephson
junctions the branch currents are related to the gauge-
invariant phase differences by

II. MESH ANALY'SIS OF THE JOSEPHSON
NETWORK

I," = I, si Pn",

where I, is the single-junction critical current.
For convenience, the flux is split into two parts,

(4b)

In this section, we describe the analysis of networks
consisting of Josephson junctions. First we discuss the
specific example of a square Josephson-junction array.
Next, using the principles and compact notation of basic
circuit theory, 2 we present a method of analysis which
can be applied to very general networks.

The first state variables for the Josephson network are
the gauge-invariant phase difFerences p across each junc-
tion in the network. The directed sum of the junction
phase differences around a loop is then related to the
amount of flux 4 passing through the loop by '

c) P = —2)r + 2)rn
Co

where n is an integer and Co is a flux quantum. For
example, in the square array, each array cell can be asso-
ciated with a loop, or mesh, as shown in Fig. 1, where the
field is taken to be positive out of the paper. Equation
(1) is applied to each mesh in the array so that

—P*, ,+, —g,", +P,*,+q,"+, , ———2~ "+2~n, ,

(2)

The branch (junction) currents, I; ~
in Fig. 1 (n = x or

y), can be related to mesh currents I~ circulating in each
loop previously defined by the phase loop sum, Eq. (2).
For the square array, at mesh (i, j)

(3a)

(3b)

C,ext + C,ind
~)2

where 4"""is due to an externally applied field, and C',."~

is the fiux through the cell (i, j) induced by the currents
in the array. With the usual identification C)'"~/40 = f,
Eq. (2) becomes

@ind
—P,

*
+i —

gP, +P,* + gP+i +2)r " = 2)r(n, ) —f)

(6)

The induced flux C",". in each mesh is calculated by defin-
he inductance L, , ~ ~ such that a mesh current I,

induces a fiux L, , ~ ~
I~, in mesh (i,j ). Thus

The factor I, , ~ ~ is usually referred to as the mutual
inductance between mesh (i, j) and (i', j'), while L, , ~

is the self-inductance of mesh (i, j). We defer the actual
calculation of the inductanees to Sec, III.

Equations (3), (4), (6), and (7) constitute a system of
nonlinear equations which can be solved for the junction
phase differences and mesh currents in the square array.
These equations can be written more compactly by in-
troducing the matrix M which represents the loop-sum
operator defined by Eq. (2). Writing the phase difFer-
ences P as a single vector quantity, Eq. (6) becomes

@1nd
MP+ 2)r = 2)r(n —f)

CQ
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where n is now a vector quantity. We let the vector Ib
denote the branch currents I~ (n = z or y), and the
vector Im the mesh currents I, The general form of
the relation between branch and mesh currents, which is
Eq. (3) in the case of the square array, can be shown to
be12

M Im =Ib

be written as

1MP+, I = 2~(n f),
AJ

M I~ =sing .

(16a)

(16b)

Equation (4) in the vector notation is

Ib = I, sing (io)

Thus the diagonal elements of I are the self-inductances,
and the off-diagonal elements are the mutual inductances.
Combining Eqs. (8)—(11) yields a set of equations to de-
scribe the Josephson array

MP+ LI = 2'(n —f),m (12a)

M I~ = I, sing . (12b)

Note that the branch current vector Ib has been elimi-
nated as an unknown.

Scaling all currents in units of I„all lengths in units of
the lattice constant p, and defining A:—L/pop, Eq. (12)
becomes

MP+ AI = 2~(n —f),
1

Ag

M I~ = sing,

where A~, given by

Cp
A~ =

27l ppIcp

(13b)

(14)

is the effective dimensionless penetration depth for a 2D
system. It should be emphasized that the above ap-
proach to deriving a system of equations applies to gen-
eral Josephson networks, not just square arrays, and that
all self-field effects have been included.

As an approximation to the full inductance matrix L,
we may be interested in the case where only the self-
inductance of each cell is retained when calculating the
induced fields. In that event, we may also write the equa-
tions for the Josephson network in a suggestive form. In-
cluding only the self-inductance Lp of the meshes when
calculating the induced fields corresponds to retaining
only the diagonal entries of L. When only the self-
inductance is retained, the appropriate penetration depth
is the usual Josephson penetration depth for the array,
A J which is given in its dimensionless form by

C'p

2KLpI

For this special case, the general system of Eq. (13) can

while the mesh currents and induced fluxes are related
by Ãq (7)j

@lIld II

III. COMPUTING THE INDUCTANCE MATRIX

In this section we describe the computation of the ele-
ments of the inductance matrix L defined in Eq. (11).
In general, to compute 4',"d in each mesh, the gauge
V A = 0 is chosen so that the vector potential can
be computed from the current density by

A(r) = J(r') dsr'

/r —r'/ (17)

Supcrconducting, island

FIG. 2. The physical Josephson array. Junctions occur at
overlap of the islands.

We could in principle extract an inductance for arbitrary
superconducting structures by self-consistently comput-
ing the current distribution due to an induced phase dif-
ference. The fIux through each mesh is then computed
from the vector potential A given by Eq. (17). For sim-
plicity, we approximate the inductance matrix with that
generated by a normal metal with regions of constant cur-
rent density. In this approximation the current-carrying
portions of the array can be decomposed into a set of
rectangular bars, each carrying a constant current. 7

To see why this is a reasonable assumption, consider
an actual array geometry, as pictured in Fig. 2. The
Josephson array consists of two layers of superconduct-
ing islands, one lying above the other, with the junc-
tions occurring at the overlap of a top-layer island with
a bottom-layer island. Typically the vertical dimensions
of the islands are considerably less than the lattice spac-
ing p. The current in each bar is the current through
the junction geometrically located at the center of the
bar. The approximate geometry is shown in Fig. 3. Each
bar is associated with a branch in the circuit, and the
requirement of no net current flowing into each island is
achieved by enforcing current conservation at the nodes
of the equivalent circuit formed by the bars. Thus the
current density J(r) can be computed from the branch
currents, which are in turn computed from the mesh cur-
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ction
able in the literaturei7 for the integral of Eq. (21) when
n = k. For large ~r„—rg~ it is sufficient to assume that
the current is carried by filaments of vanishing cross sec-
tion, so that the integral is easily performed analytically.
For n g k, but small ~r„—rA;~, the integral in Eq. (21) is
computed numerically. In this paper, we have used the
filament approximation when the distance between bar
centers is more than 5p.

Combining Eqs. (18) and (20), the induced flux in mesh
(i, j) can be written as

C',",'= ) ) L„'„I,, (22)
A6(i,j) k

where the II, are the branch currents. In the vector no-
tation Eq. (22) becomes

FIG. 3. Approximate geometry for calculation of the in-
ductance matrix. The junctions are considered to lie in the
center of the bars. Current conservation is enforced at the
points where four bars meet, which corresponds to the super-
conducting islands of Fig. 2.

O'" = ML Ib ——ML M I~
and thus

L —MLbM&

with the elements of L~ defined in Eq. (21).

(24)

IV. NUMERICAL METHOD

c,ind )
nQ(i) j)

A dl da„ (18)

where the summation index n c {i,j) indicates all those
branches in the mesh (i, j). The vector potential is then
given by

rents through use of Eq. (9). The induced flux C","~ given

by J'A dl around the loop defining the mesh is therefore
a unique linear function of the mesh currents. In this pa-
per, we assume bars with dimensions of length p, width
0.5p, and thickness 0.02@, where p is the lattice constant
for the square array, which is typical for fabricated SIS
arrays.

For an arbitrary loop, we can compute the Bux through
the loop by computing J A dl along each branch (bar) in
the loop, and then summing over the loop's component
branches. To account for each bar's finite cross section,
we average J A dl over the cross-sectional area a„, so
that

In this section we describe the numerical method used
to solve the nonlinear system of Eq. (13). The nonlin-
ear system is solved by Newton's method, which gives
rise to a sequence of linear systems of equations. To
solve the linear systems we use an iterative method,
the generalized minimal residual (GMRES) algorithm.
Each iteration of the GMRES algorithm requires a dense
matrix-vector product whose cost is reduced by using the
fast Fourier transform (FFT). Finally the convergence of
GMRES is accelerated by an FFT-based preconditioner.
As the computational cost of the final algorithm grows
essentially as N log N, where N is the number of cells
in the array, we have been able to study relatively large
arrays.

A. Newton's method

Newton's method to solve the nonlinear system
f(x) = 0 consists of the repeated iteration

dlk daA,
(19)

J(x")6x" = f(x") with —x"+ = x" + 6x"

where J is the Jacobian matrix,
where Iy is the branch current associated with bar k and
the sum k runs over all the bars in the array. Thus, a &f'

J'~(x ) =
Oxg

(26)

A dl da„= ) L„&Ii,
k

with the branch inductances L given by

(20) and the superscript k indicates evaluation of a quantity
at iteration k. The iteration is terminated when

~ ~ f(x")
~ ~,

the norm of the residual, is suKciently small. By defining

b 1 PPLk- aja 4a
dlk dl„da„dak

/r„—rk[
(21)

1fi(I, P) = MP+ AI —2vr(n —f),
Ag

(27a)

In evaluating the Lbj„we distinguish three cases. For
n = k, the presence of the singularity makes it advisable
to treat the integral analytically. Expressions are avail-

f2(Im, , P) = M I —sing, (27b)

then if fi(I~, P) = 0 and f2(I, P) = 0, I,P will be
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yk+1 yk + beak
Ik+1 Ik + bIk (29)

where the matrix C in the Jacobian is diagonal with en-
tries given by

C,, = cosP,". (30)

Assuming C is invertible, we can simplify the system by
using block Gaussian elimination to eliminate the vari-
able bg in Eq. (28). The new system of equations is

i
MC 'MT+ -A

i
[bI ] = —[f, +MC-'f, ] (31)

which by defining

the solution to Eq. (13). Applying Newton's method to
solving Eqs. (27a) and (27b) leads to the iteration

M ~ A beak fi"
—C MT &I~ f2

cell positions. That is, in terms of the L, ,' ~ ~i defined by
Eq. (7)

'»~' = ~t —') ~&
—&'I ~ (34)

C. Accelerating GMRES convergence

Thus the operation of forming the product A x x" is sim-
ply a 2D linear discrete convolution, which can be per-
formed in O(N log N) operations by use of the FFT.zi

Note that because in this paper we use free space bound-
aries (and thus no periodicity of any variable is enforced)
zero-padding techniques are required to obtain a linear
convolution. The remaining part of J, MC iM+, is
sparse so the product MC M x" is inexpensive to com-
pute directly. Furthermore, when the FFT is used to
compute the matrix-vector product, the cost of comput-
ing the dense part (A) of the product is comparable to
the cost of computing the sparse part (MC iM ), so
that there is no computational advantage to neglecting
the mutual inductances of distant cells.

»d f = [f, +MC if,]-
Ag ) After completing k iterations, the GMRES algorithm

as discussed in Sec. IV B requires O(kN log N) operations
to compute the matrix-vector products, and O(k N) op-
erations to construct an approximate solution to the lin-
ear system (see Ref. 19 for details of the cost of GMRES).
Thus it is essential to minimize the number of iterations
k.

becomes

JbI~= f (33)

Since C is diagonal, it will be invertible if cos P, g 0 for
all i, which may not be the case. We insure invertibility of

by modifying its entries to be bounded away from zero.
Such a scheme of approximating the Jacobian may affect
the convergence of Newton's method but the computed
solution will still be accurate if the iteration is repeated
until fi and f2 are small enough.

We can improve the convergence of GMRES by apply-
ing it to the preconditioned problem

(35)APy =b where y=P x

where we solve for y and then calculate x = Py. If
P A i then AP will be close to the identity matrix
I and convergence of GMRES will be rapid. To be an
effective preconditioner, P must also be easy to compute.
In order to choose P, first note that the dominant terms
in A must be the self- and nearest-neighbor inductances.
This can be seen by noting that the physical interpreta-
tion of the entry A,~ of A is the amount of flux through
loop i produced by a current in loop j. Thus, the off-
diagonal entries A,z are generally negative and decay as
1/rs, r being the distance between the loops, while the
diagonal self-inductances A, ; are positive. It is useful to
know that, assuming A, , & 0 and A,~ ( 0, which is the
case for the geometry considered in this paper, then by
conservation of magnetic flux, each diagonal element of
A is greater than the sum of the magnitudes of the off-
diagonal elements in the same row, that is

A;, &) iA,, i (36)

and thus A is positive definite. Secondly, the entries of
C i enter the matrix J = MC iMT + (1/A~)A at the
positions occupied by the self- and nearest-neighbor in-
ductances. When the currents in the array are not large
(few vortices and small applied fields), C is approxi-
mately the identity matrix I. De6ning A to be the part
of A corresponding to self- and nearest-neighbor induc-

B. Solution of the linear system
Although it is possible to form J of Eq. (33), and then

factor J using Gaussian elimination, this is an imprac-
tical approach for even moderately sized arrays, because
the memory and computational requirements grow too
rapidly with problem size. Instead, an iterative proce-
dure which uses an implicit representation of J can dra-
matically reduce storage and computational cost.

One such iterative procedure for solving Eq. (33) is the
GMRES algorithm. is The GMRES algorithm to solve
the general linear system Ax = b constructs a series of
approximations xo, x, . . . , x" to the solution x. At each
iteration GMRES selects the approximation x" from the
space spanned by the vectors (ro, Aro, A2ro, . . . , Ak

in order to minimize the norm of the residual
~

~rk
~ ~, where

the residual is defined by r" = b —Axk. The algorithm is
terminated when the norm of the residual, ~~r" ~~, is less
than some tolerance )[r((

The key step in each GMRES iteration is the compu-
tation of a matrix-vector product, Axk. As the matrix
J = [MC M+ + (1/A~)A] is dense, a direct matrix-
vector product requires O(N~) operations. However, for
the regular arrays considered in this paper, the elements
of the inductance matrix A are a function only of relative



5224 PHILLIPS, van der ZANT, WHITE, AND ORLANDO 47

tances, the preconditioning matrix is given by

P '-= MIMT + A
1

Clearly P i is also positive definite. For the square array,
P has the same form as the matrix arising from a five-
point finite-difference discretization on a uniform mesh of
the Poisson equation with Dirichlet boundary conditions.
It is well known that for a matrix of this form, P2: can
be computed by use of sine transforms. If the size of
the array in one direction is one less than the product
of small primes, this operation can be made very fast by
the use of fast sine transforms.

D. Final algorithm

0.01—

0.001
-60

I

-40
+ +

-20 0 20 40 60

We present below the final algorithm for solving
Eq. (13).

FIG. 4. Currents for a single vortex in a 127 x 127 gael].

Josephson array, with A& = 2.0.

Set k =0
guess I
Compute the Newton residual, fi and f2
repeat (

Compute J, f from Eqs. (30), (32)
Set j=0
guess y = 0
repeat (

Set j = j+1
Choose y~ to minimize ~~r~(~

Compute the residual, r~ = f —JPy~:—use FST to compute P x y~—use FFT in computing J x (Py~)
) ~util llr'll & llrll
Set bI" = Py'
Compute 6P" from 6'I" using Eq. (28)

yk + yak

S t Ir+x II + bIr

Compute the Newton residual, fi" and f2
) until ff f~"

f [ ( e and [ff,"f[ ( e

Return (I",P") as the solution

Two parameters, e and p, deserve note. First, e, the tol-
erance for convergence of the Newton iteration, controls
the accuracy of the computed solution and is generally
chosen in the range 10 4 —10 s. The parameter p links
how accurately the Newton iterates are computed to how
close the Newton iteration is to convergence. Earlier
Newton iterations do not require precise solutions of the
linear system, so

~
~r;„~

~

is chosen to be large then, hope-
fully reducing the time spent solving linear systems and
reducing the overall computational effort. In this paper,
we have generally chosen p = 0.05.

The algorithm's efIiciency makes simulation of large
arrays (up to 10s cells) possible using a typical scientific
workstation. We have found that each Newton iteration
requires only 10—20 GMRES iterations to solve the linear
systems, and indeed the computation time is empirically
observed to grow as N log N with N being the number
of cells in the array.

V. RESULTS AND DISCUSSION
We have calculated single-vortex solutions to Eq. (13)

in arrays of sizes ranging from 31 x 31 cells to 511 x 511

cells, with A~ ranging from 0.5 to infinity (no self-field
efFects). As an initial guess to the single-vortex solu-
tion, we use the "arctan approximation" (as discussed
for example in Ref. 2) to obtain a value for the phase
of the order parameter at each superconducting island.
The initial guess for the junction phase differences P is
obtained by differencing the initial island phases. In all
cases the arrays are taken to have free-space boundary
conditions. In this paper we present mostly results from
study of an array of 127 x 127 cells, which is typical for
fabricated arrays of SIS junctions. All the calculations
described here were performed on an IBM RS6000/540
workstation, using the C programming language. On this
system, finding a single-vortex solution in a 127 x 127 ar-
ray requires about 90 CPU seconds.

A. Single-vortex solution

We first consider the calculation of the current distri-
bution produced by a single vortex located in the center
cell of a square 127x 127 cell 3osephson array. To demon-
strate the inHuence of the self-field effects, we have taken
A~ = 2.0. Figure 4 shows the computed junction currents
along a cross section taken through the center array cell,
parallel to one of the edges, as a function of r, the dis-
tance of the junction from the array center, in units of
the lattice spacing p.

We have computed the junction currents using four
different assumptions about the self-fields: (1) neglect-
ing induced fields altogether (i.e. , taking A~ ~ oo), (2)
including only self-inductance terms in I, (3) including
only self- and nearest-neighbor inductances, and (4) in-
cluding all the terms in L. In interpreting these results,
it is useful to consider analogies with a continuous super-
conductor.

In the limit A~ —+ oo, we expect that a good descrip-
tion of the vortex statics is given by the "arctan approx-
imation" where the current decays as 1/r away from the
core. The calculated vortex current in this limit is shown
as the dotted line in Figure 4. We have confirmed that
the current decay has the correct asymptotic form.

A decay of the current away from the core faster than
1/r can be taken as indicative of self-field effects. The
first approximation to the self-field effect is the inclu-
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(38)

which has the form K, 1/r for r )& A~. Thus
when all mutual inductances are included, we expect the
currents to have a slower algebraic decay, as contrasted
with the fast exponential fall off observed when only the
self-inductance is retained. The solid-line plot in Fig. 4
demonstrates this slower decay. Away from the bound-
aries, we have confirmed the asymptotic 1/r decay ex-
pected from the continuum limit.

The difference between the forms of the solutions with
algebraic and exponential decay occurs because, in the
language of continuous superconductors, including only
the self-inductance is mathematically equivalent to the

sion of a self-inductance term. In this model, the current
circulating in each cell induces flux only in that cell. As-
suming that the self-fields may be described by only a
self-inductance coeKcient is equivalent to assuming that
the magnetic field is directed normal to the plane of the
array. Thus, the appropriate continuum analog of the
Josephson array with induced fields modeled by only a
self-inductance term is a 3D bulk superconductor. In this
case, it is well known that the London vortex solution for
the current density has the form

J(r) = s Ki(r/Al. )
27rppAL

with Kq the modified Bessel function of the second kind
and AL, the London penetration depth. For r )& Al. ,

J(r) exp( r/AI, )/—~r. When the currents in the array
are computed using only the self-inductance in L, shown
as the crosses in Fig. 4, the current falls off roughly ex-
ponentially, as expected. Assuming the current I(r) of
the form I(r) exp( r/A)/—~r, where r &) A, and ne-
glecting the junctions near the core and near the edge,
we have extracted A from the computed solution. We
have found that A = Ag within a few percent, confir-
min that A~ is the appropriate penetration depth for the
Josephson array with induced fields described only by a
self-inductance term.

The next level of approximation of the induced Belds is
to include nearest-neighbor mutual inductance terms in
addition to the self-inductance. As shown by the starred
points of Fig. 4, the addition of the nearest-neighbor in-
ductances does not substantially alter the form of the
current solution. In particular, the current still falls off
exponentially away from the core.

Neglect of self-fields and inclusion of only the self-
inductance result in vortex current profiles which repre-
sent two limiting cases: slow algebraic and exponential,
respectively. For a physically correct model, our calcula-
tions suggest that all the mutual inductances need to be
included. The solid line solution plotted in Fig. 4 shows
the vortex currents in this case. If all the mutual induc-
tances are retained, the appropriate continuum analog is
a thin film. The solution to the London equations for
a vortex in an infinite thin film has been obtained by
Pearl, ~ who has shown that the surface current K, of
a vortex in an infinite thin film can be written in the
approximate form

K.(.) =
2vrppA~& (r/A~) [1 + (r/2A~)]

(39)
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FIG. 5. Magnitude of the magnetic flux of a single vortex
in a 127 x 127 cell Josephson array. Note the sign change that
occurs at r 50.

case of the 3D bulk superconductor, where the field is

only in one direction, parallel to the core. In an actual
array, the magnetic Beld is free to penetrate the free space
above and below the array. When the induced fields are
described only by a self-inductance term, the Beld lines
cannot "turn around" in the space above the array, which
results in a stronger screening effect.

When all the mutual inductances are included in the
problem, the solution displays an additional feature. The
current decreases away from the vortex core, but then
rises near the edge of the array. In order to understand
this effect, consider Fig. 5 which shows the magnitude
of the flux through each cell along the same array cross
section as in Fig. 4. When all the mutual inductances are
included in the problem, the flux undergoes a sign change
near the edge of the array. A mesh current induces a
positive flux through itself, via the self-inductance, but
a negative flux through far-away meshes, via the mutual
inductances. In other words, the mutual inductances rep-
resent the "turning-around" of the lines of magnetic flux,
and thus the Beld outside the array must be of opposite
sign, as is the field near the edge. Since the flux has
changed sign near the edge, the current must increase.
In contrast, when only the self-inductance is included,
the field is forced to zero at the edge of the array. We
emphasize that the sign change of the flux is a result in-
trinsic to both the finite sample size and the inclusion of
the full set of mutual inductances. The sign change of
the flux is also present in a thin Blm of continuous su-
perconductor, as shown in the Appendix where we solve
the appropriate integral form of the London equations in
a disk.

Numerical simulation of the array with all mutual
inductances included reveals that the commonly used
method of images solution is, strictly speaking, invalid
for thin Blms and 2D arrays. We might attempt to ap-
proximate the solution to the Josephson array vortex by
using the continuum limit solution. Image vortices from
an infinite Blm solution could be placed to account for
finite boundaries, as would be done for a finite sample
of bulk superconductor. If the image solution were valid,
we would expect the slope of the current to go to zero
at the edge (as it does when no self-fields are included in
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the problem). However, when all mutual inductances are
included the computed solution is qualitatively different,
as the current rises and the lux changes sign near the
edge.

B. Energy barrier
We next consider a generalization of the energy bar-

rier calculation first performed by Lobb, Abraham, and
Tinkham. This calculation considered the energy dif-
ference AE between a vortex centered in a cell, and a
vortex centered on a junction, as shown in Fig. 6. AE
was taken to be the barrier for cell-to-cell motion of the
vortex. The original calculation was performed in the no
self-field limit, A~ ~ oo, and the relevant energy was
strictly the Josephson supercurrent energy

EB = ) Eg(1 —cos P)

The calculated energy barrier was found to be AE
0.2EJ for a large square array.

We have performed a similar calculation in the 127 x
127 array, where we have accounted for self-field effects
so that the magnetic energy E must be included in the
energy E = E, + Em . For a system of current loops
E~ =

2 P, . I,L,~ I~', where L,~ is the mutual inductance
between loops i and j, with currents I, and I~ flowing
in them. In units of the Josephson coupling energy,
Ej = I,c o/2vr, the magnetic energy can be written as
the vector dot product

2Ag

Figure 7 shows the calculated energy barrier AE, ex-
pressed in units of EJ as a function of A~ . In the limit
A~ ~ oo, we obtain LE = 0.199EJ, in agreement with
the LAT calculation. The energy barrier increases as A~
decreases, which is a result of the increased localization of
the vortex by the self-field effect. We note that including
all the mutual inductances has a relatively small effect on
this calculation. As can be seen from the crosses in Fig. 7,
a nearest-neighbor approximation of the full inductance
matrix gives good results. This is not surprising, since

FIG. 7. Cell-cell energy barrier AE in units of the Joseph-
son energy, as a function of Az in a 127 x 127 cell Josephson
array.

we expect that properties of the vortex which depend
most strongly on the structure of the vortex near the
core will be less affected by the inclusion of the mutual
inductances, while properties that are related to longer
length scales or the finite size of the array (such as the ef-
fects of applied fields and currents) will be more strongly
affected.

A very simple model gives a good description of the
effect of self-fields on the energy barrier. It is reasonable
to assume that the maj or differences between a vortex
centered in a cell and a vortex centered on a junction
half a lattice spacing away occur near the vortex cen-
ters. We assume that the junction phase differences near
the vortex center are accurately described by the "arc-
tan approximation. " Consider a vortex in the center of
a cell, as shown in Fig. 6. For purposes of the energy
barrier calculation, we assume that the energy is due to
the Josephson energy of junctions 1, 3, 4, and 6, plus
the magnetic energy due to the circulating current in the
cell.

Ecenter = EJ (4 —cos Pr —cos Ps —cos P4 —cos Ps) + 2 LI

(42)

where L is the self-inductance of the cell. In the "arctan
approximation" the phase differences are all ~/2 so that
the circulating current is I,. Thus the energy for the
vortex centered in a cell is

Ecenter = 4EJ + 2 LIc

In the high-energy state, the vortex is centered directly
on the junction labeled 4 in Fig. 6. To calculate the
energy of this configuration, we consider the magnetic
energy due to the self-inductance of both cells, the mag-
netic energy due to mutual inductance between the cells,
and the Josephson energy of junctions 1, 2, 4, 6, and 7.
This yields

Ejunctjon = EJ(5 —COS 4'1 —COS p2 Cos p4 —COS ps —Cos p7) + &LIi + 2LIg + MIrI2
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AE' = 0.211Eg + 0.3LI, + 0.8MI, (46)

Expressing the result in terms of the Josephson penetra-
tion depth A J, the energy barrier is approximately given
by

EE 3 1 ( 8M=02 1+ —
2 i

1+—— (47)

The solid line of Fig. 7 shows the analytic approximation
to the energy barrier, Eq. (47). The agreement with the
numerical calculation is surprisingly good.

The form of Eq. (47) tempts us to define an efFective
penetration depth that accounts for the nearest-neighbor
inductances

A~« ~+8M
3 I

(48)

If we assume a form J(r) e "~~ for the vortex currents
calculated in Sec. VA when self- and nearest-neighbor
inductances are included, we find that A,g predicts A

within about twenty percent (note that M ( 0, so the
inclusion of the nearest-neighbor inductances increase the
effective penetration depth).

as an approximation to the energy for the on-junction
vortex, where Ii and I2 are the circulating currents in
the two cells and M is the mutual inductance between
the cells. The "arctan approximation" gives m for the
phase difference of junction 4, and arctan(2) for the phase
difFerence of the other junctions (junctions 1, 2, 6, and
7). The circulating currents must then be I = Ii = Iq =
2I,/~5, so the energy Ejunct;on of the on-junction vortex
ls

+junction = Eg 2+ 4cos + 0.8LI, + 0.8MI,
5

(45)
n ray barr er +E = +junction Ecenter &s

C. Therm+dynamic lower critical Beld

The applied frustration (field) f,i necessary for a vor-
tex solution in the array to be energetically favorable
is strongly affected by self-fields. To calculate f,i, we
calculate the energy of an array containing one vortex
in an applied field, Ev, and the energy of a vortex in
a Meissner-like state with no vortex present, EM. We
define f,i as the frustration where Ei = EM. The up-
per solid curve in Fig. 8 shows the calculated f,i when
only the self-inductance term is included in L, while the
lower solid curve shows f,i calculated using the full in-
ductance matrix. Three distinct regions of behavior are
distinguishable. In the no-self-field limit, A much larger
than the array size, where A is the penetration depth ap-
propriate for the system (either Az or Ag, depending on
whether we include all the inductances or just the self-
inductance), f,i saturates at a value determined by the
system size. At A on the order of the array size, an in-
crease of f,i is observed as A~ decreases, representing
the increasing ability of array currents to screen external
fields. As A~ approaches the lattice spacing, the vortex
becomes essentially localized in a single cell, so that fur-
ther decrease of A~ has diminishing inQuence, and the
increase of f,i slows.

We have attempted to obtain analytic forms for f,i in
the array by using H, i i„ the lower critical field calcu-
lated from the London equations for a continuous super-
conductor of similar size. f,i should be related to H, i I,
given by the London solution by

Hppp ~ci,L,
(49)

C'o

When only the self-inductance is included in the array
calculation, we have taken the analogous continuum sys-
tem of the N x N array of lattice spacing p to be a cylinder
of radius R = i'/2. The problem of a vortex located
at the center of a cylinder can be solved analytically to
give

1O' l

A J ——1.0 3oscpllson Rl I "L)~

ll.ltion

Ip(~~ )Kp(~~) —Kp(—„)
4~A2q Ip(q+ ) —1

(50)
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FIG. 8. f,i in a 127 x 127 cell Josephson array The up-.
per solid curve shows f,i in an array calculated using only
a self-inductance term to describe the self-fields, while the
lower solid curve shows f,i calculated using all mutual induc-
tances. The upper and lower dotted lines show f,i calculated
using London's equations in a infinite cylinder and thin disk,
respectively.

where we associate ( = p/+27r as discussed in Ref. 14,
and Ip and Kp are the modified Bessel functions of the
first and second kind, respectively. The calculated f,i L„
which is shown as the upper dashed line in Fig. 8, is a
good match to the array solution.

No analytic solution is available for the problem of a
vortex in a finite thin film. Pearl gives H, ~ for a vortex
in an infinite film, but his result is only valid for r )) A~
and A~ )) g, and so is not very useful here. Fetter2s
has found a result for H, ~ applicable for A && R. In this
regime, our numerical result is in good agreement with
his calculation, but his solution is inapplicable for A && B.
Therefore, as a check on the array solution, we have used
the numerical solution of the Appendix to calculate f,i
in a thin disk of radius R = Np/2. The result is shown
as the lower dashed curve in Fig. 8, and is also seen to
be in good agreement with the calculated array solution.

The calculation of f,i clearly illustrates the strong ef-
fects of the mutual inductances on the magnetic proper-
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ties of vortices in the array, just as the magnetic proper-
ties of a thin film are very different from those of a bulk
superconductor. In particular, the calculated f,i is much
lower when all the mutual inductances are included, rep-
resenting the importance of long-range interactions, and
is very well predicted by a linear model of the supercon-
ductor. These results are in contrast to those of Sec. V B,
where the energy barrier, a direct result of the nonlinear-
ity of the system, was well predicted by a local model
that includes very few of the mutual inductances.

Another way of calculating f,i is by considering the
magnetic moment. If we calculate the field H, i at which
the energy —ppH, ~ M of the vortex magnetic moment
M in the field equals the energy needed to create the
vortex, io and then obtain f,i from Eq. (49), the com-
puted f,i is the same as in the previously described cal-
culation. The magnetic moment

1M= — dVr x J
2

is strongly dependent on the current distribution, which
in turn is directly dependent on the form of the induc-
tance matrix, as shown in Sec. VA. The magnetic mo-
ment will be higher when all the mutual inductances are
included in the calculation, as the currents decay slower
than when only a self-inductance term is used to model
the induced fields, which explains the lower values of f,i

VI. CONCLUSION

Self-field effects dramatically alter the properties of
vortices in Josephson-junction arrays. Modeling these
effects is a difBcult numerical problem, and we have pre-
sented an eKcient algorithm to examine static properties
of Josephson arrays.

To describe the current distribution of the vortex in
the array, it is necessary to include all the terms in the
mutual inductance matrix so that the 3D spatial vari-
ance of the magnetic field outside the array is correctly
treated. Thus, the magnetic properties of the vortex in
an array, which are similar to the magnetic properties of
a vortex in a thin film, must be calculated using the full
inductance matrix. In order to simulate the arrays us-
ing the full inductance matrix, it was necessary to derive
a simulation algorithm which exploits a variety of nu-
merical techniques and array properties and is eKcient
enough to allow simulation of large arrays.

We have shown that the energy barrier increases with
decreasing penetration depth (increasing self-field ef-
fects), and that to model the energy barrier, the numeri-
cal simulation also reveals that it is sufBcient to only in-
clude self- and nearest-neighbor terms in the inductance
matrix. We have presented a simple analytic expression
which gives a good fit to the numerically calculated en-
ergy barrier.

In addition to the static properties of a vortex placed
in the array, one would also like to study the inHuence
of applied magnetic fields and currents. Such a study
requires a generalization of the formulation presented
herein to use the appropriate thermodynamic potential
so that properties such as the depinning current can be

found. Our preliminary results show that the depinning
current for low magnetic fields is increased beyond 0.1I,
(Ref. 3) as the penetration depth decreases. Due to the
increased complexity of formulating applied current in
the mesh formulation and the usage of thermodynamic
potentials, 2~ we have not addressed the case of current-
driven arrays here.

The key ideas of the algorithm presented in this paper
can be applied to efficient time-dependent simulation of
Josephson-junction arrays. Work is in progress on in-
vestigating the effect of induced magnetic fields on the
dynamic properties of vortices in arrays.
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APPENDIX: SOLUTION OF LONDON
EQUATIONS IN A DISK

In the London description of a vortex in the center of
a disk of radius R, the quantization condition

ppg iJ ' 81+ A ~~ Cp (Al)

must hold for any contour which encloses the vortex. By
symmetry J and A are circumferentially directed, J =
J(r)P, A = A(r)P. In a disk of thickness t, with t « A,
the current density will be uniform through the thickness
of the disk. Defining the surface current K, (r) = tJ(r),
Eq. (Al) becomes

(A2)

dr'K, (r')a(r, r')

where a(r, r') is given byes

a(r, r') = 4'
cos PdP

[1+(r/r') —2(r/r') cosP] ~

(A4)

Substituting Eq. (A3) into Eq. (A2) gives a second-kind
integral equation for the surface current K,(r).

To solve the integral equation numerically, the disk is

Defining a(r, r') to be the P component of the vector
potential evaluated in the plane of a loop of radius r'
carrying unit current, at distance r from the center of
the loop, the vector potential A(r) can be written as
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discretized into N rings of thickness dr = R/N each of
which carries a constant current K, (r, )dr, i = 1.. . N.
For purposes of evaluating the vector potential, the rings
are considered to have vanishing cross section. For a

I

ring's own contribution to the vector potential at the
same r, this prescription is singular, in which case we
take the average of the vector potential at points r+dr/2,
r —dr/2. Thus

A(r, ) = ) a(r, , r~)K, (rs)dx+ &K,(r, )dx [a(r, + dr/2, r~) + a(r, —dr/2, r~)]
3vEi

The final result is a dense linear system of equations in
the N unknowns K, (r;) which can be solved by standard
techniques. The solutions illustrate the same qualitative
features discussed in Sec. (VA) for the Josephson array,
in particular the sign change of the field near the edge of
the disk, with corresponding increase in J(r)

The Beld H, ~ at which it is thermodynamically favor-
able for a single vortex to exist at the center of the disk
occurs when the energy —poH M of the vortex magnetic
moment M in the field cancels the energy U„needed to
create the vortex, Thus

Neglecting the contribution of the core (r ( (), the self-
energy of the vortex2s in the disk can be calculated from

RCo
2

K, (r)dr .U„= (A7)

The magnetic moment is given by

1M=—
2

dVrx J

which, for the vortex in a disk where all the currents How

azimuthally, becomes

U„
+C

poM

R
M = — r K, (r) 2vrrdr

2
(A9)
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