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Staircase dynamics of Josephson-junction arrays
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We present ansatz dynamical equations for current-driven two-dimensional square Josephson-junction
arrays with magnetic flux per unit plaquette f such that the ground states form "staircase"
configurations. For f =p /q, we need only (q + 1) variables to specify a dynamical staircase state; a large
reduction is thus achieved in computing time. I Vcur-ves for f=

—,
' and —', obtained from these equations

for dc plus ac driving are identical to those from simulations of lq X lq arrays. We see fractional Shapiro
steps for dc plus ac current driving as well as much weaker subharmonic Shapiro steps in some cir-
cumstances. In the limit of low-frequency and low average voltage, one can further reduce the staircase
equations to an approximate single-junction equation with an almost-sinusoidal supercurrent function,
which is consistent with the appearance of fractional steps and weak subharmonic steps. We also find
suppression of fractional harmonic stepwidths relative to integer harmonic stepwidths in the high-
frequency limit.

I. INTRODUCTION

V~=n NAco

2e
n =0, 1,2, . . . ,

corresponding to uniform phase locking of all junctions
in the array to the driving ac current. On these Shapiro
steps, the voltage per junction V =nfl~/2e. Further fine
structures are found when a finite magnetic field is ap-
plied perpendicular to the array with flux per unit cell
@=f@o, where No is the superconducting flux quantum
Co=bc/2e and f is a rational fraction f =p!q, with p
and q relative primes. These new step structures, called
"fractional giant Shapiro steps, " are observed at voltages
of

n %fico

2e
n =0, 1,2, . . . . (1.2)

We can define a winding number v by v=2eV/Ace. In-
tegral values of v correspond to integral steps; values of v
for which qv is integral correspond to fractional steps.
All other rational values of v correspond to subharmonic
steps.

Numerical simulations based on a coupled resistively

A Josephson junction driven by an external dc and ac
current exhibits Shapiro steps in its time-averaged I-V
curve; these steps consist of finite intervals of dc currents
with the same time-averaged voltages of n Ace/2e, where n
is an integer and co is the frequency of the external ac
driving current. ' Recent experiments have demon-
strated an interesting generalization of this single-
junction phase locking to two-dimensional square arrays
of such junctions of linear size N-100 —1000 junc-
tions. When the external magnetic field is zero, giant
Shapiro steps appear in I-V curves of these N X N arrays
at voltages satisfying

shunted junction (RSJ) model (see Sec. II for description)
have reproduced the main features of these experimental
results; a proposed phase locking between the q X q
periodic vortex configuration of the ground state and the
external driving current explains, at least qualitatively,
these results. ' In general, however, analytical
confirmation of these results is dificult due to the non-
linear nature of the coupled equations, especially for
current-driven arrays. Although voltage driven arrays
were analyzed by Halsey, it appears dificult to make con-
tact with the experimental current-driven arrays using
this approach. '

Recent Rzchowski, Sohn, and Tinkham considered the
dynamics of a fully frustrated array (f =

—,
'

) and obtained
an effective single-junction equation in the low-frequency
limit. " This equation explains the existence of fractional
Shapiro steps, and they were also able to describe the be-
havior of the stepwidths as the external driving frequency
is varied. "'

In this paper, we study the dynamics of a Josephson-
junction array in more general "rational" magnetic fields
f =p/q in which the static ground state has a quasi-one-
dimensional form, possessing "staircase" symmetry. We
assume that the dynamical state preserves the staircase
symmetry at all times. We first construct a static state
with nonvanishing overall current by twisting the phases
of the ground-state configuration such that staircase sym-
metry is still preserved by this current-carrying state. See
Ref. 13 for details. For f =p/q, (q +1) independent
variables are needed to specify a generalized current-
carrying staircase state. In order to incorporate the
time-dependent phase dynamics of Josephson-junction ar-
rays, we simply convert these phase twist parameters into
time-dependent dynamical variables and apply the
current conservation condition at all nodes of the array.
We thus obtain a system of ansatz dynamical equations
for a Josephson array, which may be termed "staircase
equations. "
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F(g) =ei sin(qit)+te2 si (2nqg)+ (1.3)

If the effective normal current is not very different from
its single-junction form A'P/2e, we can think of a q Xq
cell as representing an effective single junction with P as
its phase variable. Then the above form of the effective
supercurrent explains the appearance of fractional giant
Shapiro steps. I-V curves obtained from integration of
the staircase equations show weak subharmonic steps un-
der favorable conditions, as originally predicted in Ref.
10. We can attribute this to the small higher harmonic
terms in the effective supercurrent function.

These conclusions are based on the dynamics of two-
dimensional square arrays with current driving in direc-
tions parallel to square lattice directions. The staircase
equations also provide a framework for analyzing the ar-
ray dynamics for driving currents in arbitrary directions.
This general case is complicated by the appearance of
two nonequivalent staircase dynamics that are compati-
ble with a given external driving current, which arise
from the fact that the original staircase states have a sym-
metry different from that of the underlying square lattice.
The question of the global stability of these two different
modes cannot be resolved using our methods. ' ' In
the case of diagonal current driving, we find that there
exist mode-locked solutions corresponding to fractional
Shapiro steps, but these seem to be only locally stable.

In Sec. II, we derive the staircase dynamical equations.

Since this set of reduced staircase equations is the re-
sult of imposing a symmetry constraint on the current
distribution in the array, any solution of these ansatz
equations will be a possible solution of the full array
equations. Of course this does not resolve the question of
the stability of these solutions.

In order to check whether these staircase ansatz solu-
tions can actually be realized in the dynamics of the full
two-dimensional array equations, we performed simula-
tions of q Xq Josephson-junction arrays. For systems
with f =

—,
' and —', under dc plus ac driving parallel to a

square lattice direction, time-averaged I-V curves from
these simulations were identical to those obtained by in-
tegrating the staircase equations. We also performed
simulations on 2q X2q arrays in order to check the stabil-
ity of the staircase solutions. We found that the staircase
solutions were stable, at least for the parameters used in
these simulations.

The natural frequency scale for this problem is
co0=2eI, R/A, where I, is the junction critical current,
and R is the normal shunt resistance of a junction. In the
limit of low driving frequency co &(coo and low voltage,
we can further reduce the staircase equations into an
effective single-junction equation for an overall phase
difference P (averaged in the direction transverse to the
current Ilow) across a q X q array. In general, the
effective supercurrent term appears only in implicit form,
which must be obtained using numerical methods. We
find that the effective supercurrent function in this adia-
batic limit has an almost-sinusoidal form with small
corrections from higher harmonics. Defining the average
phase difFerence g per single junction by P=qg, the
effective supercurrent function is

In Sec. III, we discuss the effective supercurrent function
for a q Xq array; the results of this section are especially
useful in the limit of low voltages and low driving fre-
quencies. In Sec. IV, we discuss some peculiar features of
diagonal current driving; in Sec. V, we present simulation
results and compare them to the results of the integration
of the staircase equations. In Sec. VI, we conclude. In
Appendix A, we extend this method to a nonstaircase
state, the f =

—,
' state. In Appendix B, we discuss the

response of these states to inhomogeneities in the array,
which we expect to wash out the weaker steps.

II. STAIRCASE DYNAMICS

The ground-state configuration of a two-dimensional
Josephson-junction array in a magnetic field is deter-
mined by minimizing the Hamiltonian

(2.1)

with respect to the phases [8, ]. Here the sum is over
nearest neighbors and I, , denotes the critical current of
the junction between islands i and j. 3, is the line in-
tegral of the vector potential

A.dr,
Ac

(2.2)

which satisfies g p A,"=2rrf with the sum in the
counter-clockwise direction around a plaquette. We deal
with square arrays with uniform critical currents
I, , =I, . The extremum condition for H is equivalent to
the requirement that the supercurrent be conserved at
every site in the array; the supercurrent in the ij bond is
I, sin(8, —9 —A, ).

For some values of f, the ground states are "staircase
states" in which the supercurrent along the parallel diag-
onal staircases of the square array is constant. See Fig. 1 ~

In these states, junctions belonging to a staircase have the
same gauge-invariant phase differences. Suppose that we
denote the invariant phase difference for the mth stair-
case as P:—9; —8 —A; . Then it can be shown that
there are locally stable states with

=afm +a n[fm+a/vr]„—, m =1, . . . , q, (2.3)

where [x]„—:int[x + —,'] is the nearest integer function.
The ground-state value of a, which we denote by ao, is
determined by minimizing the total energy. It can be
shown that o.o=0 for odd q and ao=~/2q for even q. See
Ref. 13 for details. As mentioned already, these staircase
states are not the true ground states for all values of f.
But they are known to be true ground states for simple
fractional values f =

—,', —,', —', , —,', and —,'. In this section we

deal only with those systems with staircase ground states.
Now we want to generalize these static staircase

ground states into dynamical states with finite net
current, while still preserving the staircase symmetry. As
a first step, we construct static states with nonzero net
currents. For a state with net current along the direction
of staircases, we can simply put an arbitrary value for u
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The RSJ model (with no capacitance effect) is based on
the following formula for the current between islands i
and j:
I; = (0; —9 —A; )+I, sin(8; —

OJ
—A; ), (2.6)

FIG. 1. Staircase form of the phase configuration. Horizon-
tal and vertical junctions belonging to individual diagonal stair-
cases have the same invariant phase differences and currents
(directions of currents are denoted by arrows). Relative magni-
tudes of currents are determined by using current conservation
for a given value of the frustration f =p /q.

where the first term on the right-hand side is the normal
current through a shunt resistance R, which we assume
to be uniform in the array, and the second term denotes
the supercurrent contribution. From now on, for con-
venience, we will express time, current, and voltage in
natural units of fi!2eI,R, I„and I,R, respectively.

We now regard a and the [y ] as dynamical variables
and include normal current terms by applying the RSJ
model, thus obtaining

1I =—g P + sing cosy
q m=i

(2.7)
I~=y + cosP siny, m =1, . . . , q .

Here,

= rrfm +txo —rr[fm +ao/n]„+a(t),
in Eq. (2.3) instead of the ground-state value given above.
We will call this direction, parallel to the staircases, the o.
direction. In order to generate a state with net current in
a general direction, we have to form a state with a
nonzero component of net current along the direction
perpendicular to the staircase direction. This perpendic-
ular direction we call the g direction. To obtain states
with finite current along the y direction, one twists the
phases on successive diagonal planes parallel to the a
direction by constant angles y, m = 1, . . . , q so that the
differences of phase shifts for neighboring diagonal planes
are

Vm +m +m —1~ (2.4)

and

I,
sing cosy

q m=i

I,I~= [ sin(P +y )+ sin( —P +y )]x 2

=I, cosP siny

(2.5a)

(2.5b)

I and I& denote currents per junction in the a direction
and y direction, respectively. Note that current conser-
vation implies that I, cosP siny ( =I& ) cannot depend
on m; this uniquely determines [ y ] as functions of Iz.

We. require y + =y so that the current distribution
retains its q Xq periodicity. Again, see Ref. 13 for de-
tails. The following formulas for the net supercurrent
along the cz direction and the g direction can be used to
determine the parameters [a, y ] for static current-
carrying states:

I,I = g [ sin(P +y )+ sin(P —y )]
2q m=i

which can take unrestricted values. Equations (2.7) we
call the staircase equations. They are (q + 1) coupled
equations for (q+1) independent variables a and

y &, . . . , y . We can use these equations to find the phase
dynamics of an array with an arbitrary time-dependent
driving current. These dynamics are constrained by the
requirement that the state of the array retain the staircase
symmetry at all times. When f =

—,', it can be shown that
the staircase equations with current driving along a coor-
dinate axis reduce to the results of Rzchowski, Sohn, and
Tinkham. "

Most experiments and numerical simulations have ex-
amined the case of driving current I (t) (per junction) in-
jected parallel to a square lattice vector of the array.
This corresponds to the case of I =I =I(t)I2 in the
staircase equations. In this case, all possible orientations
of the current with respect to the staircase direction lead,
by simple symmetry arguments, to the same behavior.
For driving current I(t) in an arbitrary direction, there
are two possible inequivalent staircase dynamics due to
the asymmetry arising from nonequivalence between the
e direction and the g direction. For example, if the net
current is along a diagonal direction, we can have the
staircase direction either parallel to the driving current or
perpendicular to it. In these general cases, different
orientations with respect to the staircase direction do not
produce the same I-V curves. For the special case of
f =

—,', the directions parallel and perpendicular to the
staircase direction are equivalent.

III. LOW-FREQUENCY BEHAVIOR

We now consider in more detail the staircase dynarni-
cal equations in the limit of small frequency co and low
overall voltage. Our goal is to find a further reduction of
the system of staircase equations into an effective single-
junction equation. We put I =I~=I(t)I2, so that the
current driving is parallel to one of the coordinate axes.
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First we note that the average phase difference per junc-
tion in the direction of the driving current (the x axis) is

q

0= —& (0 +y. )
& m ——]

(3.1)

q

=g+ —g sin(P +y ) .
& m=j

(3.2)

The second term on the right-hand side in the above
equation, as it stands, depends on all the phase parame-
ters [ a, y ]. In principle, this sum can be expressed in
terms of g and its derivatives by using the remaining rela-
tions. These are

1
y + cosP siny =a+ —g sing~ cosyj,

g

Pl: 1) ~ ) g (3.3)

and

q

+y
& m=i

=a+ —g y
& m=i

(3.4)

It is very difficult to solve these equations for [n, y
in terms of a given g and its time derivatives. However,
in the limit of low frequency m and low overall voltage,
we can ignore higher-order terms in time derivatives.
After some algebra, we get the following effective equa-
tion.

I (t) = P+F (g)+ G (g)/+ 0 (co )

=0[1+G (4) l +F(0» (3.5)

In order to find an effective dynamical equation for f, we
can combine staircase equations with suitable weights to
obtain the following.

qI(t)= —g (P +y )
& m=&

1+—g ( sing cosy + cosP siny )
q

position shows that F(g) is close to a simple sinusoidal
form of sin(qg) with small higher harmonic corrections.
In particular, we find that if we write

F(P) = e, sin(qg)+ez sin(2qg)+ (3.7)

IV. SHAPIRO STEPS AND DIAGONAL DRIVING

As mentioned earlier, there are two physically ine-
quivalent modes of staircase dynamics for driving
currents that are not parallel to a square lattice direction.
We will now discuss the dynamics of arrays under
current driving in diagonal directions. In this case, the
driving current can be along the staircase direction (a
direction) or perpendicular to it (g direction).

First suppose that the driving current is in the o. direc-
tion. Then from Eq. (2.6), I&=0 and the [y ] are given
by y =0. Thus we obtain single-junction dynamics with
a purely sinusoidal effective supercurrent function for a.
This will give only integer Shapiro steps. The situation is
not so simple if the driving current is in the g direction.
We can numerically calculate the effective supercurrent
function in a similar way as that shown above for the case
of parallel current driving. Interestingly, we find that the
fundamental sinusoidal mode of the effective super-
current function in this case is F(g) = sin(qg/2), where

g is defined to be the average phase difference per junc-
tion along the current driving direction. We see that the
period of F(g) is doubled when compared with parallel
array dynamics. This is probably related to the fact that
the vortices are moving along diagonal directions and a
unit vortex shift in this mode involves crossing effectively
two junctions at a time. When this staircase form of dy-
namics is realized, we expect to find fractional Shapiro
steps at voltages satisfying the following relation

then for f =
—,', e&=0.265 and @2=—0.036; for f =—', ,

6& =0.155 and e2= —0.030. The fact that the lowest har-
monic mode is sin(qg) is consistent with the fractional
giant Shapiro steps found in the numerical work of Lee
and Stroud and Free et al. In addition to fractional
steps, we expect weaker subharmonic steps correspond-
ing to the small higher harmonic components in the
effective supercurrent function. However, as discussed in
Appendix B, these small steps could easily be washed out
by the effect of quenched disorder in real arrays.

where F (g) is the sum of supercurrent terms in Eq. (3.2),
2n Ace

q 2e
fl 1 ) ~ ~ o ) g (4.1)

q

F(P)= —g sin(P +y ),
& m=i

(3.6)

expressed in terms of the average phase variable g using
the constraint equations in the adiabatic limit.

F(g) is an effective supercurrent function because it
represents the averaged sum of supercurrents of all junc-
tions. The additional term G(g)P gives a first-order
correction that modifies the normal current. Except
when f =

—,', the constraint equations are quite complicat-
ed. Thus closed analytical expressions for F(g) and
G(g) are impossible to obtain. However, numerical eval-
uation of F(g) can be done with ease. Sine-series decom-

where V is again the voltage per junction. This means
that we would observe [q/2]„—1 fractional steps be-
tween any two neighboring integer steps. Here, [x]„,
denotes the integer part of x + —,'. For example, if f =

—,
'

(q =2), then [2/2]„—1=0, and there will be no fraction-
al steps. Iff =

—,
' then we expect one fractional step in be-

tween integer steps. However, these steps will only be
seen if these dynamical modes are stable.

It has been claimed that fractional steps do not exist
for diagonal current driving. ' ' In our simulations (see
below), we found that it was possible to observe mode-
locked solutions with the driving current perpendicular
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to the staircase direction; these solutions correspond to
fractional Shapiro steps. However, these solutions turned
out to be only locally stable. In order to develop such a
mode-locked solution at fractional voltages, the initial
configuration should be chosen to lie close to a staircase
ground-state configuration with the correct orientation.
Random initial configurations tended to develop into
dynamical states that were not mode locked. This
strongly hysteretic behavior seems to come from the two
distinct vortex configurations having different staircase
directions relative to the driving current. Thus in real ar-
rays, we expect it to be very hard to observe these weakly
stable fractional Shapiro steps.

V. INTEGRATION OF THE STAIRCASE EQUATIONS
AND SIMULATION RESULTS

o
PJ

l. 5

I.O-

0
0

X X

A A A A A A A
V V VV V VV V

VVYVV

0.2 Q.4 0.6

To see if staircase dynamics can be realized in the full
array dynamics, we compared the I-V curves obtained
from integration of the staircase equations with those
from simulations of the full array equations for q Xq ar-
rays with q X q periodic distributions of boundary
currents. The external driving current per junction is
chosen to have the form I(t) =Id, +I„sin(rot). We
chose the current to be parallel to the square-lattice
directions. We performed simulations on systems with
f =

—,
' and f =—', using simple Gauss-Jordan inversion of

the conductivity matrix and the Bulirsch-Stoer method of
time integration over a time of T ~ 10007p where
re=coo ' =(fil2eI, R) is the natural time scale for the ar-
ray dynamics. We used both the staircase ground state
and random states as initial configurations for the full ar-
ray simulations. We found no difference between these
two cases. Simulations on 2q X2q arrays were also per-
formed in the case off =

—,
' and the results were the same

as those for q X q arrays.
Figures 2 and 3 show I-V curves for these systems for

dc plus ac driving current for f =
—,
' and f = —', , respec-

FIR. 3. I Vcurve fo-r f= —with co=0. 3coo, I„=0.4I, . The
solid line represents results from the staircase equations, while
the diamonds represent simulation results; inset is the vortex
configuration of the ground state for f= — with crosses
representing vortices. V denotes the average voltage per junc-
tion.

tively using both the staircase equations and the full ar-
ray equations. We can see that I-V curves from the stair-
case equations are identical to those from the full q Xq
array dynamics. Fractional Shapiro steps are seen (for dc
plus ac current driving) and there are also weak subhar-
monic Shapiro steps. See Fig. 4 for an example of this.

We investigated the ac-current dependence and fre-
quency dependence of various Shapiro stepwidths using
the staircase equations. Results for the case of f =

—,
' are

shown in Figs. 5 anti 6. We can see that at a low frequen-
cy of co=0.3~p the stepwidths show "Bessel-law" behav-
ior quite similar to that of a single junction. At higher
frequencies, fractional step widths are considerably
suppressed relative to integer stepwidths in agreement
with the predictions of Rzchowski, Sohn, and Tink-
h 11,12

2.0—

AAAAAYYYVY

I.Q—

A A A A AA
YV Y Y Y Y Y Y

I.Q—

AAAAAAAAAAAA
Y YV Y Y Y V Y Y Y Y Y

AAAAAAAAAA
Y YVYVVY Y Y Y ~o

cU Q5

A AAA AA A A AA AAAYVYYYYYYVV VVV

0-
0 0.2 04 0.6 0.8

0 0.2 0.4 0.6 0.8 I.Q

FICJ. 2. I-V curve for f = —' with co=0.3coo, I„=0.6I, . The
solid line represents results from the staircase equations, while
the diamonds represent simulation results; inset is the vortex
configuration of the ground state for f =

3
with crosses

representing vortices. Note that V denotes the average voltage
per junction.

c

FIG. 4. I Vcurve for f =
—,
' obta-ined from the staircase equa-

tions when co=0.7coo, I„=0.6I, . Weak subharmonic Shapiro
steps appear at various voltages corresponding to winding num-
ber v= —', —', . . . ; the inset shows a detailed view of the subhar-
monic steps. V denotes the average voltage per junction.
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0.20—

Q. IO—

0
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4
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0.5
&ac

I.O

~ V=0
v ="/)

I. 5

the fractional stepwidths are suppressed relative to the
integer stepwidths.

In contrast to the case of the external current parallel
to a square lattice direction, staircase dynamics for diago-
nal current driving in the x direction turns out to be in
general only locally stable, which will make it hard to
realize fractional Shapiro steps in experimental situa-
tions.

It is possible to generalize the above approach to non-
staircase ground states. The case of f =

—,
' is discussed in

Appendix A. In principle, one might also analyze tri-
angular arrays with transverse magnetic fields using simi-
lar methods.
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APPENDIX A: f =
—,
'

VI. CONCLUSION

In this paper, a set of reduced dynamical equations was
presented for the dynamics of Josephson arrays under ra-
tional magnetic fields such that the ground states have
the staircase form. I-V curves from these reduced equa-
tions for dc plus ac driving were identical to those from
simulations of Iq X Iq periodic array dynamics with exter-
nal currents parallel to a square lattice direction. In the
limit of low-frequency and low average voltage, we can
further reduce this set of equations into an effective
single-junction equation with a nearly sinusoidal effective
supercurrent function. This effective supercurrent func-
tion is consistent with fractional Shapiro steps and much
weaker subharmonic steps. In the high-frequency limit,

In this appendix we describe a reduced set of dynami-
cal equations for a square Josephson-junction array with

f =
—,'. In this case, the ground state is no longer a stair-

case state. Nevertheless, this state has a translational
symmetry similar to that of the staircase states. Namely,
if we translate the whole vortex lattice by two lattice
units in the positive x direction (relative to the square lat-
tice) together with one lattice unit in the negative y direc-
tion, we recover the initial vortex lattice configuration.
See the inset in Fig. 7.

We assume that this translational symmetry holds in
dynamical situations, in addition to assuming 5 X 5

periodicity. At the least, we expect this assumption to be
valid for the mode-locked states.

Based on this assumption, we can consider, in analo-
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I

I.O
i
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FIG. 6. Frequency dependence of the first maxima AI,„of
stepwidths (as obtained from plotting the stepwidths in terms of
I„for a given frequency) for winding number v= —' (triangle), 3

(star), and 1(square). The lines are only guides to the eye. Frac-
tional stepwidths are suppressed at higher frequencies relative
to integer stepwidths.

I/l

FIG. 7. I Vrcvue for f=
—,
' whe-n co=0 3coo, I„=0..6I, . The

solid line represents results from the reduced equations, while
the diamonds represent simulation results; inset is the vortex
configuration of the ground state for f = —' with crosses

representing vortices. V denotes the average voltage per junc-
tion.
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gous fashion to the case of staircase states, the invariant
phase-difference configuration of the array with external
driving currents I and I . We can describe the dynam-
ics of the array by using the invariant phase differences
along horizontal and vertical junctions pertaining to only
one row of plaquettes with its length equal to 5( =q). We
denote these by P; and 0, , i =1, . . . , 5, respectively.
These ten variables cannot all be independent, since the
magnetic flux constraint for each plaquette must be
satisfied. We have four ( =q —1) independent constraints
corresponding to four independent plaquettes; as a result
we have six independent phase variables, which describe
the dynamics of the array.

The four constraints are

~v+44 ~i 4t =�2~-
f~3+� ~~ 42=2~f-

84+p, —8, $,=27—rf,
Hs+tt2 —

H~
—$~=2trf .

(A 1)

J, , =P, + sing, ,

Now, in order to write the time-dependent dynamics of
the array, we use current conservation for each island in
addition to requiring that the total current equal the
external driving currents I,I . If we denote the current
along horizontal junctions and vertical junctions by J,
and J, i = 1, . . . , 5, respectively, then, in reduced units,
we have

for a 5 X 5 array with the boundary condition of periodic
current distribution when dc plus ac current is applied
parallel to a square lattice direction. We see good agree-
ment between the two results.

APPENDIX B:
INFLUENCE OF QUENCHED RANDOMNESS

In this appendix, we will analyze the effect of inhomo-
geneity of normal-state resistances R on the array. We
will show that although low-order, wide steps should sur-
vive such inhomogeneities; high-order, narrow steps will
be washed out by these effects. ' Since the subharmonic
steps predicted above are quite narrow, they will thus
probably be unobservable in any real experiment.

Suppose that we assume that a junction array is in a
locked state, with fixed voltage differences V correspond-
ing to the pure array Shapiro steps on every junction of
the array. Because the step corresponds to a phase lock-
ing of the oscillations corresponding to the voltages with
the ac driving, we regard the time-averaged voltages as
being fixed, and not responding to the quenched disorder.
Because the resistances are no longer homogeneous, these
fixed voltages will now lead to excess normal currents
i„—V6R/R at the nodes of the array, where R is the
average resistance, and L. is a typical variation in the
resistances. Now consider a region of area L L, with

L,I the characteristic dimensions of the region perpen-
dicular and parallel to the net current flow. The total
normal current generated in this region will be

J;=O;+ sinO, .
(A2)

I„(L„,L ) — QL„LV5R
R

(Bl)

=1I =—
X

5

g J„, ,

Therefore, current conservation implies

Jy ] +J 4 J 3 +Jy 4

J 2+J 5=J 4+J 5,
J 3+J i=J 5+J
J 4+J„2=J i+J ~,

And the constraints on the total current give

(A3)

This current must flow through the region boundary
entirely as supercurrent, or else the original assumption
that the voltages are locked is incorrect. In the direction
parallel to the net current flow, an additional current per
bond of order AI, where AI is the step width, can flow
without moving the array locally off the current step. In
the direction perpendicular to the net current, the max-
imum current per bond is of the order of Io, where Io is
the zero-temperature critical current of the array at that
value of f for dc driving. Thus the total current that can
flow through the boundary as supercurrent is

1I =—5

g J. . .
(A4) I,(L„,L )-L EI+L Io . (B2)

where I and I are the driving currents.
Eqs. (A3) and (A4) together with the four constraints

[Eq. (Al)j constitute the complete set of equations for the
reduced dynamics of the array with f =

—,'. Figure 7 com-
pares the I-V curve obtained from the reduced set of
equations with that obtained from full array simulations

If we realize that we must have I„(I,for domains of all
shapes and sizes, we obtain the criterion for step stability,

QIob, I & V
6R
R

(B3)

This implies that the higher-order steps, for which EI is
small, will be washed out in any real experiment.
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