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U-j relationship in type-II superconductors
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The Anderson-Kim model has been modified in terms of the U-j relationship for high-T, supercon-
ductors. We have obtained U-j curves by an approach based on the temperature dependence of j.. Our
results are consistent with the physical picture of flux creep. Our data is obtained from magnetic-
relaxation experiments on YBa,Cu;0, single crystals with the direction of the field parallel to the c axis.
The decay of magnetization was studied for both increasing and decreasing fields, used to obtain the

current density.

INTRODUCTION

The decay of magnetization with time has been report-
ed in type-II superconductors.! ® Anderson and Kim
explained this phenomenon by using a thermally activat-
ed flux-creep model.'® In their model they assumed that
the fluxoid motion is thermally activated and that the
rate at which the flux bundles jump over the pinning bar-
riers can be described by an Arrhenius-type expression,

v=vgexp{ —U(j)/kT} , (1)

where v, is the attempt frequency, U(j) is the effective
activation energy, and 7 is the temperature of the system.
Because of pinning, a nonuniform distribution of vortices
exists at the critical state. At the critical state, j~j.
(where j. is the critical current density) and U (j,)~0.
As the system relaxes to achieve a uniform distribution of
vortices, the current density decays and the activation en-
ergy grows. The activation energy gives a measure of the
barrier to the flux motion; that is, U (j) is small when the
system is relaxing quickly, and vice versa. The rate equa-
tion can be written as

dj/dt= A exp(— U /kT) . 2)

Experimentally, one can extract U (j) by studying the
time dependence of magnetization. Recently, Maley
et al.'' developed an expression for the effective activa-
tion energy U (), without the approximation U/kT >>1,
which can be written as

U(j)/k =—TIn|dM /dt|+ T In(Bvw /nd) , (3)

where d is the thickness of the sample, M is the magneti-
zation, B is the magnetic induction, and o is the average
distance that a flux bundle can hop. In this approach one
first calculates T In|dM /dt| for various temperatures at a
given field. Then, by adjusting the constant
C = In(Bvw/md), one obtains the U-j relationship. For
obtaining a best fit, one uses a scaling factor of g(7),
where t =T /T, is the reduced temperature and T, is a
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characteristic temperature of the system. '?

As reported earlier,'>!* one can also expand U (/) in
the neighborhood of some current density j,

+ 332U /87210l —jo P4 - -
~U(jo)+alj—jo)+B/2(j —jo)* . 4)

Substituting Eq. (4) in Eq. (2) and integrating between
time ¢, to ¢, one obtains

Jj()=j0)+aln(t/ty)+bIn*(t/ty) , (5

where a =kT/a and b =—(k?T?/2a’)B. Both a and b
can be determined from relaxation experiments and used
to calculate a and 3. With the knowledge of the slope a
and curvature f3, one can construct U-j curves using Eq.
(4). Figure 1 schematically illustrates a typical U-j curve,
which has been experimentally established by previous
studies of various high-T, systems.

If the U-j curve is constructed from magnetic-
relaxation data taken at different temperatures and with
the assumption that j, is temperature independent (i.e.,
Jj.=constant), we would expect a curve shown in Fig. 1.
This curve implies that the magnetic relaxation, at each
temperature, starts from the same critical state. This
leads to a situation where U increases with temperature.
However, it is well established that the critical current
density is a function of temperature T and applied mag-
netic field H [i.e., j.=f(T,H)]. In reality, the barrier
height should always decrease with increasing tempera-
ture (assuming that there is no peak effect in the critical
current density).

McHenry et al.'? used a scaling function g () to scale
the implicit temperature dependence of U to T =0 K.!?
This makes U/g(t) temperature independent. They
found that g(¢) is consistent with the Ginzburg-Landau
temperature dependencies of various pinning-related su-
perconducting parameters (i.e., coherence length and
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FIG. 1. Schematic diagram of U-j curve as established by
previous studies.

fluxon lattice spacing) at low temperatures. However, in-
stead of determining the reduced temperature scale by
T., they assumed it to be scaled with a temperature T,
which is a characteristic of the system. For the
YBa,Cu;0, system T, is the field-dependent irreversibili-
ty line temperature T;.. For Bi,Sr,CaCu,0,, on the oth-
er hand, one has to use two T, depending on the field and
temperature. The two different T,’s characterize the
three-dimensional (3D) and the 2D regimes for the sys-
tem. 13

In this paper, we have developed a different approach
that can establish temperature-dependent U-j curves by
considering the temperature and field dependence of j, as
shown in Fig. 2, based on which the relationship between
the current density and flux-creep activation energy is
physically meaningful. As evident from Fig. 2, at a given
Jj, U always decreases as the temperature increases.

EXPERIMENTAL DETAILS

Magnetic-relaxation experiments were performed by
using a quantum design superconducting quantum in-
terference device (SQUID) magnetometer. The samples

U T:>T. >T,
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FIG. 2. Schematic diagram of U-j curves by considering the
temperature and field dependence of j., which are physically
correct representations of U-j relationship.
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were zero-field cooled to the desired temperature below
T.. The experiments were performed for both increasing
and decreasing fields. For increasing fields, a magnetic
field of 3 T was applied after stabilization of the tempera-
ture, and the magnetization was recorded as a function of
time. For decreasing fields a field of 5 T was first applied
and then decreased to 3 T. The initial magnetization
value was recorded 180 s after stabilization of the mag-
netic field. The field was always applied parallel to the ¢
axis of the YBa,Cu;0, single crystal. In order to reduce
the effects of field inhomogeneity, a scanning length of 3
cm was used in the experiment. The current density was
estimated with a standard Bean’s model. '®

RESULTS AND DISCUSSION

To ensure that the samples were fully penetrated by the
applied field so that the Bean model application is valid,
we used a previously established method.!’”!° By plot-
ting dj/d In(t /to) vs T, we observe that the creep rate
experiences a monotonic decrease with increasing tem-
perature at 3 T, as shown in Fig. 3, indicating that the
sample is indeed fully penetrated at all temperatures stud-
ied.

The magnetization measured at any time ¢ can be writ-
ten as

M(t):Mrev+Mirr ’ (6)

where M, is the reversible magnetization and M, is the
irreversible magnetization. M, is the magnetization re-
lated to the Meissner effect.?® M, arises because of the
current density resulting from flux pinning. One can
separate the contribution of M ., and M, as follows. If
M, and M _ are magnetization at increasing and de-
creasing fields, respectively, then

M, ,=(M, +M_)/2, (7a)
M, =(M_—M, 2=AM/2xj . (7b)
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FIG. 3. —dj/dIn(t/ty) vs T plot for a YBa,Cu;0, single

crystal with H =3.0 T applied parallel to the c axis. The mono-
tonous decrease of —dj/d In(t/t,) ensures that the field is fully
penetrated in the sample.
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Thus, by studying the relaxation of M, (¢) and M _ (1),
one can calculate the relaxation of M, .(¢) and j(¢). In
this paper we report the activation energy U (j) as a func-
tion of current density j in a YBa,Cu;0, single crystal
with H||c extracted by studying magnetization for both
increasing and decreasing fields.

Theoretically, it has been predicted from the collective
pinning theory that for j <<j., U(j) should grow with
decreasing current according to a power law,?!

U(j)=Uy(j. /)%, (8)

where U, is the characteristic energy scale and the ex-
ponent a depends on the dimensionality of the problem
and on the particular regime of the flux creep.

The Anderson-Kim model predicts that

U(j)=Uy(1—j/j.) . )
Also, experimentally it has been observed that
U(j)=UyIn(j, /j) . (10)

Equation (10) is a good approximation for single vortex
creep in the 3D case where a~1<<1.?2 Equation (10)
may also arise from Eq. (8) if the exponent a varies with
Jj. Thus, in general, one can write

Uj)=Uyf(j/j.). an

The current density j=f(¢,T,H) decays with time,
whereas the critical current density j (7T, H) is a material
property that depends on temperature and applied mag-
netic field only. Figure 2 schematically shows U-j curves
for various j,. Here j, is changed either by changing
magnetic fields or temperature.

To obtain a U-j curve with a significantly large range
of j at constant temperature and field, one has to study
long-time relaxation since the relaxation is logarithmic
(approximately). In other words, one has to wait for
years to get a considerable portion of the U-j curve. Al-
ternatively, we can take advantage of Eq. (11) and con-
struct a considerable portion of a U-j curve by studying
isothermal magnetic relaxation at constant field for vari-
ous temperatures or equivalently by studying magnetic
relaxation at constant temperature for various fields. In
all cases we change the critical current density j.. We
first construct a U-j curve for the highest j. (lowest tem-
perature or field). Using Eq. (11), we then calculate the
change in activation energy resulting from the change in
current density (achieved by changing either the tempera-
ture or the magnetic field). Next we add that value to the
U value for the lower j, for the same j value. Mathemati-
cally, one can write

U(j/jcd=Uj/je) +CUeopder) (12)

where C is a constant depending on j, and j.; and
Jeo>Je1- To check the validity of Eq. (12), let us write
zg=j/joo and z,=j/j.;. We now expand U(z,) with a
Taylor’s series in the neighborhood of z |,

Ulzg)=U(z,)+(2g—2)[0U /B2yl 4+ -+ . (13)

For Eq. (12) to be valid, (zy—z)[0U /3z,],; must be a
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constant, that is,
(zo—2z)[0U /3z4],;=K ,
or
U /0zy=(K /zg)(1—2z/z) .

Now j., and j, are constants, and hence
(1—z,/z¢)=(1—j.o/j.1) is also a constant. Therefore

oU/0zy=K'/zq4 ,

where K'=K /(1—z/z,).
Integrating, we get

U=K'In(zo)=K"In(j /j,o) . (14)

Thus, if U varies logarithmically with j/j,, one can use
Eq. (12) to construct a hypothetical U-j curve. In princi-
ple one can always use Eq. (12) to construct the U-j curve
even if Eq. (14) is not satisfied. In that case, C is not a
constant anymore but becomes a function of j. We have
used Eq. (4) to determine the constant C for our case.
Equation (4) can always be approximated by Eq. (14) if
B~ —a/j and |(j/j,—1)| << 1, which was found to be
satisfied in our measurements.

In Fig. 4 we plot U as a function of j at various temper-
atures. Experimentally it is not possible to measure mag-
netic relaxation exactly from the critical state (U ~0).
Therefore the U plotted in Fig. 4 is actually the change in
activation energy when the current density changes from
Jo (initial current density at t =¢,) to j, (current density
at t =t,). This initial current density depends on critical
current density and hence is a function of temperature
and field. The solid lines in Fig. 4 are the fits to In(j).
Thus we can write U ~K In(j /j,).

Figure 5 shows the U-j curve at T =5.5 K constructed
by using Eq. (12) for a YBa,Cu;0, single crystal with H
parallel to the ¢ axis. The smoothness of the curve and
the overlapping of the points for some current density
level further support the validity of Eq. (12).
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FIG. 4. U-j curves of various temperatures for a YBa,Cu;0,
single crystal with H =3.0 T applied parallel to the c axis. The
lines are the fit to Inj.
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FIG. 5. U-j curve for a YBa,Cu;0, single crystal with

H =3.0 T applied parallel to the c axisat T=5.5 K.

As pointed out earlier, U gives the measure of the bar-
rier to the flux motion and hence does not reflect the true
pinning force but rather the forces opposing the flux
motion (a situation analogous to the one between static
and dynamic friction in mechanics). In other words, the
terminology used in the studies of flux pinning has
different physical implications. In transport measure-
ments where flux lines are somehow static, the flux-
pinning energy U, is more relevant, since the depinning
process occurs as j increases from zero to j.. On the oth-
er hand, in magnetic-relaxation measurements, the
effective activation energy U is a more appropriate pa-
rameter, since the flux lines are already in motion. U will
reach U, as j approaches zero, where flux motion stops.
Therefore, U and U, are two different but related pinning
parameters.

If we assume the preexponential factor A to be con-
stant in Eq. (2), it will lead to a situation where U ~ « as
j~0, which is also a natural consequence from
collective-creep theory??* or vortex-glass theory.?*
However, at low j or low driving force, 4 is not constant
but is a function of j. Therefore, a finite U, may be ob-
tained assuming a j-dependent preexponential factor A.
This regime has been considered by Kes et al.?® Experi-
mentally, when the relaxation rate becomes negligibly
small, U becomes significantly large. This situation can
be clearly seen in Fig. 5 where as the current density ap-
proaches a small value, U starts to increase rapidly, re-
sulting in a discontinuity in the slope near 0.18 eV. Al-
though it is difficult to obtain U, by suppressing j to zero,
a finite effective activation energy U at a given driving
force would still be physically meaningful in studying the
flux-pinning mechanisms. For instance, the U-j curves
for materials with higher pinning strength will have
larger U at the same current level j (or driving force).
Physically, this means that at the same driving force, the
Jj of the strongly pinned material would decay more slow-
ly (equivalently, the flux lines would encounter larger bar-
rier to motion).
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FIG. 6. j vs In(¢/ty) at T=5.5 K for a YBa,Cu;0, single
crystal with H =3.0 T applied parallel to the ¢ axis. This curve
is equivalent to the U-j curve shown in Fig. 5.

In Fig. 6 we plot j as a function of In(¢ /ty) at T =5.5
K. This curve is constructed by measuring the relaxation
at different temperatures (5.5-70 K). Theoretically such
a curve can also be ideally obtained by doing relaxation
measurements for an extremely long time; however, such
measurements are not practical in reality. Figure 6 is ac-
tually equivalent to the U-j curve plotted in Fig. 5, as evi-
dent from Eqgs. (4) and (5). The scaled time (¢ /t,) was
calculated by extrapolating the j vs In(z/¢,) curve of the
lower temperature to the higher temperature. Physically
this would mean that one changes the temperature-
dependent characteristic time of the relaxation and scales
it to that of the lowest temperature. Hence the j vs
In(z /ty) curve shown in Fig. 6 is the curve for T =5.5 K.

CONCLUSION

We have used a new approach to construct U-j curves
for a single crystal of YBa,Cu;0, by considering the tem-
perature dependence of j.. We have discussed the physi-
cal meaning of the true pinning energy U, and effective
activation energy U obtained from magnetic-relaxation
measurements. We conclude that j, must be treated as a
temperature- and field-dependent parameter in establish-
ing physically meaningful relationships between U and j
in the vortex state. We have shown that the j-1In(z/¢,)
curve constructed by changing the temperature is
equivalent to the U-j curves.
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