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Carrier transport in mesoscopic silicon-coupled superconducting junctions
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An overview is presented of experimental results on supercurrent Aow and transport at finite voltages
in a well-characterized, sandwich-type superconductor-semiconductor-superconductor junction. Carrier
transport through the structure is found to be dominated by the interfaces. At low temperatures, inelas-

tic scattering is negligible in the intermediate silicon layer and the system is mesoscopic. Application of
a voltage results in a strongly nonthermal carrier distribution in the bulk of the semiconductor. The de-

tails of the distribution depend on elastic and Andreev scattering at the interfaces and are directly
rejected by the measured current-voltage characteristics. The supercurrent is well described by a recent
theory for the proximity eAect that takes into account the reduction of the superconducting order pa-
rameter across the superconductor-semiconductor interface. Supercurrent measurements to identify a
possible interplay between the superconductor phase and the single carrier phase in the semiconductor
are discussed.

I. INTRODUCTION

Josephson supercurrent Aow is a phenomenon studied
in a large variety of superconducting weak-link struc-
tures. The usual Josephson junction consists of a thin in-
sulating barrier sandwiched between two super-
conductors. A well-known alternative is a superconduc-
tor —normal-metal —superconductor (SNS) junction, pro-
posed theoretically by DeGennes' and subsequently stud-
ied experimentally by Clarke. In the original theoretical
description the supercurrent How is understood in terms
of the proximity effect. Superconducting Cooper pairs
diffuse from the superconductor into the normal metal
over a characteristic length which depends on carrier
concentration and elastic scattering. If the normal metal
is thin compared to the decay length, a supercurrent will
Bow. Very recently, interest has revived in several older
theoretical ideas"' in which ballistic transport through
the normal metal Ã is assumed. In this case, phase
coherence in X governs electronic transport and the su-
percurrent is believed to be carried by the discrete excita-
tion spectrum in the normal metal.

A special category of SNS junctions is realized by re-
placing the normal metal by a degenerately doped semi-
conductor Sm. In the SSmS system, the coupling
strength between the superconductors can be changed by
varying the carrier concentration in S, resulting in a vari-
able supercurrent. In principle, transport through Sm
could be ballistic, but such a system has not yet been real-
ized. A promising candidate is a high-mobility two-
dimensional electron gas (2DEG). Recently it was pre-
dicted that a short and narrow ballistic constriction in a
2DEG, carrying a supercurrent I„should exhibit a step-
wise increase of I, with the width of the contact. '

The promise of supercurrent control through variation
of the carrier concentration has resulted in much interest
for the application of SSmS junctions as ultrafast, low-
power, electronic devices. During the last two decades

several semiconductor coupled weak links based on vari-
ous materials and geometries have been reported" that
carry large supercurrents. The operation of a supercon-
ducting field-effect transistor, with a gate electrode con-
trolling the carrier concentration and thereby the super-
current, has recently been demonstrated. ' ' Despite
the successful fabrication, the electrical behavior of SSmS
structures has not been understood.

In this paper we present an overview of experimental
results on supercurrent Aow and transport at finite volt-
ages in a model system consisting of a thin silicon mem-
brane sandwiched between two superconducting elec-
trodes. The system is well characterized and provides a
well-defined current path, allowing for a thorough com-
parison of the measurements to several existing theories
on carrier transport in dirty SSmS systems. It is shown
that the SSmS junction cannot be described as a simple
SNS system, with the degenerately doped semiconductor
acting as a low carrier density normal metal. Instead, the
behavior is dominated by the superconductor-
semiconductor interfaces. As will be shown, inelastic
scattering is negligible and the semiconductor is in the
mesoscopic regime. Application of a voltage results in a
strongly nonthermal carrier distribution in the bulk of
the semiconductor. The details of the distribution de-

pend on elastic and Andreev scattering at the interfaces
and are directly reAected by the measured current-
voltage (I, V) characteristics. We find that the super-
current is best described in terms of the recent theory of
Kupriyanov and Lukichev' that takes into account the
reduction of the superconducting order parameter across
the S-Sm interface. Because the semiconductor is meso-
scopic, an interplay between the phases of the supercon-
ductors and the single electron phase in Sm could occur.
We discuss supercurrent measurements to identify effects
of this nature.

The organization of this paper is as follows. After a
general introduction on the fabrication of membrane cou-
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pled weak links and overall results, measurements of the
voltage carrying state of the junction are discussed.
Next, the behavior of the supercurrent as a function of
temperature, magnetic field, and rf-radiation is treated
and the paper ends with a summary and conclusions.

II. DEVICE FABRICATION AND GENERAL RESULTS

The experimental system studied is shown in Fig. 1. It
consists of a very thin, single-crystalline silicon mem-
brane sandwiched between two niobium electrodes. The
membrane is obtained' by locally etching through a sil-
icon wafer with a degenerately boron-doped surface layer
(doping level about 7X10' cm ). A shallow implanta-
tion is used to ensure that the thickness of the doped lay-
er is about 50 nm. A wet anisotropic etch is applied to
the opposite side. It stops at the doped layer resulting in
a thin slice of heavily doped silicon, which is uniform to
within 10 nm over the entire surface of 900 pm . Scan-
ning electron microscope pictures of broken membrane
edges (Fig. 2) yield the thickness L which lies between 40
and 60 nm for difFerent membranes we have studied.
Since the method is destructive, the thickness of samples
discussed below has not been measured and the average
value L =50 nm is used. The current-carrying area of
the junction is varied by opening a contact window in the
insulating silicon nitride (Si3N4) layer on top of the mem-
brane, using standard photolithography. After opening
the window, the silicon surface is thoroughly cleaned us-
ing standard chemical methods. Subsequently the sample
is brought into a UHV chamber and covered on both
sides with 300-nm electron-beam-evaporated niobium.
The main experimental results reported here do not de-
pend on the junction area, which has been varied from 2
to 600 pm .

The majority of semiconductor coupled weak links
realized to date have either a coplanar or a ridge-type
geometry. " In these geometries the current path is not
well known. The voltage drop along the S-Sm interfaces
is position dependent and the current at finite voltages
takes a diferent path than the supercurrent. These corn-
plications are not encountered in the present system. The
sandwich geometry of this structure ensures a well-
defined junction area as well as a known path length of
the supercurrent in the semiconductor.

In Fig. 3(a) a typical current-voltage (I, V) characteris-
tic for a 35-pm sample, measured at a temperature of 1.2

K, is displayed. A number of samples of various sizes
have been studied, all showing the same general features.
The inset shows the presence of a supercurrent up to I, at
V =0. For high voltages, above 3 —4 mV, a linear slope is
found which intercepts the vertical axis at negative
current values. This phenomenon has been reported pre-
viously in coplanar devices with silicon' and
In„Ga& As (Ref. 18) and in step-edge junctions with a

Nb

A~~A~~XVWZl~l~~~~~~~~X ~:50 nm p+-type Si

. n- or p-type S&

FIG. 1. Niobium-silicon-niobium junction based on a single-
crystal silicon membrane.

FIG. 2. Scanning electron microscope photographs of a sil-
icon membrane cross section. (a) Full cross-section of the part
of the chip containing the etchpit. The width of the pyramidal
pit at the top surface is about 400 pm, the width of the mem-
brane at the bottom of the pit equals 40 p, m. (b) Corner of the
bottom of the pit plus membrane. (c) Detail of the membrane.
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rameter Z =H/fiuF. Z has a simple interpretation: in
the normal state the transmission coeScient of the inter-
face barrier is (1+Z ) . For simplicity, nonequilibrium
phenomena are assumed to be absent in the supercon-
ducting electrodes. In this so-called SINIS structure
(Fig. 4), where I represents the barrier at the interface, it
is further assumed that inelastic scattering is absent in
the normal region N between the two interfaces. This im-
plies that energy distribution functions of carriers in X
are position independent and reflect only the acceleration
due to the applied voltage V. Although in this model the
voltage drop will appear completely across the interface

I

barriers, the energy gain eV upon traversal of the struc-
ture does not depend on the actual spatial distribution of
the potential.

With these assumptions the quasiparticles in N can be
separated into two subpopulations, depending on their
direction of motion, f (E,x) and f (E,x), which diA'er

from the equilibrium Fermi function fo(E). In Ref. 22,
expressions are derived for f (E,x) and f (E,x) for the
case of two identical NS interfaces. Distinguishing the
left and right interfaces by subscripts 1 and 2, respective-
ly, we obtain [using Eqs. (1) and (2) of Ref. 22] the follow-
ing equation for nonidentical interfaces:

[1 B&(—E)Bz(E+eV)]f (E)—A &(E)Az( E+e—V)f (E —2eV)

+ A, (E)Bz( E+e—V)f ( E)+—8, (E)A~(E+eV)f ( E —2—eV)

= A &(E)—A &(E)Az( E+eV—)+B,(E)Az(E+eV)+ T&(E)fo(E)+B&(E)Tz(E+eV)fo(E+eV)
—A, (E)T~( E+eV)f—o( E+eV) .—

This equation expresses f (E) in terms of the same
function with its argument shifted by +2 eV, and prod-
ucts of the known functions A (E), 8 (E), T (E), and
fo(E). In principle, it represents an infinite set of re-
current equations. However, the set can be cutoff be-
cause f (E) will approach 0 for very high energy and 1

for very low energy. Solving the set self-consistently,
f (E) is obtained. Once this function is found, f (E) is

easily calculated from it. The current can be found by
integrating over the distributions

I =2N(0)eu+A JdE [f (E) f (E)]— (2)

with N(0) the normal-metal single spin density
of states at the Fermi level, Uz the Fermi velocity,
and 2 the current-carrying area. Introducing
Ro=1/[2N(0)e uF A], the prefactor in Eq. (2) can be
written as 1/eRp. We note that in our previous Rapid
Communication, as well as in a paper by Flensberg,
Bindslev Hansen, and Octavio, the prefactor has er-
roneously been written as 1/eR~. The normal-state resis-
tance R& is determined by the transition of the interfaces,
as is shown below in Eq. (5). The outcome of the calcula-
tions presented in Refs. 26 and 27 is correct.

In Fig. 5 we have plotted [f (E)—f (E)] in the nor-
mal region (high values are black), which is a measure for
the current flowing at energy level E, for a SINIS struc-

I

ture with Z, =Zz=2. The voltage across the junction
equals 4A /e. The energy scale is plotted vertically,
whereas the density of states in the superconducting elec-
trodes is plotted horizontally (filled states have been shad-
ed). Most of the current fiows at energy levels in N lying
between the two superconducting energy gaps. Levels

eV=4h,

N

x=L

FIG. 4. SINIS structure: SNS structure with nonidentical
barriers I& and I& at the NS interfaces at x =0 and L.

FIG. 5. Current transport through the normal region in a
SINIS structure with Z =2.0 at eV =45 and T =0. The energy
scale is plotted vertically, while the density of states in the left
and right superconducting electrodes is plotted horizontally.
Filled states in the electrodes are shaded. The current density
in N is represented by the blackness (open: zero current, solid:
high current). The high Andreev reflection coefficient at the
gap edges leads to large current contributions of energy levels in
N opposite the edges, just inside the gap.
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opposite the edge of the gaps contribute significantly to
the current. This is due to the fact that for higher Z,
A (E) versus E approaches a 5 function with maximum
value 1, peaked at E =h. The eftect is clearly demon-
strated in Fig. 6(a), where the individual nonequilibrium
distributions are seen to be very sharply peaked at the
four gap edges at e V/6 = —5, —3, —1, and + 1. In this
figure, the Fermi levels of the electrodes are placed at
eV/5=0 and —4. Note that Z& =Z2 leads to symmetric
distributions: f (E)= 1 f (

—E —e—V). The func-
tion tf (E)—f (E)] is represented by the dotted curve
and the shaded area below the curve is a measure for the
current. It is interesting to compare Fig. 6(a) to the situa-
tion when the electrodes are in the normal state (the volt-
age is equal to the voltage applied in the super-
conducting state, eV=4b, ). In this case A (E)=0,
T(E)=1/(Z +1), and B(E)=1—T(E) and the follow-
ing analytic solutions are easily obtained for the normal-
state distributions f

I I I I I I I I I ) I I I I I

fN (E)

fx (E)—

B,Tzfo(E +eV)+ Ti fo(E)
(1 B—, B2)

B2 Tifp(E) + T2fo(E +e V)

(1 B—,B2)

(3)

(4)

As shown in Fig. 6(b), these functions also represent a
nonequilibrium distribution, due to the absence of
scattering in N. Comparing the shaded areas below
[f (E) f (—E)] in Figs. 6(a) and 6(b), we find that the
current in the superconducting state, I, is smaller than
the normal-state current I . In this particular case

S A'.I =0.83I: there is a deficit current in the supercon-
ducting state. This is caused by the combined presence of
the superconducting energy gaps and the interface bar-
riers. The barriers imply a small Andreev reflection
coefficient, and few carriers at energy levels opposite the
gaps penetrate from N into S: mostly they are reflected,
electively leading to a removal of current-carrying levels
in N opposite to the gaps (cf. Fig. 5), producing a deficit
current.

The situation changes drastically when interface bar-
riers are absent. In Figs. 7(a) and 7(b) distributions are
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FIG. 6. Nonequilibrium distributions in N, for a symmetric
SINIS junction with Z& =Z2 =2, at e V =45 and T =0. (a) Su-
perconducting state, (b) normal state. The total current is pro-
portional to the shaded area. For clarity, the function
(f (E) f (E) j has been displaced —vertically by —O. 1 in (a).

~W0
I I I I I I I I I I I I I I I

-10 -8 -6 -4 -2 0 2 4
E/6

FIG. 7. Nonequilibrium distributions in N, for a symmetric
SINIS junction with Z, =Z2 =0, at e V =46 and T =0. (a) Su-
perconducting state, (b) normal state. The total current is pro-
portional to the shaded area.
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plotted for Zi =Z2 =0. In the normal state, the range of
current-carrying energy levels in N is determined by the
difference between the Fermi energies in the left and right
electrode, which equals 4A/e. In the superconducting
state, the range of current-carrying levels, and conse-
quently the current through the structure, is larger.
Thus, an excess current is present. The extra current-
carrying levels are due to the fact that the Andreev
reAection coefficient equals 1, for carriers at energy levels
opposite the gaps, if Z =0. Because the Fermi levels of
the electrodes are at 0 and —4A, the superconducting en-
ergy gaps are at energies between —6 and +5, respec-
tively, —5A and —3A. In contrast to Fig. 5, where very
little current Aows in these two ranges, Andreev
reAection leads to a large current in these ranges. Thus,
the total range of current-carrying levels in X is roughly
from —56 up to +b. The extra levels outside this range
that are shown in Fig. 7(a) reflect that A (E) does not
abruptly fall to zero for energies outside the gap.

A final example is shown in Fig. 8, where we plot dis-
tributions for an asymmetric junction with Z& =2.0 and
Zz=3. 5. In this case the symmetry observed in Figs. 6

I I I I I I I I I I I I I I

and 7 is no longer present. Again, a deficit current is
found.

From Eqs. (2)—(4) the normal-state resistance Rz can
be obtained:

(1+Z +Z )R~= =(1+Z, +Z2)Ro .
2N(0)e vF A

(5)

(6)

For T~O this approaches the simple expression

(1+2Z )
ra 2(1+Z )

(7)

Together with Eq. (2), this equation allows calculation of
the full current-voltage characteristic for a junction with
given R~, with Z, 2 the only free parameters. Thus,
analysis of the I, V curves in terms of the model allows
the extraction of the strength of the interface barriers.

A further comparison to the model can be made
through the differential resistance at zero voltage, ro.
For a single NIS junction it is given by

R~ t)fo(E) +3 —8 E
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The increase of ro compared to the normal-state resis-
tance at low temperatures can be used for a quick esti-
mate of Z for a single NIS junction. A well-known limit-
ing case is the NIS tunnel junction, which corresponds
to Z approaching infinity. The divergence of ro at T =0
which is typical for such a junction is consistent with Eq.
(7). For barriers with finite Z, the Andreev reflection
coefficient 3 (E) is greater than zero, lifting the diver-
gence, Equation (6) predicts saturation of ro at lower tem-
peratures, which can be easily understood. At higher
temperatures, low voltage conduction is mainly due to
tail of the equilibrium Fermi distribution in the supercon-
ductor. The tail extends to energies outside the gap, cor-
responding to the presence of filled states above, and
empty states below the energy gap. These states contrib-
ute directly to the current. When T is lowered, the tails
become smaller leading to an increase of ro. For low
enough T, the tails are much smaller than the gap and
only Andreev reAection contributes to the current. The
temperature dependence of A (E) is governed through
that of b, (T), leading to saturation of ro.

For the SINIS system the value for ro is more difficult
to calculate due to the diverging number of multiple An-
dreev rejections for V~O. Nevertheless, it is expected
that the mechanism described above will also lead to sat-
uration of ro at low temperatures.

-0. 2
-10

I I I I I I I I I I I I I I I

-8 -6 -4 -2 0 2 4
E/6

FIG. 8. Nonequilibrium distributions in N, for an asym-
metric SINIS junction with Z, =2, Z&=3.5, at eV=46 and
T =0. The total current is proportional to the shaded area. (a)
Superconducting state, (b) normal state. For clarity, the func-
tion [f (E)—f (E)] has been displaced vertically by —0.1 in
(a).

B. Comparison with experiments

The characteristic features of the current-voltage
characteristics discussed in Sec. II are predicted by the
OTBK model. Using the results of the previous section,
quantitative comparisons can be made. In Figs. 3(a) and
3(b) calculated I, V and dV/dI, V characteristics at 1.2 K
are shown in addition to the measurements, for
Z j

=Z2 =2.0. The agreement is remarkably good: the
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current-voltage characteristic including the magnitude of
deficit current agrees well with the measurement. In the
differential resistance curve the overall shape of the
subharmonic gap structure is reasonably well reproduced.
In obtaining the theoretical curves, the measured position
of the dip at the highest voltage (n =1) is assumed to

correspond with 2b, (T =1.2 K), i.e., the structure is not
shifted by heating.

The usefulness of the asymmetric model, i.e., Z&WZ2,
is demonstrated in Figs. 9(a) and 9(b) for a different sam-
ple. The closest symmetric fit to the 1.2-K data of the
junction with area 50 pm is found for Z

&

=Zp: 2. 1.
For voltages below 2A the predicted current is too large
whereas Z& =2.0, Z2=3. 5 gives a much closer fit. Physi-
cally, the asymmetry must be related to the fact that the
niobium electrodes are deposited on the silicon mem-
brane in two separate runs. A small amount of contam-
ination of the silicon surfaces just before deposition could
easily lead to differences between the two Nb-Si interfaces
and consequently, different values for Z.

A typical example of the behavior of ro(T) is shown in
Fig. 10. The saturation of the zero-voltage differential
resistance, discussed in the previous section, is clearly ob-
served. The presence of this saturation in all our samples
emphasizes the importance of Andreev reAection for the
conduction process. Although it is valid for a single NIS
junction, we have also shown the theoretical prediction
expressed by Eq. (6). The overall shape of this curve
agrees with the measurement.

In addition to variations of Z, we find variations of the
energy gap: the value for 26(0) derived from dV/dI
characteristics ranges between 2.6 and 2.9 meV. At the
same time, the critical temperature T, of the niobium
electrodes, which is expected to be proportional to b, (0),
only varies between 8.9 and 9.0 K. The values for 2b, (0)
are lower than the literature value for bulk niobium of
3.05 meV. In principle, a lowering of the gap can be
caused by several processes. A large current through the
structure will suppress the superconductivity in the elec-
trodes. However, this effect is unimportant if the
normal-state conductivity of the superconductors O. z is
large compared to 0.&. ' This is usually the case in a
semiconductor coupled weak link (in our junctions, o.~ is

I l I l l l I l ~ l ~
1

~
1

~ l ~ l I3

30-

20-CC

10-

~ I I I ~ I

10

0
0 1 2 3 4

I

5

T (K)
6 7 8 9 10

T (K)

FIG. 9. (a) Current and (b) differential resistance vs voltage
for a 50-pm sample, at 1.2 K. Theoretical curves are calculated
from the OBTK model with Z& =Z, =2. 1, respectively, Z& =2,
Z& =3.5. The temperature dependence of the subharmonic gap
structure at eV =26/n is shown in (c).

FIG. 10. Zero-voltage differential resistance ro as a function
of temperature. For comparison, the theoretical curve for a sin-
gle NIS junction with Z =4.3 is included. Qualitatively, the
predicted behavior agrees with the measurement on the SINIS
structure. At T= T„roapproaches the normal-state resistance,
while at low temperatures saturation of ro is observed.
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at least 2 orders of magnitude smaller than oz). Addi-
tionally, a strong proximity effect between S and Sm
lowers the Cooper pair density, and consequently the en-
ergy gap, in S. This effect is also negligible if o.& «o.&.

'

We have recently confirmed the absence of a lowering of
h(0) through measurements of the critical temperature
T, of very thin niobium films on degenerately doped Si
substrates. The most likely explanation for the low
values for 2b, (0), together with T, 's close to the literature
value of 9.2 K, is the presence of a thin disturbed Nb lay-
er at the interfaces. Due to contamination, some inter-
mixing of Nb and Si, strain, etc. , the electronic properties
of the polycrystalline niobium film at the interface could
differ from the bulk properties. In the derivative mea-
surements the density of states near the interface is
probed, yielding a lowered value for 25(0). At the same
time, the T, measurement probes a property of the Nb
electrode as a whole and yields the bulk value.

Within the OBTK model, Z determines the normal-
state resistance uniquely according to Eq. (5), where
represents the conducting area. Measurements of Rz re-
veal that it is systematically much larger than the calcu-
lated normal-state resistance if 3 is identified with the
geometrical area of the junction. Given the low-Z-values
needed to explain the rich structure of the I, V curves, the
high resistance can only be reconciled by assuming a
smaller area. Apparently, only a small fraction of the in-
terface has the high transparency implied by the Z
values. For the samples discussed above, the values cal-
culated for R& based on the total junction area 3 amount
to only 2 —3 % of the measured value, implying an
effective conducting area 2,& equal to 0.02 —0.03 A.

Clearly, the superconductor-semiconductor interfaces
of our junctions greatly affect their properties. The exact
nature of the barriers poses an interesting question. Gen-
erally, at a metal-semiconductor interface a Schottky bar-
rier is present. For niobium-silicon, its doping depen-
dence has recently been studied. At the high doping
concentration of the present experiment, standard
Schottky barrier theory cannot be applied. This is
demonstrated by a calculation of the barrier transmis-
sion. For Nb on heavily doped Si, transmission probabili-
ties smaller than 0.001 are predicted by the theory.
These values are contradicted by the Z values quoted
above which indicate transmission probabilities 2 orders
of magnitude larger. Additionally, extrapolation to the
carrier concentration of the membrane implies extremely
thin Schottky barriers of 3.3 nm, comparable to the spac-
ing of the doping atoms (2.5 nm). Hence, large statistical
fluctuations must be present, invalidating the use of the
continuum theory.

Another factor determining the nature of the interface
barrier is the possible presence of contamination. This is
related to the last cleaning step of the membrane before
evaporation, during which it is immersed in HF. This
method, which is well known from standard silicon tech-
nology, usually leaves on the order of 0.1 monolayer of
hydrocarbons on the Si surface. Detailed measurements
of the position dependence of the current through a
Au/Si interface imply that an HF dip just before metal
deposition can lead to local current variations of an order

of magnitude, on a lateral scale of =10 nm. The varia-
tions are related to both submonolayer surface contam-
ination and intermixing of Au and Si ~ Although our Si
doping level is much higher and Nb and Si are found to
intermix over only 1 —2 nm, these results illustrate the
sensitivity to surface conditions.

Thus, it seems very reasonable to assume that the tran-
sparency of the interface barriers is strongly position
dependent, which would explain our observation that
only a small fraction of the interfaces is transparent. The
breakdown of the Schottky barrier at high doping con-
centrations is an interesting problem. To study this, a
superconductor-semiconductor structure is a system that
supplies information not accessible by normal-
metal —semiconductor contacts. Series resistance is ab-
sent in the system, and the analysis in terms of the OBTK
model directly yields the transparency of the interface.

For a perfectly clean and homogeneous niobium-silicon
interface the transmission will be less than unity due to
the large mismatch in Fermi momentum between metal
(EF=5 eV) and semiconductor (EF-—0.07 eV). The Z
value associated with this mismatch between two materi-
als can be calculated from a simple equation by Blonder

Z, =Z+
4r

This equation gives the total effective barrier strength as
the sum of an interface barrier of unspecified nature, with
strength Z, and the effect of the materials mismatch in
terms of the ratio r of the Fermi velocities. For the
Nb/Si interface it implies Z = 1.2, which is slightly lower
than the lowest Z of about 2 found for our samples.
Equation (8) presents only a quick estimate: one cannot
really conclude whether the interface transmission in the
Z =2 sample is limited by Fermi momentum mismatch
only, or if additional scattering is present. Nevertheless,
the orders of magnitude agree, and the large difference in
EI; quoted above is representative for most metal-
semiconductor combinations. Hence, it can be concluded
that in SSmS heterostructures momentum mismatch re-
sults in an intrinsic barrier that significantly influences
the current-voltage characteristic. Additionally, it will
have an important effect on the supercurrent.

C. Temperature dependence

Given the good quality of the fits to the SINIS model
at 1.2 K, an unambiguous description of sample behavior
at higher temperatures should be possible, using the 1.2-
K values for Z. As we will show, self-heating plays an
important role at higher temperatures, making a direct
application of the model difficult. Additionally, inelastic
scattering may be present, further complicating the
analysis at elevated temperatures.

The temperature dependence of the position of the dips
in the differential resistance of the asymmetric sample
discussed above is displayed in Fig. 9(c) (dots). The
OBTK model predicts the position of the dips to behave
with temperature as b, ( T). In Fig. 9(c), the measured po-
sition of each individual dip is therefore compared with
the standard BCS temperature dependence of the gap, as-
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FIG. I1. Current-voltage characteristic of the Z& =Z2=2
sample (Fig. 3) at 4.2 K. The kink at 3.5 —4 mV is due to the
superconducting-normal transition of the niobium electrodes.

suming the position of each dip at 1.2 K to be unaffected
by heating. The behavior is similar to that of the sym-
metric sample, shown in Fig. 3(c). The structure at
eV=26 is much more shifted towards lower voltages
than the higher-order dips. A likely cause for this is
heating of the sample due to the power dissipated by the
dc measuring current. This idea is supported by mea-
surements such as shown in Fig. 11, for the symmetric
(Z =2) sample. In other samples similar behavior is ob-
served. At 4.2 K the shifted position of 26 corresponds
to T=5.8 K, implying a temperature rise of 1.6 K at
eV =26. Moreover, the measured I, V characteristic lies
above the theoretical curve for eV higher than 1 —1.5 mV,
also implying an increase of the temperature. The
theoretical curve is calculated using the Z values inferred
from the fit to the SINIS model at 1.2 K. Between 3.5
and 4 mV there is a kink in the I, V curve, corresponding
to an increase in the differential resistance of about 0.4 O.
From separate measurements we know this corresponds
to the added resistance of the electrodes: the niobium un-
dergoes a superconducting-normal transition at the kink.
At voltages slightly above 2A, the dV/dI characteristic
becomes noisy, presumably because the power dissipated
is sufFicient to cause locally active boiling of the He
bath.

Below the A. point of helium, T=2. 17 K, the noise
completely disappears in all the samples. Additionally,
the kink disappears or shifts to much higher voltages.
These phenomena are caused by superAuid transition of
helium at 2.17 K. Below this temperature the heat
transfer from the sample to the bath is greatly im-
proved. 38

From the above observations, we conclude that the
voltage axis in Fig. 11 can also be considered a tempera-
ture axis, increasing from T =4.2 K at V =0 to T = T, at
3.7 —3.8 mV. Consequently, the I, V curve cannot be de-
scribed by a simple model calculation for 4.2 or 5.8 K.
We can attempt, however, to estimate the magnitude of
heating effects.

In the SINIS model, carriers originating from the left
superconductor with energy E traverse the normal region

to arrive as "hot" electrons in the right superconductor
with energy E+eV, where they will dissipate their extra
energy. An upper limit to the temperature rise due to
heating can be calculated by assuming (1) all the heat is
generated in a Nb film of the same size as the window in
the Si3N4 layer (Fig. 1), and (2) direct heat transport from
this film to the He bath is negligible due to the high
thermal boundary resistance between liquid He at 4.2 K
and a metal. The temperature increase 6T due to heat
Row P through an interface with area A and thermal
boundary conductivity a is 5T =P /a A. We estimate
the value of e for Nb-Si to be 1.6 W/Kcm at 4.2 K,
based on Kaplan's theory for the acoustic mismatch be-
tween solids. ' Although this is only a crude estimate,
the order of magnitude is in agreement with values found
for other superconductor-substrate boundaries from heat-
ing in microbridges. ' From this a, together with
P = V XI =9 pW and the junction area 35 pm, we find
AT=16 K for eV=26, at 42 K.

For an estimate of the lower limit to the expected tem-
perature rise we also take into account thermal conduc-
tion within the niobium film. The combination of heat
transfer across the boundaries and thermal conduction
leads to a characteristic thermal healing length rz along
the film, rr=(at/a)', , with tr the thermal conductivity
of the film and t its thickness. With ~=0.2 W/crn K
(Ref. 44) we find rz =19pm. This value implies that heat
is transferred across the Nb film boundary from a much
larger area than the 35 pm used above. From the es-
timated upper value of about 1900 pm for this area,
6T=0.3 K is found, which can be regarded as a lower
limit. This limit might be decreased due to heat trans-
port directly across the film boundary into the He bath.
To calculate the contribution of this process, the value of
a(Nb-He) is required. To our knowledge there are no
measurements of this parameter at T)2. 17 K. Decker
mentions a(metal to helium)=0. 01 W/cm K at T=3 K.
Comparing this order of magnitude to the value for Nb-Si
estimated above, it seems justified to neglect heat Bow
from the Nb film into the bath.

We stress that these limits are order-of-magnitude
numbers due to the large uncertainty in parameter values
and the complicated geometry. The estimate of rz
neglects that on one side of the membrane, outside the
window in the insulating layer, the Nb film has a Si3N4
film as its neighbor rather than silicon (cf Fig. 1).. In ad-
dition to this, a thin disturbed niobium layer at the inter-
faces might lead to additional thermal resistance,
effectively decreasing a(Nb-Si).

An independent check can be made by estimating the
voltage at which the superconducting-normal transition
should take place from the known temperature rise at
e V =25. From Fig. 11 it is known that the temperature
rise 5T = 1.6 K corresponds to P =9 pW. In order to
reach a T, of about 9 K by self-heating, a temperature
rise of 4.8 K above the bath temperature is needed. This
requires P =(4.8/1. 6) X9 pW=27 pW (assuming that
thermal conductivities do not change too much in this
temperature range). According to Fig. 11, P =27 pW
corresponds to a voltage of about 3.9 mV which is close
to the position of the kink.
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We conclude that self-heating due to the dc measuring
current distorts the I, V characteristics. The presence of
heating is indicated by a number of experimental results.
The temperature rise inferred from the I, V curves is not
contradicted by rough estimates for upper and lower lim-
its from simple model calculations. A realistic, quantita-
tive analysis is difficult due to the complicated geometry
and the uncertainty in the thermal boundary resis-
tances.

D. Inelastic scattering
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FIG. 12. Current-voltage characteristics of a 48-pm' sample
at 1.2 and 4.2 K. Theoretical curves are obtained from the
QBTK model. At 4.2 K, the upward shift of the measured I, V
curve at high voltages may be indicative of inelastic scattering.

From the measurements shown in Figs. 12 and 13,
rather high interface barriers are inferred. As we will
demonstrate below, this may lead to a relatively large
influence of inelastic scattering. The measurements are
not very well described by the symmetric OBTK model.
Below eV=26 the wrong curvature is predicted by the
model. Especially below e V =6 the calculated
differential resistance is much too low. Although the
asymmetric fit is not as good as in previous figures, im-
provement is obtained compared to the symmetric pre-
diction: a large increase in dV/dI at low voltages is im-
plied. Theoretical curves for Z& =2.5 and Zz=5. 6 are
shown, but comparable fits are obtained for slightly
higher Z~.

We consider the possibility that the lesser quality of
the fits in Figs. 12 and 13 is due to the presence of inelas-
tic scattering. In Ref. 20, the inelastic-scattering length
in heavily doped n-Si is found to be 0.4 pm at 1.2 K, 0.18
pm at 2.4 K, and 0.1 pm at 4.2 K. These values imply
that at temperatures above a few K inelastic scattering
becomes increasingly important. A simple model to in-
vestigate the influence of inelastic scattering in the nor-
mal metal in a SINIS structure has recently been present-
ed. ' High-Z values are assumed at the interfaces,
effectively suppressing Andreev reflection. Inelastic
scattering is taken into account through a relaxation
model. Carriers are injected from the left superconduc-
tor into N at a rate I ~. In N, there is competition be-
tween extraction of the carriers into the right supercon-

0 I I

2
V (mV)

FIG. 13. Differential resistance vs voltage for the junction
from Fig. 12, at T = 1.2 K.

ductor at rate I z and energy relaxation towards the equi-
librium distribution at rate 1/7g. 'T~ is assumed not to
depend on energy or on the degree of nonequilibrium.
The injection or extraction rate I"~ is defined as

1
I ~ =—

X(0)e R,L

with the R, the contact resistance and I. the thickness of
the normal layer. Within the context of the QBTK mod-
el, R, equals R&A/2 with A the junction area. If I z is
smaller than about 0 01/rz, re.laxation dominates and the
equilibrium Fermi distribution is present in N. However,
if I ~ & 10/~z, a strong nonequilibrium distribution is
present in N, leading to a reduced subgap current and a
current deficit. The latter result is analogous to that of
the OBTK model for high Z. For values between about
0.01 and 10, the degree of nonequilibrium in N increases
rapidly with I ~~+. Thus, I ~~@ is a measure for the de-
gree of nonequilibrium in N.

Using ~E from Ref. 20 and the effective conducting
area A, tr (obtained as discussed in Sec. III B), we estimate
I"z~& ~40 at 1.2 K and «2 at 4.2 K for the sample of
Figs. 12 and 13. These values imply that at 4.2 K the
sample is not in the strong nonequilibrium range, but
rather in the intermediate range, where the temperature
dependence of ~F strongly influences the distribution in
N. An additional indication for this is the fact that the
measured I, V characteristic at 4.2 K lies entirely above
the theoretical curve. This behavior is predicted by the
model of Ref. 17. As was shown there, increasing inelas-
tic scattering for a given I z results in an upward shift of
the I, V curve, towards the equilibrium curve (with zero
deficit current) for 2 NIS tunnel junctions connected in
series. Due to the relatively high barriers, the I, V curve
at 1.2 K might also be affected by inelastic scattering.
Although this idea seems to be contradicted by the I ~~+
value calculated above, it is supported by the absence of
subharmonic gap structure with n ~ 3. Due to the in-
creasing number of traversals of the silicon, higher-order
SGS will be increasingly weakened by inelastic scattering.
The values used for ~z used in this section have been ob-



5180 W. M. van HUFFELEN et al.

tained for n-type silicon rather than p-Si, hence the num-
bers in this analysis should be taken as an indication for
the strength of the effect only.

It is interesting to note that, contrary to other samples,
in Fig. 12 no direct evidence for heating is found: the
voltage corresponding to 2A at 4.2 K is consistent with
the BCS behavior of b, (T) within about 0.1 K. Compar-
ison to other samples shows that this is not completely
due to the lower power P dissipated: at e V =25, P equals
—, of the power dissipated in the sample shown in Fig. 11.
As the junction areas are roughly equal, a temperature
rise of a few 0.1 K would be expected. Possibly, inelastic
scattering in the silicon leads to transfer of the carrier en-
ergy to the phonon gas in the membrane, instead of to
phonons in the electrodes (cf. Sec. III C). Thus, the ex-
cess energy Aows easily away from the junction region
into the surrounding bulk of the chip, rather than across
the interfaces into the electrodes, causing no gap depres-
sion.

For a more quantitative approach to inelastic scatter-
ing in a SINIS structure it would be very useful to in-
tegrate the relaxation model with the OBTK description.
A first step towards this goal was recently presented by
Nitta et al. for the case of Z =0, i.e., absence of inter-
face barriers. For this case, which can be solved analyti-
cally, strong smearing of higher-order SGS is predicted.
Comparable results have been obtained by Kiimmel,
Gunsenheimer, and Nicolsky for SNS junctions without
interface barriers, using a different approach. The au-
thors solve the time-dependent Bogoliubov —de Gennes
equations in terms of wave packets describing the carrier
motion and obtain I, V characteristics containing subhar-
monic gap structure and an excess current. The behavior
predicted for increasing I ~ ~@ is similar to that observed
in Figs. 12 and 13: the subgap structure is smeared by in-
elastic scattering, and at high voltages the I, V curves
move towards the equilibrium characteristic.

E. Silicon Fermi level
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FIG. 14. Doping profile in silicon before membrane etching.
The profile is obtained using SUPREM III to model the low-
energy implantation used plus the subsequent anneal at 800'C.
Solid curve: anneal in the presence of a 2 —3-nm silicon dioxide
surface "capping, "dotted curve: anneal without capping.

for voltages on the order of a few times EF /e. In analogy
to tunneling measurements, a maximum in dV/dI is ex-
pected when the voltage drop over one NS interface is
equal to EF. Consequently, in a junction with V equally
distributed over both interfaces the maximum will occur
at e V =+2EF, neglecting a possible voltage drop over the
bulk silicon. For a strongly asymmetric junction, such as
the one discussed in the previous section, the situation
changes drastically. For negative V, the maximum
should occur at V slightly higher than EF, while for the
opposite polarity it occurs at eV))2EF (Fig. 15). The
polarity of V corresponds to the top surface of the sample
(Fig. 1). Thus, measurements at relatively high voltages
are expected to confirm the presence of asymmetry that
was originally inferred from low voltage measurements.

This is illustrated by Fig. 16, in which we show the
asymmetric characteristic found for the sample discussed

Zl Z2 Z)

In addition to temperature-dependent effects, the band
structure of the intermediate silicon could, in principle,
complicate the SINIS model analysis of the junctions. In
the model, the density of states of the intermediate ma-
terial is assumed to be structureless. This is justified by
comparing the Fermi energy EF to the voltage range of
interest. EF is defined as the energy difference between
the valence band edge and the Fermi level of the degen-
erate silicon. Based on simple free-electron parameters,
we calculate EF =71 meV, implying that for voltages of a
few millivolts the density of states is essentially constant.
EF is calculated from two parameters: the density-of-
states effective mass md* =0.87 and the carrier concentra-
tion n =7X 10' cm . Effective masses are discussed in
some detail in Sec. IV B. The average concentration n is
derived from the doping profile shown in Fig. 14. The
profile is generated by SUPREM III, a simulation program
for semiconductor processing.

An experimental determination of EF should be possi-
ble through the measurement of the differential resistance

Ec Ec

Sm

Ev

F ——-ly2 &&
-- EFE Vgy+.---t yg

FIG. 15. Voltage drop in an asymmetric SSmS system. The
energy is plotted vertically, the density of states horizontally.
On the energy scale shown, the density of states is taken to be
constant. Shading indicates filled states. In the intermediate @-

type semiconductor, the conduction band edge, valence band
edge, and Fermi level are indicated by Ec, E&, and EF. Because
Zi )&Z2, most of the applied voltage V= V&+ V2 drops at the
left interface. In the left picture a negative voltage is applied to
the left electrode and a maximum in dV/dr occurs because the
Fermi level of the left electrode is opposite Ei.. In the right pic-
ture the polarity is reversed and the maximum will occur for
voltages much greater than ( V& + V& ).
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FICx. 16. Dift'erential resistance at high voltages. The struc-
ture close to V =0 is due to the superconductivity of the niobi-
um. The maximum at = —50 mV corresponds to the Fermi lev-
el of the semiconductor.

in the previous section. For V relatively close to zero,
structure due to the superconductivity of the niobium
electrodes is present. At eV=10 mV there is a noisy
superconducting-normal transition. As discussed above,
there is no indication for the presence of heating in the
junction itself. Thus, the transition is presumably caused
by localized heating on the chip some distance away from
the junction. Its origin lies probably in the series resis-
tance at the electrical contacts to the chip, which are
made through springcontacts pressed onto its top and
bottom surfaces. Above the superconducting-normal
transition, the structure in dV/dI is related to the prop-
erties of the semiconductor. Taking into account the Z
values for the sample, the maximum present at about—50 mV corresponds to a Fermi energy of =42 meV, for
the top surface.

This value is significantly lower than the calculated
value of 71 meV. The latter value would be too large if
the actual carrier concentration were lower than the con-
centration derived from Fig. 14. However, EF=42 meV
corresponds to n =2.6 X 10' cm which is unrealistical-
ly low: the etchant used to produce the membrane (cf.
Sec. II) does not stop at boron concentrations below
5-6X10"cm '.

The calculated EF wold also be too large if the effective
mass were taken too small. However, to obtain EF =42
meV, md*=1. 47 is required which is an unrealistic value
for degenerate p-Si. Moreover, the calculated EF is
confirmed by tunneling measurements by Cullen, Wolf,
and Compton. Their Fermi energy versus boron doping
measurements on degenerately doped silicon indicate
EF =70—80 me V for n =7 X 10' cm, in agreement
with our value.

These considerations lead to the conclusion that what
is measured must be the Fermi level close to the top sil-
icon surface, instead of the average bulk value. This im-
plies a relatively low boron surface concentration. This
might be due to outdiffusion: during the high-
temperature step (800'C) of the fabrication process the
dopant escapes from a very thin surface layer of the sil-

icon wafer. Outdiffusion is not very well characterized:
profile measurements are rather unreliable very close to
the surface and the boron profiles found in the literature
are not always consistent with each other. In some cases
secondary ion mass spectroscopy (SIMS) seems to indi-
cate a relatively low dopant concentration, after an an-
neal comparable to ours, close to the surface. The pres-
ence of a native oxide of 2 —3 nm on top of the silicon
wafer during the anneal poses an additional complication.
Thus, the exact behavior of the dopant very close to the
surface is dificult to predict. The significance of
outdiffusion could be tested by annealing without a native
oxide. Because diffusing boron atoms prefer silicon diox-
ide to silicon, this should result in less outdiffusion (illus-
trated in Fig. 14) and, consequently, a higher Fermi ener-
gy.

The difference in boron surface concentration implies
an intrinsic asymmetry in the junctions. However, Eq.
(14) implies a difference in Z between top and bottom in-
terfaces of only 25%, which is small compared to the
values found in practice. Consequently, this difference
plays only a minor role in determining the asymmetry of
the junction.

IV. SUPERCURRENT BEHAVIOR

The key results of Sec. III are that the SSmS structure
studied is a mesoscopic system, and that its behavior in
the voltage-carrying state is to a great extent determined
by the barriers at the superconductor-semiconductor in-
terfaces. Both findings have important consequences for
supercurrent transport.

The rnesoscopic character leads to the observation
that, in principle, two parallel channels for supercurrent
transport are present. The first one is described by con-
ventional theory for superconductivity in nonhomogene-
ous systems. In systems with the elastic-scattering length
l of the intermediate normal layer much smaller than its
thickness the theory is usually expressed by the linearized
form of the Gorkov equations or by the Usadel equa-
tions. ' The corresponding physical picture is that of the
proximity effect: the pair correlation between electrons
present in the superconductors diffuses over a charac-
teristic length into the intermediate material. In clean
systems, the Bogoliubov —de Gennes equations are often
used to calculate I, . Phase coherent supercurrent trans-
port through a clean normal metal has been studied
around 1970 by Kulik and Bardeen and Johnson. As-
suming unity Andreev reAection probability at the NS in-
terfaces, constructive interference between Andreev
reAected electrons and holes was found to lead to forma-
tion of bound states carrying the supercurrent through
the normal metal. Technological progress with high-
mobility semiconductors and mesoscopic structures has
recently led to an extension of these ideas. The excitation
spectrum in N has been calculated using a Green's func-
tion technique, a scattering matrix formalism originally
used for electron transport in normal metals and semicon-
ductors, ' or a relaxation time model. Although these
two physical pictures for supercur rent transport look
rather different, they represent two limiting cases
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(diffusive transport or ballistic transport) of the same un-
derlying theory.

The second channel for the supercurrent is based on
weak localization effects in the intermediate layer.
Adding contributions of different phase coherent scatter-
ing paths and taking into account phase shifts due to An-
dreev reflection a supercurrent is found which is funda-
mentally different from the first channel. We discuss this
current component in Sec. IV B.

The elastic length in the silicon is about 5 nm, which is
much smaller than the membrane thickness L =50 nm.
Consequently, carrier transport is diffusive in the system
and it is expected that the supercurrent is adequately de-
scribed in terms of the Usadel equations (taking into ac-
count the presence of interface barriers). Additionally,
there might be a contribution due to weak localization
effects.

AD

2~kT
(10)

with diffusion constant D =UFl/3 and UF the Fermi ve-
locity. For future use, we write Eq. (10) in terms of semi-
conductor parameters to obtain gs . Based on a free-
electron model, UF can be obtained from the carrier con-
centration n, density-of-states effective mass md, and val-
ley degeneracy U:

defined through the condition l «g, with l the elastic
mean free path. The normal-metal coherence length g~
is an important parameter determining the magnitude of
I, in many proximity effect theories for the critical
current in SNS weak links. It represents roughly the
depth over which the pair correlation penetrates into X
and is given by

1/2

A. Proximity eSect

1. Kupriyanov Lukiehev -theory (Ref. 15)

After the pioneering work of de Gennes' in the 1960s
many theories for the supercurrent through a normal-
metal-coupled weak link have been proposed. Most of
these have a restricted range of validity, due to one or
more of the following assumptions that have been made.
(1) The normal-state parameters of N and S are identical.
(2) The transmission of the NS interface equals unity. (3)
The temperature is very close to T, . (4) The thickness of
1V is either very large or very small compared to gz. The
coherence length g~ is defined below in Eq. (10).

Recently, Kupriyanov and Lukichev proposed a theory
for the critical current through SNS and SS'S junctions
that is not subject to the above restrictions. ' As we will
show, it is especially suited to describe semiconductor
coupled weak links. The authors have used the general
Eilenberger equations in the immediate vicinity of the in-
terface to find boundary conditions at the SN or SS' inter-
face, valid at any temperature and at any interface
transmission. Solving the Usadel equations, the critical
current through the weak link has been obtained for arbi-
trary temperature, interface transmission, and normal-
state parameters. To arrive at this result, the suppression
of superconductivity in the electrodes due to the proximi-
ty effect and the current through the structure are as-
sumed to be small. As we have argued in Sec. III B, these
assumptions are valid for the present experiment due to
the large difference in resistivity between Sm and S.

Due to the inclusion of interface barriers of arbitrary
strength, the Kupriyanov-Lukichev (KL) theory treats a
SINIS structure, rather than a SNS structure. This
makes it also well suited to describe SNS junction based
on high-T, materials, in which interface barriers are
often present.

The theory is valid in the dirty limit, in this case

UF—
md

The elastic mean free path is determined by the conduc-
tivity effective mass m,* and the drift mobility p:

mc pUFl=U~ =F el e
(12)

ks = A m,*p

6~ek Tmd

1/2

(3' n/v)' ' (13)

As will be discussed in Sec. IV A 3, this expression differs
importantly from expressions for the coherence length
used previously.

In KL theory, the magnitude of I, is determined by the
interface transmission and the normal-metal (or semicon-
ductor) coherence length. These two quantities are
parametrized through the dimensionless I, which is
equal to the ratio of the interface resistance to the bulk
resistance of the intermediate material, and p (T) which
is defined as

I co

2$(T, ) mkT,

1/2

(14)

in which the Matsubara frequency ~ is defined as
co=(2n +1)mkT, n =1,2, 3. The expression for the criti-
cal current is

In the last two equations, a distinction is made between
effective masses, corresponding to different physical as-
pects of the semiconductor. The density-of-states
effective mass is relevant for calculating the Fermi energy
and related quantities, whereas the conductivity effective
mass is required for transport phenomena. Substituting
Eqs. (11) and (12) in Eq. (10), the semiconductor coher-
ence length (in the 3D case) is expressed as

4~kT~(T)' P.('+2")
I,(T)=

eR& [ro +b, (T) ][(1+41 P )sinh(2P„)+41P cosh(2P„)]
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when the boundary transparency is not too large. This
"small transparency limit" is defined through

b(T) «1+2p(T)I tanh[p(T) j . (16)
mkT

Equation (15) represents a very general expression for the
critical current through a SNS or S-Sm-S system. Several
well-known equations that have been obtained earlier can
be derived from it as limiting cases. For T very close to
T, the condition expressed by Eq. (16) is also met for
large boundary transmission, and in this limit Likharev's
result for SNS variable thickness bridges can be
rederived, as well as de Gennes' expression for I, . ' For T
approaching zero the condition cannot be satisfied and I,
has to be found numerically instead of through Eq. (15).
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FICx. 17. Critical current vs temperature for two different
samples (dots) together with predictions of Kupriyanov-
Lukichev theory (solid curves, see text). For clarity, the
L//=2. 3 data and predictions have been displaced upwardly
by 50 pA.

2. Comparison with experiments

We compare our measurements with Kupriyanov-
Lukichev theory. In Fig. 17, the critical current I, is
shown as a function of temperature T, for two junctions
with area 3 of 120 and 150 pm (hereafter referred to as
Sl and S2, respectively). The supercurrent persists up to
the critical temperature of the niobium electrodes and in-
creases rapidly when T is lowered. The predictions of the
KL theory are shown as solid curves. The measurements
are very well described by the theory over the whole tem-
perature range. The theoretical curves are obtained from
Eq. (15) by adjusting the values of both L/g(T, ) and I .
The following values are found for S1: I =79,
L/g(T, )=2.4, and for S2: I =85, L/g(T, )=2.3. Fits
of almost equal quality are obtained for L /g( T, ) differing
+0. 1 from these values. The corresponding I 's are about
10% larger or smaller. In this parameter range, Eq. (16)
is satisfied at all temperatures of the measurement,
confirming the validity of the approach. Below about 0.5
K, Eq. (16) is no longer satisfied. For the p and I values
reported above, the temperature dependence of the criti-
cal current is contained exclusively in the parameter
p(T), whereas the magnitude of I,R~ scales with 1/I .
Hence, a large boundary resistance implies a strong
reduction of the I,R& product of the junction.

The analysis of the voltage-carrying state presented in
Sec. III offers the interesting possibility of an independent
estimate of I . From the I, V characteristics of S1 and S2,
we estimate ZI 2 =2.5 and 3 for both samples. The resis-
tance due to the interface barriers can be calculated from
Eq. (5). Dividing this by the bulk resistance of the mem-
brane R&, estimated from R& =pI. /3 yields I . For both
samples a I value of about 1 is found, evidently much
smaller than the values obtained above. The I,(T) data
of Fig. 17 cannot be fitted to the Kupriyanov-Lukichev
expression, Eq. (15), with I values on the order of unity.
This is not surprising, as these values are outside the
small transparency limit.

Some insight in the discrepancy between the different
I 's is obtained from the observation that the calculated
interface resistance is much smaller than the measured
normal-state resistance Rz. As discussed in Sec. III, the
relatively large values for R~ reflect the fact that only a
small fraction of the interface is transparent. The inter-
face is pictured as an opaque separation between S and
Se, with many small transparent spots connecting both
materials. After being injected in the membrane the
current fans out, leading to a bulk resistance smaller than
the value based on the areas of the individual transparent
spots. The lower limit to the bulk resistance resulting
from this is determined by the total area A of the junc-
tion. The corresponding upper limit to I is R&/Rb,
which is on the order of 75. Taking into account the un-
certainties in I determined from Fig. 17 and in the other
parameters relevant for these calculations, L and p, this
value is in reasonable agreement with values obtained
from KL theory. Stated differently, the I 's inferred from
both methods agree if the interface resistance is deter-
mined by the area of the transparent spots only while at
the same time the current is carried by the total area 3 of
the junction.

Next we compare the coherence lengths found above
with the theoretical values. For a membrane thickness
between 40 and 60 nm, the L/g values found imply

(T, )=21+5 nm. From Eq. (13), we obtain the value

(T, )=6 nm. The disagreement of a factor 3.5 be-
tween these values is significant. The values used for the
carrier concentration, mobility, and effective mass to cal-
culate g are discussed in some detail in the Appendix.
Although there are some uncertainties in the parameters
n and p, they are much too small to account for the large
discrepancy. A possibility is that the use of a simplified
band-structure model for the (100) silicon crystal of the
present experiment is fundamentally in error. The com-
plicated band structure of p-Si is roughly approximated
by the use of effective masses, obtained by averaging over
three hole masses that correspond to the three different
hole bands in p-Si. A detailed analysis of the pelation be-
tween band-structure and transport properties may be re-
quired to clarify the discrepancy.

Perfect agreement with the KL analysis is obtained if
the effective masses were determined completely by the
lowest value known: substituting the low doping light
hole mass m, =0.153 in Eq. (13) yields gs =20.3 nm.
Substitution of the lowest effective mass for the high dop-
ing used in our experiment, the split-off mass m, =0.234
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yields gs =16.5 nm, in reasonable agreement with KL.
However, there is no physical argument justifying substi-
tution of either value.

3. Previous theories

In previous experiments on SSmS junctions, agreement
between the theoretical coherence lengths and values for
g inferred from I,(T) has invariably been reported. At
this point it is clarifying to compare the present analysis
with the theories that have been used previously to inter-
pret supercurrent behavior.

In the literature on semiconductor coupled weak links,
I, (T) measurements are usually analyzed in terms of the
well-known model for SNS junctions of Likharev ' or
the SSmS model of Seto and van Duzer. The latter au-
thors obtain the following expression for the supercurrent
through a semiconductor with length L:

2
b, ( T)

cosh [L /2gs ( T) ]

L
ks (T)

(17)

Here b, ( T) is the energy gap of the superconductor.
Most systems studied to date are long junctions, i.e.,
L ))g, for which Eq. (17) simplifies to

I, (T) ~ b, (T) exp[ L/g(T)] . —
g(T)

(18)

The expression found by Seto and van Duzer for the
coherence length is

ks =
1/2

$3
(3~ n)'

6~ekTm ' (19)

This equation differs from our expression for the coher-
ence length, Eq. (13), in two aspects: the distinction be-
tween the efFective masses m,* and md has been neglect-
ed, as well as the possibility of a nonunity valley degen-
eracy v. This is only correct for n-type III-V compounds.
For Si, Ge, and p-type III-V semiconductors, v W 1

and/or m,*&md . Nevertheless, Eq. (19) or its 2D
equivalent has been used in virtually every analysis of
semiconductor-coupled weak-link measurements reported
to date. For completeness, we note that in two dimen-
sions the complete expression for the coherence length is

Sm

1/2
A pm,*n,

2ekTmd v
(20)

with D =U~l/2, k~=(2wn, )', and n, the sheet carrier
concentration.

Next we take a critical look at the Seto —van Duzer
analysis of the critical current. It is much less sophisti-
cated than KL: the influence of the NS boundaries is not
treated at all and the theory is based on the lowest
Matsubara frequency only. Furthermore, Eq. (17) is
based on results of de Gennes' which are obtained using
Ginzburg-Landau (GL) theory. The Ginzburg-Landau
equations are valid for small values of 6, so Eq. (17) is
only valid near T, . The induced pair correlation in the
semiconductor might also be small at lower temperatures,

The factor 1/T in proportionality constant C has been
omitted from the temperature dependence, probably
based on the argument that the GL derivation is valid
only for T=T„hence, 1/T is constant. However, al-
ready slightly below T, this prefactor makes a significant
difference. Fits to data have usually been extended to
lower temperatures, where the difference is even more
pronounced.

In summary, fits of SSmS data to the Seto —van Duzer
theory published to date are based on unreliable expres-
sions for the coherence length (except for n-type III-V
compounds) and for the temperature dependence of
I, (T). Although it was invariably concluded that agree-
ment between theoretical I,(T) and gs and experiment
was good, it is clear that our observations invalidate this
conclusion.

A well-known alternative for describing the tempera-
ture dependence of the critical current has been obtained
by Likharev. He has obtained I, ( T) for arbitrary
values of the temperature and junction length. For tem-
peratures close to T, he found

(T) 2b, (T)
wekTR& „(2n+ 1) sinh[l„(T)]

(21)

for junctions with normal state resistance R~, with

(22)

For long junctions this reduces to

I, ( T)= exp[ L /gs (T) ] . —46(T) L
ukTRw sm( T)

(23)

Comparison with Eq. (18) shows that in Likharev's re-
sult the prefactor 1./T is present. Also, the absolute
value of I, is given, and not just the global temperature
dependence. However, the theory has an important
drawback, related to the treatment of the
superconductor —normal-metal boundary. Likharev's re-
sults are based on boundary conditions first obtained by
Zaitsev which imply that the order parameter is con-
tinuous at the interface. Although the explicit use of
these boundary conditions leads to quantitative predic-
tions for I, (as opposed to Seto —van Duzer), it severely
restricts the applicability for semiconductor coupled
weak links. The reason for this is that the effect of inter-
face barriers on the supercurrent is not taken into ac-
count. It has been proposed to include this through a
phenomenological scaling parameter for I, (T). This
approach is not compatible with Kupriyanov-Lukichev
theory. Although both theories are based on the same

so the range of validity could, in principle, be larger.
However, comparison of Seto —van Duzer's I,(T) with
the KL result for the same gs (T, ) reveals very different
behavior already close to T, . For completeness we note
that, even within the GL context, Eq. (17) does not con-
tain the full temperature dependence. The critical
current has been obtained from

j,=C [6,+(db /dx)+b(d6+/dx)] .
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microscopic Usadel equations for superconductivity in
the dirty limit, they treat different systems. KL treat a
SINIS system, with boundary conditions accounting for
the interface barriers, whereas Likharev describes a SNS
structure. The fundamental difference between the
theories is illustrated by the fact that, for a given L/gs
and large boundary resistance, very different dependen-
cies of the critical current on T are found. Although the
underlying reasons are not clear, Likharev's I, (T) curves
cannot be obtained from KL's curves by simply using a
scaling factor.

In Fig. 18, we show that the application of theories
with a restricted range of validity can yield very different
values for the parameters, although good fits to the data
are obtained. The measurements of Fig. 17 are replotted
in Fig. 18, together with fits to Likharev's "near T," Eq.
(21). The fits are scaled down to yield the measured I,Rz
products. Although the quality of the fits is good near
T„they are insensitive to L/g(T, ): data could be fitted
equally well with values between 1.3 and 2.5 (sample Sl),
respectively, between 0.8 and 1.6. We have also fitted the
data to the full Likharev theory. These fits are obtained
from interpolation between curves shown in Ref. 56,
again using a scaling factor. The good quality of the fit is
probably fortuitous Ifits to I, (T) of the other sample of
Fig. 17 are of lesser quality]. The difference with the
"near-T, " fits is striking: L/g(T, )=5.5+0.3 is found.
Moreover the results of both the "near-T, " and the full
theory differ substantially from the KL result
L // =2. 3 —2.4 for both samples.

These findings show that, contrary to what one might
naively expect, a scaled version of Likharev's theory
should not be used for SSmS junctions. The barriers
present at the metal-semiconductor interface require a
separate treatment. We believe that this is appropriately
done by KL, hence it presents the only useful description
of SSmS systems.

B. %'eak-localization eAects

Up to this point, only supercurrent How through the
proximity effect has been discussed. Although KL theory
describes the measurements well, it is interesting to ana-

lyze the possibility of an additional contribution to I,
through a different mechanism. This was introduced by
Altshuler, Khmel'nitskii, and Spivak. The authors con-
sider, in the spirit of the quantum-interference
phenomenon of weak localization, a phase-coherent path
from one superconductor to the other. The path through
the mesoscopic intermediate layer is determined by elas-
tic scattering (Fig. 19). Andreev refiection has an impor-
tant inAuence on carrier transport. If an electron is con-
verted into a hole by Andreev reflection at the interface
with the superconductor Sz, its phase changes with an
amount equal to P~, the phase of the superconducting
ground-state wave function. Subsequently, at the inter-
face with S, , the phase changes with —Pi, where the
minus sign is added because the hole is converted back
into an electron. To calculate the total effect of this pro-
cess the time-reversed path must be included leading to a
net phase difference of 2(P, —Pz). As a consequence, a
supercurrent I," proportional to sin2$ (P=P, —Pz) is
predicted to flow parallel to the "ordinary" proximity-
effect-induced supercurrent with the usual sing depen-
dence.

In principle, I, could be observable at low tempera-
tures. The authors state that an Andreev reAection prob-
ability 3 (E)) l/g is required, which is much larger than
the values we observe. However, in a later discussion ' it
is suggested that much smaller values for A (E) suffice.
The magnitude of I, is given by

2 DI, (T)= exp[ —2L/g(T)]
7r Pq ( T)ln( T, /T)

(24)

with w the width of the junction. The exponent dominat-
ing the temperature dependence is a factor of 2 larger
than the exponent found in the above theories, for long
junctions and T very close to T, . Consequently, the de-
crease of this contribution with temperature is much
more rapid. Assuming A (E) to be large enough in the
present experimental system, we calculate values for I,
of a few pA at 1.2 K, for L /g( T, ) =2.3. This constitutes
only a few percent of the measured values. Hence, a pos-
sible contribution of I, will be dificult to infer from the
measured temperature dependence of the critical current.
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FIG. 18. Critical current vs temperature for one of the sam-
ples from Fig. 17, together with fits to Likharev's theory. Solid
curve: full theory, dotted curve: near- T, approximation.

FIG. 19. Example of phase-coherent scattering paths in a
heavily doped semiconductor (Sm) sandwiched between two su-
perconductors S, and S2 with phase P, and P„respectively.
Drawn lines indicate electrons that are Andreev reflected into
holes (dot-dashed lines) at the interfaces.
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A more clear-cut identification should be possible
through the phase dependence. To identify a possible
sin2$ dependence we have investigated both the
magnetic-field dependence of I, and its response to rf ra-
diation. The ac Josephson effect gives rise to the pres-
ence of current steps in the I, V characteristic when rf ra-
diation is applied to the junction. The distance between
the steps Vo is determined by the irradiated frequency cu

according to Vo=kco/2e. It is easy to show that if the
phase dependence of I, is sin2$ instead of sing the dis-
tance will be Vo=A'co/4e. We have irradiated the sam-
ples discussed in Sec. IV A 2 and others with 10-GHz ra-
diation and have observed clear steps at 20 pV. These
steps correspond to Ace/2e and confirm the presence of
the usual ac Josephson effect. We do not find any trace of
10-pV steps that would confirm the presence of the
weak-localization-mediated contribution.

The response of the critical current of sample S1 to a
magnetic field B, applied parallel to the junction, is
shown in Fig. 20. The well-known Fraunhofer diffraction
pattern for Josephson junctions is observed. Theoretical-
ly, I, is periodic in the magnetic flux N through the junc-
tion, with period 4O equal to the flux quantum h /2e:

sin(~4/No) sin(vrB /Bo )

I,(B)=I,(0) =I,(0)
ETC /4 o mB /Bo

(25)

1 2 I I I I I I I I I I I 1 I I I
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FIG. 20. Critical current as a function of the applied rnagnet-
ic field B (dots). The solid curve represents the theoretical
Fraunhofer pattern for an ideal junction, with period 2.17 G.

with Bo=+o/S and S the junction area defined below.
At magnetic field Bo the junction contains one fluxquan-
tum. The theoretical curve in Fig. 20 has been obtained
by setting Bo in Eq. (25) equal to 2. 17X10 ~ T. The
good agreement of the data with the diffraction pattern
implies a uniform distribution of the current in the junc-
tion. We note in passing that this observation is in
favor of the earlier discussed picture of a large number of
small transparent "spots" distributed over the interface
(as opposed to one larger transparent "spot"). A sin2$
dependence ofI„instead of the sing dependence leading
to Eq. (25), will result in a similar diffraction pattern as
the one shown in Fig. 20, with the important
modification that the period will equal No/2 instead of

No. Comparison of the value used for Bo in Fig. 20 to the
theoretical magnetic field corresponding to the full period
of the regular Josephson effect, Bo =No/S =2.07 X 10
Tm /S, can decide whether the weak localization effect is
present. The area S in Eq. (25) corresponds to the
current-carrying area effectively threaded by the magnet-
ic flux parallel to the junction surface. It is defined as the
product of the junction effective thickness d,z and the
width of the junction. The thickness d,z is defined in
terms of the membrane thickness L, superconductor
thickness d, and the London penetration depth A. by
d,&=L +2k, tanh(d/2k). This expression takes into ac-
count the penetration of the magnetic field into the super-
conducting electrodes over a depth A, . The theoretical ex-
pression for the penetration depth at low temperature is
A, =ko(1+go/l), with l the elastic mean free path in the
superconductor and go the BCS coherence length. The
mean free path is obtained from the pl product for niobi-
um, 3.7X10 Acm, and the resistivity measured for
300-nm niobium films, p =5.5pQ cm. Substituting
1=6.7 nm and g'O=38 nm (Ref. 66) yields A, =103 nm.
This value is slightly larger than the values 84 —91 nm in-
ferred from the literature, for niobium films comparable
to ours. A smaller A, (81 nm) is also obtained from

Ap

~pod. ( T =0) (26)

with po the vacuum magnetic permeability. We conclude
that the best estimate for the niobium electrodes is
A, =90+ 10 nm. This yields d,z =0.21 pm, the area
S =2. 3 pm, and the desired theoretical value for
Bo =9.0 X 10 T. The experimental value of
2. 17X 10 T for sample S1, inferred from Fig. 20, is a
factor of 4 smaller. For different samples, we find the
measured period a factor of about 2 —4 smaller than the
period calculated from Eq. (25). Although it is tempting
to ascribe the factor 2 to the effect we are looking for, the
deviation varies randomly between 2 and 4 and may be
due to other effects.

The most probable of these is that the magnetic field
present in the junction region differs from the applied
magnetic field. The samples consist of two niobium
electrodes of 2000X3000 pm separated by 250-pm sil-
icon. In the pyramidal etchpit, the sidewalls are covered
with niobium, and towards the bottom of the pit the elec-
trodes approach each other. Only in the junction region
they are very close together, separated by just the thin
membrane (Figs. 1 and 2). Possibly, the Meissner effect
in the electrodes leads to crowding of magnetic flux lines
and an increase of B in this region explaining the relative-
ly small values measured for Bo. We note that this effect
has previously been observed in Nb-InAs-Nb junctions.
In this work the effect is quite strong due to the coplanar
geometry of these junctions.

In conclusion, the rf and magnetic-field dependences of
I, demonstrate the dc and ac Josephson effect in the junc-
tions. Although no evidence for the weak localization
mechanism proposed by Altshuler, Khmel'nitskii, and
Spivak is found, its presence cannot be entirely exclud-
ed on the basis of our experimental data. The strength of
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the effect compared to the "ordinary" proximity effect su-
percurrent is not well known and it is probably weak in
our junctions. In cleaner systems with more transparent
interfaces, the mechanism may be more clearly present.

V. SUMMARY AND CONCLUSIONS

In this work we have presented experimental results on
transport at finite voltages and supercurrent How in a
well-characterized, sandwich-type superconductor-
semiconductor-superconductor system. The combined
investigation of I, and the behavior at VWO considerably
increases the insight in these systems. We have demon-
strated that the I, V characteristics at low temperatures
can be well understood in terms of the OBTK model de-
scribed in Sec. III A. The model describes a SINIS struc-
ture: a SNS system with variable elastic and Andreev
scattering at the interface barriers I. Inelastic scattering
is assumed to be absent in X. The validity of this as-
sumption is confirmed by the observation of higher-order
Andreev reAections at low voltages, and a current deficit
at high V. For an optimal description, the possibility of
two interface barriers of dift'erent strengths (expressed by
the dimensionless parameter Z) has to be included. Ad-
ditionally, there may be small differences in the silicon
valence band at the two interfaces due to variations of the
doping profile with the thickness of the Si membrane.

Given the good quality of the fits to the OBTK model
at low temperatures, an unambiguous description of the
behavior at higher temperatures should be possible. As
we have shown, self-heating plays an important role
above the A.-point, making a direct application of the
model at higher temperatures diScult. Additionally,
temperature-dependent inelastic scattering may be
present, further complicating the analysis at elevated
temperatures.

An interesting result of the application of the OBTK
model to our system is that only a small fraction of the
superconductor-semiconductor interfaces is transparent.
Moreover, this area is likely to be distributed more or less
uniformly over the interfaces as small transparent
"spots. " The overall transparency of such an interface
poses a challenging theoretical problem that is currently
of interest to the field of Schottky barriers. The Z values
that we measure indicate a transparency that is much too
high to be explained by standard Schottky barrier theory.

We note that a lower limit to the interface transparen-
cy is present in any superconductor-semiconductor struc-
ture: the mismatch in the Fermi wave vector between
metal and semiconductor results in the presence of an in-
trinsic barrier at their interface. The reAection and
transmission properties of the interface barrier determine
the detailed shape of the I, V characteristics but also
govern the reduction of the critical current through the
structure. Consequently, an adequate treatment of super-
current How must account for the presence of interface
barriers.

The absence of inelastic scattering in silicon implies
that the system is mesoscopic. In principle, two parallel
channels for supercurrent transport are possible. One is
the conventional proximity effect: the pair correlation

between electrons present in the superconductors diffuses
over a characteristic length into the intermediate materi-
al. The most advanced treatment of the proximity effect
in a SINIS structure is the theory of Kupriyanov and
Lukichev, ' which is discussed in Sec. IV A 1. It is by far
the most complete description of supercurrent transport
through a normal metal with l &L. Besides describing
the whole temperature range it takes into account the
discontinuity in the superconducting order parameter at
the SmS interface. Excellent agreement between the su-
percurrent measurements and Kupriyanov-Lukichev
theory is obtained for the whole temperature range. The
discrepancy between the value for the coherence length
inferred from the KL analysis and the theoretical value
indicates the need for a careful analysis of the effect of
the band structure of p-Si on transport properties. Addi-
tionally, we have shown that several earlier models used
to interpret supercurrent measurements are unsuitable
for semiconductor coupled weak links.

The other channel for supercurrent transport is based
on the combination of Andreev rejections at the inter-
faces with weak localization effects in the intermediate
mesoscopic layer. For completeness we have also inves-
tigated this channel, focusing on the sin2$ phase depen-
dence that is predicted for it. Both the magnetic field and
rf dependences of the critical current do not show any
direct evidence for the presence of this mechanism.
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APPENDIX

We discuss the values for the carrier concentration,
mobility, and effective mass that are used to calculate the
semiconductor coherence length gs in our samples. As
explained in Sec. III E, the carrier concentration
n =7 X 10' cm is the average value derived from the
theoretical doping profile (Fig. 14). The carrier concen-
tration is assumed to equal the boron concentration.
This estimate is subject to some uncertainty, but the
dependence of gs on carrier concentration is weak. If n

were a factor of 1.5 higher than estimated, the increase of
would be only about 14%. We note that the carrier

concentration dependence of p and m * tends to offset
this increase.

We estimate the mobility p=116 cm /V s from the re-
lation p=1/nep, with p=7. 7X10 0cm the measured
resistivity of the silicon membrane. In addition to the un-
certainty in n, the uncertainty in p introduces 10—15 %
uncertainty in the value for p. In other weak-link experi-
ments on p-Si, ' p or p has not been measured but



5188 W. M. van HUFFELEN et al. 47

"reasonable" values of 60—100 cm /s have been used for
the mobility.

The effective mass of silicon has been studied by
several authors, and some controversy exists on the exact
values for m*. We follow the article by Barber. On
the basis of a simplified model for the valence band of Si,
he obtains reasonable agreement with experimental data
on the temperature and carrier concentration dependence
of m *. Using his data, we find the conductivity effective
mass nz,*=0.43 and the density-of-states mass md* =0.87

for n =7X10' cm . For high doping the sensitivity of
the effective mass to n is very weak.

Substantially larger values for gs in our samples can
only be obtained from Eq. (13) with a much smaller ratio
md /m, *. This quantity has the dimensions of mass and
equals 1.76. We calculate the m values that have been
used in Ref. 71 to obtain gs from Seto and Van Duzer's
equation [Eq. (19)] to be 0.39, 0.24, and 0.50, respectively.
The origin of these values has not been discussed by the
authors.
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