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Motivated by the observation of a superconducting energy gap far above the equilibrium critical tem-
perature T, in an Al film forming the center electrode of a Nb/AlO, /Al/AlO, /Nb structure we analyze
the mechanism of gap enhancement in symmetric double-barrier superconducting tunnel junctions. It is
found that such structures are very effective in creating a nonthermal distribution of quasiparticles in the
middle electrode. At certain bias conditions this leads, according to the BCS gap equation, to the ap-
pearance of a nonzero superconducting energy gap even at temperatures up to several times the equilib-
rium T,. So the double-barrier arrangement offers the remarkable possibility of making a material be-
come superconducting by applying a voltage or passing a current. Calculated current-voltage charac-
teristics exhibit current steps at voltages eV =2(An,—A,;) and eV =2(An,+A,)) in agreement with
measured curves. Calculations of the thermodynamic stability of the nonequilibrium superconducting
state indicate the possibility of hysteresis effects around these current steps.

I. INTRODUCTION

Enhancement of superconducting properties by driving
a superconductor out of thermal equilibrium has been ex-
tensively studied in the 1970s. Reviews of experimental
and theoretical achievements are given in Refs. 1 and 2.
Recently, interest in the subject was revived by the re-
markable observation by Blamire et al.>* of essentially a
zero-temperature energy gap far above the critical tem-
perature T, in an Al film sandwiched in a symmetric
Nb/AlO, /Al/AlO, /Nb double-barrier tunnel junction.
This is a far stronger effect than observed in previous
experiments,? dramatically illustrating the fact that
the vanishing of the superconducting state above a cer-
tain T, is not a consequence of a reduction of the attrac-
tive pairing interaction between the electrons, but of the
increase of the number of quasiparticle excitations. A
preliminary explanation of the phenomena in
Nb/AlO, /Al/AlO,/Nb junctions® was published by us
shortly after an early report of the experiment.® In the
present paper, we give a more elaborate account of the
model used in Ref. 5 and its consequences. A theory em-
ploying Green’s functions was published recently by Za-
itsev,® who arrived at essentially the same results.

The possibility of gap enhancement is contained in the
BCS gap equation. This equation expresses the fact that
the energy gap in the quasiparticle excitation spectrum is
related to the distribution of quasiparticles over the avail-
able energies. With the usual assumptions of an isotropic
gap and an energy-independent electron-electron interac-
tion potential V cut off at the Debije frequency wp, the
BCS equation is written as’
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N?O0) is the unnormalized density of states (DOS) at the
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Fermi level and f(E) is the quasiparticle distribution
function. In equilibrium f (E) equals the thermal Fermi-
Dirac function, but Eq. (1) is also valid in a nonequilibri-
um situation.

At nonzero temperature the magnitude of the energy
gap is constrained by the presence of quasiparticles
blocking states that would otherwise be available for
Cooper pairs. Most important in this respect are the
quasiparticles occupying states close to the Fermi level.
In Eq. (1) this is reflected by the fact that these energies
make the largest contributions to the integral. Gap
enhancement can be achieved by removing these quasi-
particles, either by extracting them from the material or
by redistributing them to higher energies.

This possibility was appreciated by Eliashberg and co-
workers,® " !! who developed a theory of the redistribu-
tion mechanism by the use of microwaves with suitable
photon energies Av <2A and proposed it as an explana-
tion of the critical-current enhancement in microbridges
observed several years earlier.'*!> In subsequent years
various experimental approaches to stimulated nonequili-
brium superconductivity in more general geometries were
developed. Critical-current enhancement in thin Al and
Sn films by microwave irradiation was demonstrated by
Klapwijk and co-workers!* !¢ and Latyshev and Nad.'’
Superconductivity above the equilibrium critical temper-
ature was demonstrated by Klapwijk, Van den Bergh,
and Mooij.!> The redistribution mechanism was also
utilized by Gray'® in symmetric Al/AlO,/Al SIS
(S=superconductor, [=insulator) tunnel junctions. The
extraction mechanism was realized by Chang and Scalapi-
no'® and Chi and Clarke® using asymmetric SIS’ junc-
tions, where S’ had a slightly smaller 7, than S. In this
work!®72% asymmetric double-barrier tunnel junctions
were used, where the nonequilibrium state was induced
by one low-resistance generator junction, while a second
high-resistance detector junction was used to measure the
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change in the gap.

Despite these successful confirmations of the concept
of nonequilibrium-enhanced superconductivity, the ob-
served effects remained small and did not match the
theoretical potential. It may be emphasized that super-
conductivity above the equilibrium critical temperature
has only been unequivocally observed in some microwave
experiments, the effect being at most 89%.%!

From this perspective the observation by Blamire
et al.* of a large energy gap at a temperature several
times 7T, represents a major advance. In this paper we
show that their results can be very well reproduced
within the context of a simple nonequilibrium SINIS
(N=normal metal) model for the double-barrier tunnel
junction. The same model has been applied to submi-
crometer superconductor-semiconductor-superconductor
junctions which also satisfy the SINIS scheme.?? For the
present purpose, we simply allow the N layer to be a su-
perconductor with a lower critical temperature than the
S electrodes and use Eq. (1) to obtain the nonequilibrium
gap.’ A brief account of the essential features of the ex-
periment by Blamire ez al.*is given in Sec. II. In Sec. III
the SINIS model is set forth and the quasiparticle distri-
bution function is derived. In Sec. IV model calculations
for Nb/AlO, junctions are presented. We calculate the
distribution function, the dependence of the nonequilibri-
um Al gap on voltage, temperature, and degree of none-
quilibrium, and infer current-voltage (I-V') characteris-
tics which match the experimental ones. The thermo-
dynamic stability of the nonequilibrium superconducting
state is considered in Sec. V. Finally, conclusions are
given in Sec. VL.

II. MAIN FEATURES OF THE EXPERIMENT

Key elements of the Nb/AlO, /Al/AlO, /Nb junctions
used by Blamire et al.* are very thin, highly transmissive
tunnel barriers and very thin Al films (3—-20 nm). Some
measured /-V curves from Ref. 4 are reproduced in Fig.
1. The existence of a superconducting state in the Al
middle electrode follows from the presence of current
steps at the difference gap voltage eV =2(Ay,—A,) and
at the sum gap voltage eV =2(Ay, +A,)). These steps are
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FIG. 1. I-V curves of Nb/AlO, /Al/AlO,/Nb tunnel junc-
tions, reproduced from Blamire et al. (Ref. 4). The supercon-
ducting state in Al is responsible for the small step in the
current just below the gap voltage 2Ay,/e. Curve i, 3-nm Al
layer at 4.2 K; curve ii, 12-nm Al layer at 2.2 K.
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at the same positions as would be expected for a regular
SIS'IS tunnel junction where the superconductors S and
S’ have different gaps. The fact that the current steps
persist above T, of the Al film proves that a gap is still
present at these temperatures. If the Al were in the nor-
mal state, the structure would behave as a regular SINIS
junction with a single gap feature in the I-V curve at
eV =2Az,. 22

It is essential to observe that not only does the none-
quilibrium gap in Al show up in the 7-V curve around the
gap voltage of the adjoining Nb electrodes, but in fact it
only exists in the voltage range between 2(Ay, —A,;) and
2(ANptA,). As will be shown below, only there is the
quasiparticle extraction sufficiently effective.

The extraordinary magnitude of the enhancement
effect is due to the optimal conditions for quasiparticle
extraction achieved in these junctions. The symmetry of
the structure, which approaches an original scheme de-
vised by Parmenter,?> ensures equal reduction of elec-
tronlike and holelike quasiparticles. Furthermore, the
large gap of the Nb electrodes enables removal of quasi-
particles over a large energy range. The high transmis-
sivity of the tunnel barriers and the very thin Al films
promote fast extraction of quasiparticles from the film
and establishment of a nonequilibrium situation. Finally,
this nonequilibrium is maintained relatively easily in Al
because inelastic relaxation is exceptionally slow.?*

II1. SINIS MODEL

The SINIS model takes advantage of the symmetry of
the double-barrier structure of the junctions to arrive at
the distribution function f,(E) in the middle electrode.??
Assuming identical tunnel barriers and identical left and
right superconductors, the situation is as in Fig. 2, with
the junction voltage distributed equally over the two in-
terfaces. In the figure the middle electrode 2 is represent-
ed in the normal state. In the case of an Al film above its
equilibrium critical temperature, it is not a priori known
whether the middle electrode is in fact normal or super-
conducting, but the following derivation is valid in both
cases. Because of the symmetry of the arrangement,
charge imbalance does not occur and the mixed nature of
the injected quasiparticles will be ignored. It is assumed
that the superconducting electrodes 1 and 3 remain in

[ )
>
i)
<
LV}
<
=
2l
tm
e p—

’ZAS

FIG. 2. SINIS model of a double-barrier tunnel structure. ¥V
is the junction voltage, I' denotes the injection of carriers into
the middle electrode, and 1/7; the energy relaxation of injected
carriers.
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equilibrium and the occupation of states is determined by
the Fermi-Dirac (FD) distribution f, at the bath temper-
ature. States in electrode 2 are populated from electrode
1, while depopulation occurs either by extraction into
electrode 3 or by inelastic relaxation toward the FD dis-
tribution. The resulting occupation function f, in steady
state can be found by equating, for each energy level, the
population and depopulation rates. Elastic scattering in
electrode 2 does not change the energy distribution and is
not explicitly included in the model.

According to the Fermi golden rule, the current of
electrode 1 to 2 is written as?® (the energy E is measured
from the Fermi level in electrode 2)

_ 2e w
_E;f_ _Ni(E—eV /2)N,(E)

X[folE—eV /2)—f,(E)dE , 2)

with N, , the density of states normalized to the value at
the Fermi level in the normal state and Ry the normal-
state resistance of the double-barrier junction, i.e., twice
the resistance of a single barrier,

RN # Rc

= = ) A3)
2 27A|TI’N{(0O)N5(0) 4

A is the junction area, |T|? the transmission coefficient,
N1 , the absolute, unnormalized DOS, and R, the specific

N{(E—eV/2)f((E—eV/2)+N3(E+eV/2)fo(E +eV/2)+
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contact resistance of the single barrier.
The population rate at a certain energy level is just the
current at that level divided by the electronic charge,

RLNI(E—eV/z)NZ(E)[fO(E-eV/z)—fz(E)] L@
N

Analogously, the extraction rate from electrode 2 to 3 is

S NAEW,(E+eV /2o E)=foE+eV /D] . (5)
N

We treat the inelastic relaxation of injected hot carriers
by a simple relaxation-time model. The relaxation rate at
the energy level E is given by

ALNg(E)eZM , (6)

TE

where L is the thickness of electrode 2. Formally, 7 is
the relaxation time of the energy distribution function
with respect to the FD distribution at the bath tempera-
ture. 7y is assumed not to depend on energy or on the
magnitude of the deviation from the equilibrium. A fur-
ther assumption is that the phonon distribution remains
in thermal equilibrium.

The steady-state occupation of the level E is deter-
mined by the balance Eq. (4) = Eq. (5) + Eq. (6). After
some rearranging we get the distribution function in elec-
trode 2,

FTE

frE)=

N{(E—eV/2)+N;(E+eV/2)+

where I' is the tunneling injection rate into region 2,
defined as the number of particles injected per second
normalized to the number of available states in the
volume under consideration,
1

r N$(0)R Le* ®
When the injection rate exceeds the relaxation rate,
I'rp >>1; f, differs considerably from the equilibrium
FD distribution. For I't; << 1, equilibrium is recovered,
f2=fo. According to Eq. (7), f,(E) depends on the
DOS N,(E), which in turn depends on the magnitude of
the (nonequilibrium) energy gap. So, to find both the gap
and distribution function, Egs. (1) and (7) have to be
solved self-consistently.

The current through the first tunnel barrier is obtained
by inserting Eq. (7) into Eq. (2). The same current passes
through the second barrier. If I'r; =0, Eq. (2) reduces to
the well-known SIN tunneling expression. In the absence
of inelastic relaxation, I'tg — 0 ; the current simplifies to

I_ﬁfm (E—eV /2)N,(E)N(E+eV /2)
Ry Y=« N (E—eV/2)+Ny(E+eV/2)

X[fo(E—eV/2)—fo(E+eV/2)ldE . (9)

NL(E)
FTE

[

Clearly, this expression is different from both SIN and
SIS tunneling.?’

Having introduced the notions of quasiparticle injec-
tion and extraction, it is easy to grasp qualitatively at
which junction voltages a nonequilibrium gap in the mid-
dle electrode will be possible. This is illustrated by Fig. 3,
where for simplicity it is assumed that there is no relaxa-
tion. Figure 3(a) depicts the situation at low voltages,
eV <2(Anp,—Aur). Because the quasiparticles in the elec-
tronlike branch in the energy range 0—(Ay,—eV /2) are
blocked by the gap of the right S electrode, they are not
extracted [the same is true for the quasiholes in the range
—(Anp—eV /2)-0] and no gap develops. In between the
two characteristic voltages 2(Ayn,—Ax)) <eV <2(Ay,
+A,;), shown in Fig. 3(b), the extraction is sufficiently
effective and by developing a gap =~A,,(0) the Al can ei-
ther push out to the right those quasiparticles remaining
in the range O-(An,—eV/2) [if 2(Any—Ap) <eV
<2Ap] or keep out those trying to enter from the left in
the range 0—(eV /2—Ayy) [if 2AN, <eV <2(Anp,tTApD ]
At large voltages eV > 2(Ay, +A,,) [Fig. 3(c)], the Al gap
is too small to keep out the quasiparticles entering from
the left and the gap is quenched. In short, it is only in
the range 2(Ayn,—Ap) <eV <2(Apnp,+Au;) that a none-
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FIG. 3. A nonequilibrium gap in the Al middle electrode can
only exist in a limited voltage range. The figures are drawn
neglecting the thermal broadening of the electron distribution.
(a) eV <2(Anp—A4)), no gap possible; the dashed line indicates
the magnitude of the (zero-temperature) Al gap; (b)
2(ANy— A <eV <2(An,tA,)), 2 gap can be maintained; (c)
eV >2(Anp+ Aay), no gap possible.

quilibrium gap can exist.

In all three cases at nonzero temperature, a few quasi-
particles are injected above the energy gap of the left
electrode at E >eV /24 Ay, but these are far from the
Fermi level and have minimal weight in the BCS integral.
This implies that once a gap is possible it will have only a
small dependence on voltage. The largest gap will occur
at the highest possible voltage when the few remaining
quasiparticles are furthest from the Fermi energy. The
opinion of Blamire et al.* that the maximum gap occurs
at what they call “the maximum extraction condition”
eV =2(Anp,—A,;) is incorrect.

IV. CALCULATED RESULTS

Using Eq. (8), we can check whether the
Nb/AlO, /Al/AlO, /Nb stack satisfies the condition for
nonequilibrium, I'rz>1. The experimental* R, was
3-7X107 "1 @ m? Calculating N,,(0) using free-electron
formulas and textbook values?® n=18.1X10* cm™* and
Er=11.7 eV for the carrier concentration and the Fermi
energy, we find for a film thickness of 10 nm an injection
rate T ~5X10% s~ 1. With an inelastic relaxation time es-
timated?* on the order of 1078 s at T,, we get 'ty ~1.
This is high enough to expect some gap enhancement, but
apparently the degree of nonequilibrium is not extreme.

For the calculations we take Nb with T,=9.25 K and
A(0)=1.52 meV (Ref. 27) for electrodes 1 and 3 and a
resistance of 1  for a single interface, and so Ry =2 .
For the Al films, we take a constant DOS N,(E)=1 and
bulk parameters 7,=1.18 K, A,,(0)=0.166 meV,?’ and
N%0)V=0.167." We note that in the experiments of
Blamire et al.* the equilibrium T, of Al was higher than
the bulk value and ranged up to ~2.4 K, as is common
for thin Al films.

To illustrate the basic mechanism of quasiparticle ex-
traction, we first show the nonequilibrium distribution
function of a middle electrode remaining in the normal
state, and so we turn off the attractive pairing interaction
and fix A, to zero. The distribution function f, at 4.2 K
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for various values of the parameter I'7j is plotted in Fig.
4 for voltage eV =3.04 meV, which is slightly higher
than 2AN,=2.96 meV at this temperature. The net
reduction of excited carriers for increasing values of 'tz
is clearly visible. Those states in electrode 2 above the
Fermi level (E > 0) lying opposite the gap in electrode 1
are depopulated because there is no injection. Those
below the Fermi level (E <0) lying opposite the gap in
electrode 3 are overpopulated (i.e., the number of holes is
reduced) because there is no extraction. Thus, at nonzero
voltage, the effect on the number of excited quasiparticles
in these ranges is similar to a lowering of the tempera-
ture. The peaked structures directly adjacent to these
ranges are caused by the divergence typical of the BCS
density of states in electrodes 1 and 3. When eV <2A
(not shown), there is an energy range around the Fermi
level where the gaps in electrodes 1 and 3 overlap and the
FD distribution is retained.

As an aside, we point out the effect of the nonequilibri-
um distribution on the current.??> Because the levels op-
posite the gap in either electrode 1 or 3 only communi-
cate with one of the superconducting electrodes, in the
limit of extreme nonequilibrium they cannot carry
current from electrode 1 to 3. For intermediate I'tp
their participation in the conduction process is partially
restored. In Ref. 22 it was shown that this reduction of
the range of current-carrying energy levels leads to a
smaller current compared to the equilibrium situation.
In the asymptotic limit eV > A, this so-called current
deficit reaches a constant, voltage-independent value
which depends on I'7; and essentially scales with the en-
ergy gap of the superconducting electrodes as a function
of temperature. We emphasize that the current deficit is
a consequence of the presence of an energy gap in elec-
trodes 1 and 3. Were they in the normal state, the energy
distribution of electrons in electrode 2 would still deviate
from equilibrium, but it would leave the I-V characteris-
tic unaffected because all levels would fully participate in
the transport of current.

Next, we turn on the pairing interaction in the middle
electrode and allow the Al to develop an energy gap
determined by Eq. (1) when the nonequilibrium is strong
enough. The effect on the distribution function f, for en-
ergies above the Fermi level is shown in Fig. 5 for several
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FIG. 4. Distribution function f, for different degree of none-
quilibrium with the Al gap set to zero, eV =3.04 meV > 2Ay,
T=4.2 K. For the equilibrium case, I't; =0; f, is equal to the
thermal Fermi-Dirac (FD) distribution.
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FIG. 5. Distribution function f, for different degree of none-
quilibrium, eV'=3.04 meV >2Ay,, T=4.2 K. For large 'ty
(shown for I'tp =5), the BCS density of states in the supercon-
ducting Al layer gives rise to a peak in f, at energy E=A,,.
For I'tp = «, the Al is also superconducting, but the peak is
not visible. If 'ty is too small (shown for I'tz =0.2), the Al is
not superconducting and the situation is identical to Fig. 3.

values of I'7, again for T=4.2 K and ¥'=3.04 mV as in
Fig. 4. Note that this voltage is in between 2Ay, and
2[Anp T AL (0)]. The difference with Fig. 4 when none-
quilibrium is strong enough and when a gap exists in Al
is mainly in the narrow range between E =0 and A,
where f,; is strongly reduced because N ;=0 in Eq. (7).
When I't; becomes too small, the gap in Al disappears
and the situation of Fig. 4 is recovered. As before, a tiny
peak of injected quasiparticles occurs at eV /2 + Ay.
Figure 6 shows the Al gap as a function of voltage at
4.2 K for various I'7;;. At the low and high ends of the
voltage range where A, exists, there are two solutions of
Eq. (1). The meaning of the two lower branches will be
clarified in Sec. V. For now, we concentrate on the upper
branch. For large 'ty this branch almost equals the
zero-temperature gap A, (0) even though the tempera-
ture is several times the equilibrium T, and so indeed the
large enhancement of the Al gap is reproduced convinc-
ingly. Both the magnitude of A,; and the voltage range
where it exists decrease with weakening nonequilibrium.
As anticipated above, the voltage dependence is rather
weak. For stong nonequilibrium A,; increases slightly
with voltage, as expected. However, for low 't the
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FIG. 6. Energy gap in Al as a function of voltage for
different 'z, T=4.2 K.

5161

variation dA,,/dV is negative. This is because for small-
er 't the effect on the BCS integral of the shifting to
higher energy of the peak in f,(E) of quasiparticles in-
jected above eV /2+ Ay, when the junction voltage is in-
creased is outweighed by the increase of the voltage range
closer to E where the FD distribution is approached.

In Fig. 7 the Al gap at eV =2Ay,=2.96 meV is plotted
as a function of 't at 4.2 K. Obviously, in the extreme
limits T'7p <<1 (Ap;=0) and Trp>>1 [A,=A,(0)],
there is little variation in A,;. Only in the transition re-
gion between 0.1 and 10 is the gap strongly dependent on
the degree of nonequilibrium. The fact that in the experi-
ment the current step was observed to shift to a higher
voltage for larger Al thickness,* i.e., lower I, implies that
the Al films were in this transitional regime, consistent
with the estimate of ' made above.

In Fig. 8 the temperature dependence of A,; at
eV =2A\,(T) is plotted for various I't. In the range be-
tween the critical temperatures of Al and Nb, the temper-
ature dependence is weak and a gap persists almost to the
critical temperature of the Nb electrodes. For extreme
nonequilibrium A,; remains essentially constant up to a
temperature several times the equilibrium 7, and only
starts to decline as the gap of the adjoining Nb electrodes
shrinks, because that brings the injected quasiparticles
closer to the Fermi energy in the Al. This predicted be-
havior may be compared with the measured A ,,(7) from
Ref. 4, which is reproduced in Fig. 9. Unfortunately, the
measurement covers only a small temperature range, but
it appears consistent with the calculated curves for inter-
mediate I'7p.

Finally, we show some calculated I-¥ curves in Fig. 10,
where the 2XSIN curve is also shown for comparison.
The curve for extreme nonequilibrium ('t — o) with
the calculated A,; of the upper branch of Fig. 6 and the
one with A, deliberately set to zero are equal at voltages
where Eq. (1) has no solution. However, in the range
where A,; is nonzero, the current remains low up to
eV=2(Axp1+A,x)). This effect distinguishes a SINIS
junction with a low-temperature superconductor as mid-
dle electrode from a junction with a nonsuperconductor.
The current jump at eV =2(Ay,+A,;) is real and not an
artifact of the calculation. It is a consequence of the
discontinuous jump to zero of A, at this voltage. The in-
termediate curve for I't; =2 has a smaller current deficit

0.2
N a0
=
Q
£ o1
=
RS
T=42K
0
0.001 001 01 1 10 100 1000 10000

FrE

FIG. 7. Energy gap in Al as a function of ', T=4.2 K,
eV =2.96 meV =2Ay,.



5162

0.2

A Al (meV)

10

T K)
FIG. 8. Energy gap in Al as a function of temperature for

different I't; at eV =2ApN,(7T). The BCS temperature depen-
dence of Ay, and Ay, both scaled to A, (0), is also shown for
comparison.

than those for I't; = o0 and a clearly distinguishable step
in the current below eV =2Ay,,.

The inset to Fig. 10 shows the region around
eV =2Ay, in more detail for various I't;. The experi-
mentally observed step is reproduced at the voltage
eV =2(An,—A,;) and thus shifts to a higher voltage for
lower I't, while the step at 2(Ay,+A,;) moves inward.
The height of the subgap step has a peculiar dependence
on the degree of nonequilibrium. The step is due to
current carried by electrons at the level E=A,, in the
middle electrode. For that, the level needs to be popu-
lated, and as this cannot occur through direct injection
but only through energy loss of the injected carriers, the
step will be larger when the inelastic relaxation is
stronger. Indeed, some relaxation has to be present for
the current step to be observable at all, and so we have
the paradoxical result that whereas stronger nonequilibri-
um promotes the superconducting state in Al, it cannot
be detected in the extreme limit. Figure 10 also reveals
the occurrence of a negative differential resistance next to

03 A 2400/6
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04r m 27612
. s - ® 411/5
Z 03¢t B o, %
= )
< § [ ]

A A A A A
i 1 " 1 "
2 3 4 5

T (K)

FIG. 9. Measured Al energy gap in Nb/AlO, /Al/AlO, /Nb
tunnel junctions as a function of temperature (reproduced from
Ref. 4). Solid lines show the BCS temperature dependence of the
equilibrium gaps with the experimental equilibrium 7, of the Al
layer.
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FIG. 10. Calculated I-V curves showing the current steps at
eV =2(Anp—A,;) and 2(Ayn,+A,;) due to superconductivity in
Al

the subgap step. In a current-biased measurement as per-
formed in Ref. 4, this will result in a horizontal jump in
the recorded characteristic, which indeed appears to be
what is observed (cf. Fig. 1).

V. FREE ENERGY
AND THE -V CHARACTERISTIC

We now proceed to explain the occurrence of two solu-
tions of the BCS equation (1) in certain voltage ranges.
To this end we observe that Eq. (1) determines a situation
where the free energy F of the system is minimized, i.e.,
dF /d A=0. This condition can, of course, also describe a
maximum in F, which as we shall see is in fact the mean-
ing of the second solution for A. The free energy can be
obtained by integrating the BCS equation

1 A , fiw 1—2f2(E)
N(O)V fO da fA (EZ__AI2)1/2

F(A)=—

(10)

In Ref. 28 a Ginzburg-Landau approximation to Eq. (10)
was developed, but since we do not have a situation with
small gaps, we calculate the integral numerically.

The free energy as a function of A,; for various junc-
tion voltages is plotted in Fig. 11 for the case I'tg— o
and T=4.2 K. Below eV =2(Ay,—A,)) (we will call this
region I), Eq. (1) has no solution and F is a monotonously
rising function. Above eV =2(Ay,—Ay;), Eq. (1) has two
solutions. The smaller A,; corresponds to a local max-
imum of F, the larger one to a minimum. At first, this is
a local minimum and the superconducting state is not
globally stable (region II), but as V rises, it rapidly devel-
ops into a global minimum (region III). This corresponds
to the steep decline of the lower branches in Fig. 6. In re-
gion IV only one solution of Eq. (1) remains and F is neg-
ative for all A,;. At yet higher voltages, the reverse se-
quence is followed through regions V (two solutions, glo-
bal minimum) and VI (two solutions, local minimum) un-
til finally a solution of Eq. (1) no longer exists and F rises
monotonously as for low voltages (region VII).

So the upper branches in Fig. 6 represent a minimum
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FIG. 11. Free energy F of Al as a function of the energy gap
at different junction voltages, I'rp=o, T=4.2 K. The
divisions into the regions I-VI is explained in the text.

in the free energy of Al in the superconducting state, but
this does not imply that the system will always be super-
conducting. In regions II and VI where the supercon-
ducting state is not globally stable, this is evident. In re-
gions III and V, the superconducting state is thermo-
dynamically stable, but the system has to overcome an
energy barrier when it is initially in the normal state.
Consequently, in these regions the actual thermodynamic
state depends on the history of the system. Only in re-
gion IV is the Al certainly superconducting.

These considerations imply that the I-V characteristics
in Fig. 10 are deceptive. Starting from V=0, we have let
the Al jump to the superconducting state as soon as re-
gion II was entered and let it jump back to the normal
state only as region VI was left. In reality, the picture is
more complicated, as illustrated in Fig. 12 for the case
I'rp=c and T=4.2 K. As Vincreases, the Al is not su-
perconducting in region II, while it definitely is in region

05 .
T=42K /
_ VIl
E
3
— i— — v Vo v
I 15100 LG YN 2(A#A, )
0 L — ( Nb Al). o/ oAl
26 28 3.0 32

Voltage (mV)

FIG. 12. I-V curve for I'rp =2, T=4.2 K, showing hys-
teresis effects around regions II-III and V-VI. The arrows in-
dicate the way the curve is traced in a current-biased experi-
ment. The location of the current steps is not fixed.
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IV. The jump to the superconducting state occurs some-
where in the intermediate region III, but since this is a
probabilistic process, the corresponding step in the I-V
characteristic is not at a fixed voltage. Experimentally,
this may be hard to see because region III is quite nar-
row. As the voltage is further increased, the Al will
remain superconducting at least until region VI is en-
tered. Somewhere in region VI the system jumps back to
the normal state, but again the voltage at which the jump
in the I-V characteristic occurs is not fixed. Finally, in
region VII the system is normal. Scanning the voltage in
the opposite direction gives a slightly different picture.
The Al now remains normal in the region VI, and the
jump to the superconducting state occurs somewhere in
region V. Likewise, the superconducting state is main-
tained through region III and the system reverses to the
normal state somewhere in region II.

As a result, hysteresis could occur at both steps in the
I-V characteristic. Consequently, the labeling of the volt-
ages where the jumps occur given in Ref. 4 and in the
previous section must be modified. The subgap step ap-
pears not at eV =2(Ay, —A,)), but at slightly higher volt-
age. The second step does not appear at eV =2Ay,, as as-
sumed by Blamire et al.,* nor at eV =2(Ay,+A,), as
suggested in Fig. 10, but somewhere in between.

We should point out that the hysteresis effects predict-
ed here are different from the hysteresis and various
jumps in the I-V curve reported in subsequent experi-
ments with Nb/AlO,/Al/AlO,/Nb junctions.”’ The
latter are observed only below the equilibrium 7, of the
Al layer where supercurrents occur in addition to a none-
quilibrium distribution of quasiparticles. This is outside
the scope of the present discussion.

VI. SUMMARY AND CONCLUSIONS

We have discussed the mechanism of energy-gap
enhancement in superconductors within the context of a
simple symmetric SINIS double-barrier tunneling model
under the conditions of high interface transmission and
weak inelastic scattering. Depending on the balance be-
tween injection and energy relaxation, a nonequilibrium
energy distribution of electrons in the middle N region
occurs. When the middle electrode is in the normal state,
this leads to a current deficit at asymptotic voltages,
which scales with the superconducting energy gap as a
function of temperature.

When the middle electrode is a superconductor S’ with
a low critical temperature, a nonequilibrium energy gap
in the quasiparticle excitation spectrum can develop. The
gap enhancement is calculated by solving the equation for
the nonequilibrium distribution function and the BCS
gap equation self-consistently. We have calculated the
dependence of the nonequilibrium gap on junction volt-
age, temperature, and nonequilibrium conditions for
Nb/AlO, /Al/AlO, /Nb tunnel junctions. It is found
that an energy gap can be sustained up to temperatures
several times the equilibrium T, thereby confirming the
recent experimental observations of such a large effect.

Calculated I-V curves reproduce well the current steps
occurring in the measured characteristics near the
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characteristic voltages 2(Any,—A,) and 2(Ay,+Ap)).
The original analysis given in previous papers®” > is
refined and supplemented by including considerations
concerning the thermodynamic stability of the nonequili-
brium superconducting state. A possible small hysteresis
effect near the two step voltages is predicted. More ex-
tensive gap measurements would provide interesting test-
ing materials for the present model.

As the SINIS configuration proves very effective in ex-
tracting quasiparticles, we may consider the recurring
question as to what limits the temperature up to which a
nonequilibrium superconducting gap can be sustained.
From the above three essential features for achieving a
large effect can be identified: (i) a large gap in the outer S
electrodes to be able to sweep out the quasiparticles over
a large energy range, (ii) a high injection and extraction
rate, and (iii) slow inelastic relaxation in the middle elec-
trode. It is a fortunate coincidence that the development
of a well-controlled Nb tunnel junction technology has
produced as a by-product Nb/AlO,/Al/AlO,/Nb junc-
tions that turn out to be virtually completely optimized
on all these three points. In fact, it is hard to imagine a
better junction design if one sticks to low-temperature su-
perconductors.
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However, it can be seen from the BCS equation that
the temperature in itself is not a limiting factor for gap
enhancement, assuming that the strength of the pairing
interaction remains unchanged. Consequently, it should
in principle be possible to achieve gap enhancement at
even much higher temperatures by using a material with
a much larger gap than Nb for the outer electrodes.
High-T, superconductors and even semiconductors are
obvious candidates. The latter are particularly advanta-
geous because they offer large gaps of the order of ~1
eV. This scheme has in fact been envisaged as far back as
1973 by Aronov and Gurevich.® With the immense pro-
gress in semiconductor fabrication technology since then,
the fascinating prospect of such a semiconductor-
superconductor-semiconductor junction appears now
within reach.
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