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We develop a large-N expansion for Gutzwiller projected spin states. We consider valence-bond
singlets, constructed by Schwinger bosons or fermions, which are variational ground states for quan-
tum antiferromagnets. This expansion is simpler than the familiar expansions of the quantum
Heisenberg model, and thus more instructive. The diagrammatic rules of this expansion allow us to
prove certain identities to all orders in 1/N. We derive the on-site spin-fluctuations sum rule for
arbitrary N. We calculate the correlations of the one-dimensional valence-bond solid states and the
Gutzwiller projected Fermi gas up to order 1/N. For the boson case, we are surprised to find that
the mean-field, the order-1/N, and the exact correlations are simply proportional. For the fermion
case, the 1/N correction enhances the zone-edge singularity. The comparison of our leading-order
terms to known results for N = 2 enhances our understanding of large-N approximations in general.

I. INTRODUCTION

The use of large-N approximations to treat strongly
interacting quantum systems has been very extensive in
the last decade. The approach has originated in particle
physics, but has found many applications in condensed
matter systems. Some notable examples are the SU(N)
quantum Heisenberg model, i 2 the (closely related) non-
linear cr or CP models, s the Anderson and Kondo
(Coqblin-Schrieffer) models, s s and the two-band Hub-
bard model for cuprate superconductors. 7

Generally speaking, the parameter N labels an inter-
nal SU(N) symmetry at each lattice site. In most cases,
the large-N approximation has been applied to treat spin
Hamiltonians, where the symmetry is SU(2), and N is
therefore not a truly large parameter. Here lies its pri-
mary weakness, since in most cases the N & 2 models are
not physically realizable. Nevertheless, the 1/N expan-
sion provides an easy method for obtaining simple mean-
field theories. These have been found to be either surpris-
ingly successful, or completely wrong depending on the
system. For example, the Schwinger boson mean-Field
theory works well for the quantum Heisenberg model,
except for the half-odd integer antiferromagnet in one
dimension. The latter is better described by a fermion
large-N approximation. It is important to investigate the
conditions which allow certain large-N generalizations to
yield a "better" mean-field theory for a particular N=2
system.

In contrast to spin wave expansions about a broken
symmetry state, the large-N approach can describe both
ordered and disordered phases. At N = oo, the generat-
ing functional is dominated by its saddle point, which
is a noninteracting mean-Geld theory with few varia-

tional parameters. The variational equations and the
leading-order correlations are in many cases analytically
tractable.

The corrections to the incan-field theory are given by
Feynman diagrams, where the "interactions" are me-
diated by random-phase approximation (RPA) matrix
propagators. It is hard in most cases to compute these
diagrams even to first order in 1/N, which is why they
have been determined only in a few select cases.

In this paper we shall start by deriving a new and sim-
plified version of the large-N expansion suitable for eval-
uating spin correlations in constrained variational wave-
functions. These states have been used as trial ground
states for various antiferromagnetic Heisenberg models.
The exact calculation of their correlations is not feasi-
ble in most cases. In one dimension, two cases which
have been solved analytically are the valence bonds solids
(VBS), and the Gutzwiller-projected Fermi gas (GPFG).
We shall make use of these exact solutions in this paper.

It is our primary purpose to study the properties of
the 1/N expansion by using the constrained states as toy
problems. Their 1/N expansion differs from that of, e.g. ,
Ref. 1 in two respects: (i) Here, the generating functional
has no time dependence and Matsubara sums and (ii)
there is only one fluctuating Beld per site, the constraint
field A, and no Hubbard-Stratonovich Belds. Thus, we
study the "pure" eKects of the constraints, without the
interactions efFects of the quartic Hamiltonian. These
features simplify the evaluation of 1/N corrections con-
siderably.

This paper is organized as follows. Section II intro-
duces the valence bonds states. Section III introduces
the Gutzwiller-projected Fermi gas states. Section IV
defines the generating functional of the spin correlation
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II. SCHWINGER BOSONS
VALENCE BONDS STATES

Schwinger bosons describe spin operators in a rota-
tionally invariant formulation. The standard SU(2) spin
operators are given by two commuting bosons a, b at each
site as follows:

S; = 2(ata, —btb, ),
S+ =atb, ,

S,. = bta;.
(2 1)

The spin size s is determined by projecting the states
with the Gutzwiller operator 'P, (Ref. 8) onto the sub-
space which obeys the local constraints at all sites

functions for both bosons and fermions states in a unified
notation. Section V derives the 1/N expansion of the cor-
relation functions and describes the diagrammatic rules.
Section VI applies the diagrammatic rules to prove three
identities to all orders in 1/N: the absence of charge
fluctuations, the sum rule for on-site spin fluctuations
and the absence of zero momentum correlations. Section
VII describes the results of the mean field and 1/N or-
der spin correlations for the one dimensional VBS and
GPFG states. The most surprising result is that for the
VBS states of integer spin, the mean field, O(1/N) cor
rection, and the exact result for N=2 are simply propor-
tional. Section VIII summarizes what we have learned
from our approach in the context of large-N approxima-
tions in general. It also lists some conjectures and open
questions, which emerge from this study. Appendixes A,
B, and C fill in some technical details which have been
used to derive certain equations in the text.

Equations (2.2)—(2.5) can be generalized to SU(N)
representations using N flavors of Schwinger bosons
a,m, m = 0, . . . , N. In order to construct symmetric
forms in the mean-field wave function we again restrict
ourselves to bipartite lattices, and define the SU(N) gen-
eralization S;~~ of spin operators (2.2) as

't—a, , a~m, ieB, (2.6)

N). *-
m=1

= n, =Ns. (2.7)

¹ is an integer, where s is a generalized "spin size. "
The SU(N) generalization of our mean field wave func-

tion (2.5) is

N

lu) = exp —) u,, ) a,. a, Io).
-=1

(2.8)

We list some essential properties of these states in Ap-
pendix A.

It is easy to show that for any m, m', and bond (i, ji,)
we use the definitions (2.6) and find that

N

) S;,) at „at,„=O,

) S, lu) =0.
(2.9)

where we have generalized the SU(2) sublattice rotation
(2.4) to SU(N).

The local constraints generalize to

a&aj + b& bj ——n«+ ng, = 2s (2.2)

A Schwinger boson mean field wave function is defined
as

Iu) = exp —) u,, (atbt —btat) Io), (2.3)

aq —+ —b~, bq
—+a~, j zB, (2.4)

andf rioeA, j EB, u~, ~ —u~, andu, ~
—+u;~, so

that u transforms into a symmetric matrix. Under (2.4)
the mean-field wave function transforms into

where u, z
———u~, are either determined by some mean-

field Hamiltonian, or are taken as free variational param-
eters. It is easy to verify that due to the invariance of
the forms atbt —btat under global spin rotations, Iu) is
a total singlet. If we restrict u,~ to be bipartite, i.e. , to
connect only between two distinct sublattices, say A and
B, then we can redefine the operators on sublattiee B by
sending

Relations (2.9) show that Iu) is globally SU(N) invariant,
and is therefore a singlet of total spin.

We shall restrict ourselves to translationally invariant
states, which in Fourier representation are given by

N

lu) =exp —) uk). ak a—k Io)
kgBZ m=1

(2.10)

A. The Gutzwiller projection

The mean-field states (2.8) and (2.10) includes difFer-
ent spin sizes at each site. In order to construct a bona
fide state of spins s, we must project out all other spin
sizes using the Gutzwiller projector

(2.11)

where BZ is the first Brillouin zone, uk = p. e'"~us~,

ak ——JV & Q. e'"~at, and lV is the number of lattice
sites. We also define Sk~ ~ = Q. e'"~S~.~~ .

Iu) —+ exp —) u,~(ata" + btbt) lo). (2 5)
which enforces the constraints (2.7). By expanding the
exponential in (2.8) and applying the Gutzwiller projec-
tion we obtain
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(b) (c)

NB=1 Ns=6

FIG. 1. Graphical representation of valence bonds con-
figurations, which contribute to (a) resonating valence bonds
states (RVB) on the square lattice. (b) Valence bonds solid
on the square lattice. (c) Valence bonds solid on the chain.

states are sums over many valence bonds configurations,
which were denoted as "resonating valence bonds" (RVB)
by Anderson. One configuration in the square lattice
RVB state is depicted in Fig. 1(a). The RVB state
was proposed by Andersonii and others as trial ground
states for frustrated quantum antiferromagnets and high-
T, superconductors. The number of dimer configurations
grows exponentially with A', and the overlap between
different configurations is finite. The computation of
the spin correlations in the dimer and longer range RVB
state was carried out numerically by I iang, Doucot, and
Anderson using bipartite bonds of various range. They
found that the RVB states with u,~ 1/r, have long-
range order for o, & 5.

l
u), =P,

,
—) u,, ) a,' a,'

bI -=1

1 )-
Pb f

(ig}EC
u, , ) a, a, lo), (2.12)' )

where vt, =
2 JVNs is the total number of bonds in the

projected state and C~ labels the different configurations
of vb bonds on the lattice, where exactly Ns bonds ema-
nate from every site. In Fig. 1 we depict several configu-
rations for various (u,~) and values of Ns. lu)„which is
a sum over such configurations, is called a "valence bonds
state. "

Since all S, commute with the constraint, lu), is
also rotationally invariant and a total singlet. If all the
bond parameters are non-negative, u,~

& 0, the wave
function (2.12) satisfies the Marshall sign criterion. s We
recall that the ground state of any bipartite Heisenberg
antiferromagnet must be a total singlet and obey Mar-
shall's theorem.

The correlation function in the Gutzwiller projected
state is defined as

I

(&) g) = (Simm'Sjm'm) (2.13)

and its Fourier transform is

S (k) = ) S (0, j) exp(ik j)
2

1
(S—kmm' Skm'm) r (2.14)

where for any operator 0 we denote

(&) —= (ul&.&&.lu)/(ul&. lu) (2.15)

Resonating valence bonds (s = s)

Several special cases have received particular atten-
tion in the literature. For K = 2, s =

2 and nearest
neighbors u~, ~l, lu), is a superposition of all dimer con
figurations. In one dimension there are only two such
(Majumdar-Ghosh) configurations, o which have an ex-
ponentially small overlap for large lattices. The spin cor-
relation in one dimer state vanishes beyond the nearest-
neighbor range. In two and higher dimensions, s =

8. Valence bonds solids, integer s

Af8eck, Kennedy, Lieb, and Tasakiis (AKLT) found a
class of extended SU(2) Heisenberg models for which the
exact ground states are valence bond solid (VBS) states,
given for SU(N) by

l

@vBs) ( N

( ) aI a,'. lo),
(iji (m=1 )

(2.16)
M = Ns/z,

where (ij) denotes nearest-neighbor bonds and z is the
lattice coordination number. The condition that M must
be an integer restricts the size of the spin and lattice
for which such states can be defined [see Figs. 1(b) and
1(c)]. For example, the SU(2) model in one dimension
allows s = 1, 2, 3. . . . On the square lattice, only even
spins s = 2, 4, 6. . . are allowed. The correlation func-
tion s+ (i j) (@vBs

l

s~+s l @vBs ) / (@vBsl @vBs ) for
one dimension has been calculated for all s by Arovas,
Auerbach, and Haldanei (AAH) to be

(i j) =(—1) exp[-~. lj-ilj, 2(s+1)'
3

2(s + 1)
)

r, = ln(1 + 2/s),

S.-(a) ='(.+1)3 1 + cos(lc) +
( +2)

(2.17)

The real-space correlations decay as a pure exponential,
with 1/K, as the correlation length. l@vBs) is a "spin
liquid" ground state of the kind that was predicted by
Haldane 5 using the large-s, nonlinear o. model analysis
of the Heisenberg antiferromagnet. AAH also found a
Haldane gap in its single-mode excitation spectrum.
The correlations of VBS states on higher dimensional
lattices are those of a classical logarithmic Heisenberg
model, at temperature T = z/s. This implies that for
large enough s, the VB states in three dimensions have
long-range Neel order. The calculation of Eq. (2.17) was
performed in the SU(2) coherent states basis. The gen-
eralization of this calculation to N ) 2 has not yet been
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achieved. In the following we shall apply the large-N
expansion to this problem.

It may be verified that the one-dimensional Schwinger
boson state ~u ), with

u = 6 u = 2 cos(k), (2.18)

is dominated by the VBS state in the limit of infinite
lattice size JV:

(Mt)&Az
~

-vBs) ~@vBs) + (2.19)

where (iII'~iII') c ~ for some c & 1. The exponentially
small corrections are of non uniform valence bonds con-
figurations, where some bonds have higher powers of atat
than others. Consequently, we expect that in the ther-
modynamic limit JV —+ oo the spin correlation function
in the state ~u ), is given also by (2.17).

lV

) n, =n, =Ns, (3 2)

where Ns is an integer, which by the Pauli principle must
be less than or equal to N. Using the fermion operators
one can construct a global SU(N) singlet by the following
state:

t'

Io),
(k) &A:~

(3 3)

where k~ is the Fermi momentum which is chosen to
include Ns states per site in the Fermi volume. 7,
Gutzwiller projects onto the subspace which satisfies the
constraint (3.2). uk are variational parameters.

It is possible to write (3.3) in an exponential form as
follows:

III. GUTZWILLER-PROJECTED FERMI GAS

grimm':— +imaim' ) aims m~++jml+im = ~ij ~mm' ~

(3.1)

The local constraint on the fermion occupation is

In this section we introduce another important family
of variational states using fermions rather than Schwinger
bosons, to represent the SU(N) spin operators

lu). =~. exP —).uk~(&~ —Ikl) ).ai', &'k Io)
k m

(3.4)

where uk = —u k. In real space (3.4) are analogous to
the Schwinger boson states, defined in (2.11) and (2.8),
where u, ~

= JV P~k~&A,
uke'"~' ~, u~, = u,i. Awe—ll-

known case is the Gutzwiller-projected Fermi gas for s =
2i (i.e. , a half-filled Brillouin zone),

@ "
) =&~ exp -).sgn(k)~(k~ —lkl) ) ~k ~'k lo)

k m

(3.5)

In real space ~@G G) contains long-range bonds u,~, ~i-
j~ && 1. Since the bonds are not bipartite, it does
not satisfy the Marshall sign criterion. This state is de-
duced from the mean-field theory of Baskaran, Zou, and
Anderson s for the Heisenberg antiferromagnet. In one
dimension, ~@+PF+) for SU(2) was found to be the ex-
act ground state of the Haldane-Shastry Hamiltonian,
whose interactions fall off as the second inverse power
of distance. This state has correlations, similar to that
of the ground state of the nearest neighbor Heisenberg
model. Haldane has also shown that the Haldane-Shastry
Hamiltonian and the nearest-neighbor Heisenberg model
share similar gapless excitation spectra.

Gebhard and Vollhardt have calculated the correla-
tion function of one-dimensional ~iIrG ) for N=2: s

IV. CORRELATIONS AND
THE GENERATING FUNCTIONAL

Z[j] = exp g rli jimm' immi
imm'

(4.1)

where ai are either bosons or fermions, ji are the
source currents, gi = 1 for fermions and for bosons

The spin correlations of ~u), can be derived from a
generating functional. The generating functionals for the
valence bonds states (2.11) and the Gutzwiller-projected
Fermi gas states (3.4) are formally very similar, and given
by

8+-(k) =--ln
i
1—

2 ( 7rp
(3.6)

j. , ieA
—1, ieB, (4.2)

which in real space decay asymptotically as a power law

(3.7)

where Si(x) is the sine integral function.

which takes care of the sublattice rotation of the SU(N)
spins (2.6). The functional derivatives of Z determine
the spin correlation functions. It is sufhcient to use sym-
metric source matrices j, = ji . Hence, j,~ and
j,~ ~ are not to be considered as independent, but should
be varied simultaneously when differentiating Z[j].
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The following relations can be directly verified from
(4 1)

6 lnZ
"Ii

bj, j=p
= ~mm'(nim) = ~mm'S~ (4 3)

which is a direct consequence of the SU(N) symmetry
in (2.8) and the constraint (2.7). The two-point spin
correlation function Eq. (2.13) is given by

in subsequent diagrammatic calculations. The matrix
elements of (4.7) are hard to evaluate in its present form.
Using an auxiliary constraint variable A; at every site, we
transform (4.1) to an integral

'P, = lim
~~0

+iA, (n, —Ns)
~

S-'(i, j) 2 —b

b2Z

~pi mm' ~Pjmm'
(4 4)

(4.8)

Additional terms generated by the differentiation in (4.4)
must vanish, since

(Simoom' Sjmgm') (4.5)

Equation (4.5) follows from the rotational invariance
of the wave function. It is easy to verify that
S,m~m. ~u), and S~mlgm~u), are eigenstates of the op-
erator P,. (S;mm —S,mlm~) with eigenvalues +2 and —2,
respectively. Therefore these two states are orthogonal
and (4.5) follows.

For m g m', the correlation function Sm+m (i, j) is an
SU(N) generalization of the usual SU(2) spin correlation
function S+ (i, j) = (Si+S. ). In rotationally invariant
states this function is related to the correlations of the
other SU(2) spin components by

S + (i, j) = 2(S;. S') = ~~(S, S~). (4.6)

The evaluations of Z and Smm (i, j) of Eqs. (4.1) and
(4.4) are complicated because of the Gutzwiller projector.
If it were absent, we could easily calculate Z as a matrix
element of an exponential bilinear operator as done in
Appendix A. In order to proceed, we must choose a con-
venient representation for the projector. The projector
can be represented as a limit of a strongly interacting
density matrix,

27r )

Now we can write the generating functional as

Z[j] = lim 'DA (u~ exp a~ (iA + j)a ~u)

'sr~ g a-,
x e (4.9)

where we denote the matrices

A =A,b,,'6 ~, j =q,j, .6,,'. (4.10)

a,. a, , n, =0 (4.11)

to combine the exponentials of the source terms and the
projector. Now we use Appendix A, to evaluate (4.9) as

Zj[] = lim DA exp(N8[A, j]),
(4.12)

8[A, j]
A A A

ln 1 —(use'"+&ue'"+'
LYTl

2

-is) A, ——) A,',

In (4.9) we have used the commutation of the spins with
the density operator,

'P, = lim exp
e~O ) (n, —Ns) (4.7)

Keeping e finite will help to control infrared divergences

where ( = +1 (—1) for bosons (fermions) and ut is the
Hermitian conjugate of the matrix u.

The correlation function is given by Eq. (4.4):

6 8[A, j) 68[A, j] 68[A, j]
2-b ~i &mm'~i 2mm' ~j~mm' ~j2mm' ) j=P

(4.13)

where 8[A] = 8[A, j] j=p

V. THE DIAGRAMMATIC EXPANSION
OF Z(2)

The multidimensional integration over BA is equivalent
to the difBcult combinatorical problem of evaluating the
correlations in the valence bonds state, e.g. , (2.12). This

is clearly seen by expanding the action in powers of e'~'
and integrating with the weights e '~'"'. The integrals
reduce to products of 6 functions, which select the terms
with Ns powers of u;j for any given site i. Summation
over these terms is very cumbersome in general.

In (4.12) and (4.13) the parameter N was scaled out
of the action 8. We shall evaluate the A integrals by a
saddle-point expansion which is controlled by the large-
ness of ¹ The functional 8[A] is expanded as a Taylor
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series about its minimum A; the coefficients of expan-
sion are independent of ¹ Since the wave function is
translationally invariant we shall search in the space of
uniform saddle points A, = A. A is found by requiring
that the linear variations vanish. We deBne e'~ = u.
The saddle-point or "mean-field" equation is S(n-2)

(extern&)

D

1 b'8[A] = [u ut u(l —(6 ut u) ]~~
—s = 0, (5.1) 2

s[A] =s(' —-) s"'A A s'"' (5.2)

where 8'"i includes only third- and higher-order terms:

which determines u[u, S]. We see that (5.1) implies that
u is real, i.e. , the integration paths of the variables A,
have to be analytically continued to cross the imaginary
axis at A = i ln(u). —Theterm []~~ in (5.1) istheaverage
number of particles of every fiavor in the (unconstrained)
state Iuu) (see Appendix A). Thus, the mean-field equa-
tion yields that the constraint is satisfied on the average.
If we define the unprojected state using 6u instead of
u, the mean-field equation (5.1) would be satisfied with
A = 0. Hence we shall use that convention for u and set
A=O.

We now expand 8, in powers of A to obtain

FIG. 2. Diagrammatic representation of the 1/1V' expan-
sion for the correlation function S(1,2). Thick circles denote
loops, wiggly lines are A propagators, and dashed lines are
external currents.

OO

s'"' = ) —'sI")
41 j.~ .j$~ ~1 ~A

n=3
(5.3)

8(") here depend parametrically on u. Diagrammatically
they are depicted as thick circles with n A vertices de-
noted by wiggly lines (see Pig. 2 ). Later we shall obtain
explicit expressions for 8(n~ in form of loops constructed
of Greens functions.

We also expand the preexponential functions in (4.13)

bs[A, j]
bj,

1 b2S[A, g]
~mm' ~)1mm' ~32mm'

j=O

/' OO
bmm'gl ' y ~ & 8(n+1)

l, , . .. , a 1 )
&1

n=1

OO
'gl jl2 y - & 8(n+2)

1j2jx1 jl ~ ~ j

n=O

n
~mm gi g - & ~(n+1)

~t 1 j'b1 j ~ . .j't~
n=o

(5.4)

where sums over repeated indices are assumed and we denoted Si = s. Here we use (4.12) to relate the derivatives
with respect to A to those with respect to j. Diagrammatically, we denote the current vertices (at points 1, 2) by
dashed lines as shown in Fig. 2.

The correlations functions can be evaluated by inserting the expansions (5.2) and (5.4) into (4.13)

S (1,2) = j)ij)2 S (1,2) +b~m, ~S (1,2)

where

(5.5)

S (1, 2) = lim Z

OO r .n
g(n)

l
&1j" j&n

i&an=3

oo

X A ) —', S,'",+,."
n=O

~ A,
„

~

( Ã (,)
A A

I exp
I

——8 AkAi
IZ1 &n, ki

S (1, 2) = lim Z
( oo

VA ) —', S'",", ), A, , " A,
n=O

( oo —'sI"'
i 1&.. . &in

n=s

8"+ A A2 jib j ~ ~ ~

exp ——s„A,Ai I.

(5.6)
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We disregard the contribution of the constant N8~ ~ in
the action.

The integrals in (5.6) are sums of multidimensional
Gaussian integrals. The Gaussian integrations contract

all A fields in pairs AkA~ bringing down a propagator for
each pair given by

A. Absence of charge fluctuations

Here we shall demonstrate that the constraint is im-
posed at each order in 1/¹ In other words, due to
the Gutzwiller projection the density fluctuations van-
ish identically after all diagrams of a given order are
summed, yielding

1D„=X,X, = ——S~'l
N tt' (5.7) (n, X) =N. (X) (6 1)

where the minus sign is due to the factor of i, which ac-
companies every A field. The propagator (5.7) is depicted
as a wavy line connecting two A vertices in Fig. 2. One
has to sum over all A contractions. The disconnected
parts of the diagrams serve to cancel the factor of Z
leaving us with the diagrams which are connected to one
or the other current vertices (a linked-cluster theorem).
Thus calculating any particular diagram involves multi-
plying loops 8&~i and propagators D, and summing over
internal lattice points. There are internal loops, created
by powers of 8'", and externa/ loops, coming from an
expansion of the preexponential functions (5.4). Inter-
nal loops must have at least three A vertices; external
loops have current vertices and might also have arbitrary
(including zero) number of A vertices. The order of any
particular diagram is given by

for an arbitrary operator A. It is instructive to see how
(6.1) is derived by the diagrammatic expansion. A cur-

longs to some ~~t~r~~l loop S~ + l, n
Let us first consider all the contributions with n ) 1.
We define a "tail" of a diagram as the combination of a
propagator attached in series to a loop S~ ~ which has
the operator ni on its other vertex. All diagrams can
be separated into two classes: ones with a tail, and ones
without a tail. It is easy to identify for each diagram
without a tail say R(ni, A), a counterterm R(ni, A) by
attaching atailto the ni vertex (See Fig. 3). By(5.7) the
two are of the same order p (they have the same number
of loops minus propagators) and they cancel precisely

(6.2)

(5.8)

S (1, 2) = ) N "S ~"l(l 2) (5.9)

where L is the number of internal loops [or the power L
of the sums in (5.6)], and P is the number of propagators
[half the number of A fields in (5.6)]. After grouping all
the diagrams at each order in 1/N we obtain the series

Thus, at any order p, the counterterms cancel the con-
nected charge fluctuation diagrams one by one. The only
terms in the expansion of (niA) which survive are the
disconnected contributions with ni on the loop S~il. An
important property of the diagram rules is the absence
of the counterterm to the 8~ ~ loop. Such counterterm
would involve an internal loop 8~ ~, which is not allowed
by the rules of our expansion. Thus (6.1) follows from
S&'& = .. q.E.D.

Similar rules govern the calculation of higher correla-
tion functions. One has to sum over all possible ways
of distributing the current vertices on the external loops.
Within each loop the m, m' indices of the external cur-
rents must be equal to the indices of other external cur-
rents, to allow nonzero values of the trace.

VI. IDENTITIES TO ALL ORDERS

The diagrammatic expansion of the 1/N series has spe-
ciat structure which attom us to obtain exact identities to
all orders in 1/¹A key feature is that the propagator
D of the constraint Beld A is none other than the inverse
of the square part of the action 8~2~. As a result we shall
show that the local constraints are exactly enforced to
each order in the expansion, i.e., there are no contribu-
tions to charge fluctuations when all terms of the same
order are considered. In addition we shall prove a sum
rule for the on site spin fluctuations for arbitrary N and
the absence of zero momentum off-diagonal spin correla-
tions.

B. Sum rule for the on-site spin fluctuations

if B g S ~, then R g S™.(6.3)

However, in S, m its contribution is partially canceled by

FIG. 3. Diagrammatic representation of cancellation of
charge fluctuations by counterterms, Eq. (6.2).

First we shall show that for SU(N) invariant states
there is a relation between two types of correlation func-
tions: diagonal S™and off-diagonal S + . Both func-
tions do not depend on the particular values of m, m'
since the wave functions are SU(N) symmetric. Due
to the h' coefficient in (5.5), S + is equal to SI.
Let S, be the connected part of the diagonal corre-
lation function. Any diagram which contributes to the
off-diagonal correlations also appears in S, , i.e. ,
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where in the fermion case we made use of equality n,
n, (( = —1). On the other hand, using (6.4) we can
write the on-site fluctuations as

(S,')= ) S ~ (i, i)+) [S™(i,i)+(~, )']
mmmm' m

N(N —1) + N
l

1 ——
l

S + (i, i) + Ns2.11
N)

(6 6)

Using (6.5) we find the desired identity

S ™(i,i) = s(1+ gs).
N

N+( (6.7)

For SU(2) this formula reduces to the known values

s s(s + 1) Schwinger bosons,
(S~+S, ) = &

1
2 fermions (s = 2).

(6 8)

In translationally invariant cases (6.7) gives a sum rule,
which is useful for checking the diagrammatic calcula-
tions at each order of 1/N separately. In momentum
space, the diagrams of order (1/N)" must obey

the counterterms, which are given by tails insertion. It
may be seen that the sum of any diagram R c S
and its counterterms, obtained by all possible ways of
insertion of tails, is equal to (1 —1/N)R~.

In addition to diagrams of the type R~ and their coun-
terterms, yet another contribution to S, is given by the
diagrams R~, which have the two current vertices on dif-
ferent loops 8("'+ l and 8("'+i), ni 2 & 2, and by their
counterterms R~. But the diagrams B~ must exactly
cancel with their countertermsf This is verifled by adding
a tail to one of the loops and seeing that the counterterm
is of the same order in 1/N due to the additional m sum-
mation for the loop which became an internal loop. This
proves that all the diagrams which do not cancel are of
the type R and the following important identity holds:

(i, i) =
I

1 ——
I

8 ~ (i, i).1)
(6 4)

Now we can calculate the onsite spin fluctuations. For
SU(2) we are familiar with the "spin square" operator S2,
which when projected to the 8 sector yields a diagonal
matrix of elements s(s+ 1). For larger N, its natural
generalization is

S, —:'Piv~ ) S~mm Sim m
mm'

= &ms ) (&im' (1 + (&im) (~mm' &im')
mml

=(N2s(1+ps) -qN) P~. , (6.5)

C. Absence of zero-momentum correlations

The last identity is a consequence of the singlet nature
of the wavefunction which implies that Sk 0 ~ lu), =
0. By using Eq. (2.14) we obtain from that

S ~ (k=0) =0, (6.10)

which holds of course at each and every order in the 1/N
series.

VII. CALCULATIONS OF LEADING ORDERS

In this section we calculate the spin correlation func-
/

tions 8m&m using the 1/N expansion. We start with an
explicit evaluation of the loops 8(") and propagator D.
In the cases of interest u is Hermitian. It is useful to
define the following Greens functions

uy = ('~ uG (+1 —('~ uu) . (7.1)

We also introduce the matrix A = 6,) (e'"& —1) and ex-
press the action (4.12) as

8P,]
=8('l —

—, ) T»(1 —u, A)

2

-is) X, ——) X,',

8( l = ——) Tr ln(l —p( ~ uu).

(7.2)

8(ol is a constant which we shall disregard.
Expanding the logarithm in (7.2) and using (5.1) to

cancel the linear term we obtain

where P' denotes that terms linear in A are excluded.
By equating terms of the same order in A in Eqs. (5.2)
and (7.3) we can relate the loops 8("l, n ) 2 to traces
over Greens functions u~. Diagrammatically, we denote
the Greens functions by thin sold lines. A closed loop
of Greens functions denotes a trace over lattice and p
indices. For a n A vertices 8("), there are contributions
from diagrams with 1 ( m ( n Greens functions, since
the function A yields all powers of A fields at the same
point. Due to Eq. (7.4) below, the loop 8(ii may be de-
noted diagrammatically in the same manner —as a closed
loop of one Greens function with one verte~.

The translational invariance of u makes it easier to
work in the momentum representation. The linear action,
or the mean-field equation (5.1), is explicitly given by

1 P~ ') 8 ~ '"'(k) =
l

—
l (—()" (1+0 )iN)

( + )22 P/' ) 1 (u2lu l2
k

(7.4)

p = 0, 1, 2, . . . . (6.9) The quadratic action in (5.2) is given by
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8, = —) (u~, u~. , +6~u~„)+6~e = —) u~, u~. , + b~s+ h~e,

-2
(7.5)

and the propagator is

D(&) = —[N~"'(q)] '. (7.6)

An important property of this expansion is that the low-
est order (mean field) correlation function Sm&m (o)(q)
is simply related to the quadratic part of the action:

s-~-'(') (t, &) = &,&,s(') (t, &),
(7.7)

S(2) (g + m'), Schwinger bosons,
Smarm' (0) (q)

g(~) (&) fermions,

where 7r = (vr, 7r, . . .) for a cubic lattice. The dia-
grams for Sm+ (o)(q) are shown in Fig. 4. At this
point we note that D(q) is singular for e ~ 0 since
S + (o)(q = 0) vanishes by (6.10). This causes dia-
grams which involve one or more propagators to diverge
as 1/e. A check on the correctness of the calculation
is that these "infrared" divergences must exactly can-
cel between diferent diagrams to yield a 6nite result for
lim, o S(")(1,2) for each order Ji separately. We shall
come back to this point in our summary.

The 1/N corrections for S + (k) are given by the
diagrams of Fig. 5. Solid lines represent factors of u~(k).
Each vertex conserves momentum, and indices p = +, —

A. Valence bonds solid correlations

The mean-field equation Eq. (7.4) for the valence
bonds solid state (2.18) is

dk 4u2 cos~(k)
2vr 1 —4uz cos2(k)

= S,

whose solution is

(7.8)

Qs(s + 2)
2(s + 1)

By (7.7) and (7.5) we obtain

(7.9)

of the solid lines. We must sum over internal momenta
and p. Diagrams with external currents 1,2 at the same
point denote an overall factor of bq2. Due to the can-
cellation mechanism described in Sec. VIA, the third
and fourth diagrams in the bottom row of Fig. 5 can-
cel against the fifth diagram. Thus by the same mech-
anism, there is complete cancellation between the last
four diagrams in the second row. We shall describe the
calculations of the remaining diagrams for the Scwhinger
boson and fermion cases separately, and defer technical
details to Appendixes B and C.

(p) (
2

"
dq cos(q) cos(k + q)= —2u + S.
2x [p —2ucos(q)][p+ 2ucos(k+ q)]

(7.10)

The integral is evaluated by introducing a new variable
z = e'& which transforms the integration over q into an
integration along a unit circle [z~ = 1 in the complex z
plane. Using (7.9) yields

given in Eq. (2.17). The factor s between (2.17) and
the mean-field result (7.11) is consistent with the factor
N/(N + 1) between the mean-field on-site fluctuations
and the exact sum rule, Eq. (6.7). This suggests that

Smarm'(0) (k) ( + 1)
1 cos(")

1 + cos(k) +
( +~)

(7.11)

This result is very surprising, since it is just proportional
to the exact result for N = 2 as found by Ref. 14 and

+ 2 +
)-

2

FIG. 4. The diagrams contributing to the loop 8 . u~
are mean-field Greens functions, defined in Eq. (7.1).

FIG. 5. The 1/N corrections to S ~ (k). See discussion
after Eq. (7.7).
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perhaps the exact N dependence of Sm+m (k) is given by
this simple multiplicative factor. Fortunately, we are able
to calculate the O(1/N) corrections and check this propo-
sition at least to the next leading order in 1/¹ This
calculation is described by the diagrams of Fig. 5, which
involve exchanges of one or two propagators D. The sum
of all diagrams was evaluated analytically using the sym-
bolic manipulation program MATHEMATICA. o The re-
sult, derived in Appendix B, is

Smarm'(r) (k) Smarm'(0) (k)N (7.12')

which will sum up to the simple relation

Smarm' (k) Smarm'(0) (k) (7)N+1 (7.14)

For N = 2 we have already seen that this conjecture is
correct. But, as we shall discuss in Sec. VIII, the under
lying reason for this relation is still a mystery

This result confirms the above hypothesis, but is far
from obvious. In fact, the separate 1/N diagrams have
infrared divergences of order e due to the diverging
propagators at momentum vr. In addition, the sepa-
rate diagrams have different correlation lengths than the
mean-field function, but these eKects somehow cancel by
summing att the terms of order 1/N, leaving us with
Eq. (7.12). It is highly tempting to conjecture that the
same relation holds to all orders, i.e. , that

1 P
Smarm' (P) (k) ~

~

Smarm'(0) (k)

»m S + ()(k)
kF —+p

(7.18)

When comparing (7.18) to Gebhard and Vollhardt's
result, Eq. (3.6), we find that the two expressions agree
very well in the small k limit, where they vanish with the
same linear coeKcient, but they deviate at larger k as
shown in Fig. 6. Equation (3.6) diverges logarithmically
near k = rr, while the mean-field result (7.18) has merely
a discontinuity in its derivative. This translates to a dif-
ference in the asymptotic power-law decay in real space,
between 1/~i —j~ of Eq. (3.7) and 1/~i —j~2 of (7.18).
There is a factor of N/(N —1) = 2 between their sum
rules as required by Eq. (6.7).

In Appendix C we calculate the 1/N diagrams for the
GPFG state. We obtain the result:

S S '( )(I )

(7.19)

In Fig. 6 we compare the functions Sm+m (o) (k),
(k)+S ~ ( )(k) and the exact result Eq. (3.6)

for N=2. We see that the 1/N correction improves
the mean-field approximation considerably near the zone
boundary, where its derivative diverges logarithmically.
In real space we obtain for separations r =

]j —i],

B. Fermions GPFG correlations

—1 r
S + ( ) (r) = [p + ln(7rr) —Ci (err)] (7.20)

The mean-field equation (7.4) for the one-dimensional
GPFG state ~@G ) (3.5) is given by the integral

where p = 0.577 is the Euler constant and |i(2:)
Ctcos(t)/t vanishes for large x. In (7.20) we find

that the 1/N correction enhances the long-distance cor-
relations from r 2 to r 2 ln(r).

6
1+62

dk
e(kF —]k~) —.= 0,

27r
(7.15)

with kp = x/2 and s = &. Equation (7.15) yields

u(s) (7.16)

which implies that for kp —+ ~/2 and s = z~, u ~ oo. To
enable us to calculate the correlations for the GPFG, we
keep u finite by holding a Fermi level kp a little above
vr/2. We shall take the limit kp -+ vr/2 only at the end
of our calculations. This divergence simplifies the calcu-
lations considerably, because Eq. (7.1) yields a simple
limit

(7.17)

The lowest-order correlation function is evaluated using
(7.7), (7.5), and (7.17)

0.2 0. 4 0. 6 0.8

FIG. 6. The %=2 spin correlat;ions of the GuztwiHer-
projected Fermi gas in one dimension. The e~act result (solid
line, from Ref. 18) diverges at k = qr. The mean-field (MF,
short dashes) result has discontinuous derivatives at k = 0, qr,

while the sum up to order 1/1V (long dashed line) has a di-
verging derivative at k = qr [see Eq. (7.19)].
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VIII. SUMMARY AND DISCUSSION

In this paper we have introduced a large-N expan-
sion for the correlation functions of Gutzwiller-projected
states. We have discovered several properties and sum
rules which hold to all orders in 1/¹By explicitly calcu-
lating the mean field and 1/N corrections for particular
Schwinger boson and fermion states, we can check the
validity of this approach against exact results for N = 2.
We shall conclude by discussing what we believe we have
learned from our results, and what still needs to be illu-
rninated by further investigations and insight.

A. What we understand

(1) The effects of ihe Gutzwiller projector can be ex-
panded systematically in terms of 1/N diagrams. Each
diagram with I loops and P propagators is of order
(I/N)(+ ~. The loops and propagators are determined
by the mean-field (saddle-point) equation.

(2) The local charge fluctuations are suppressed at each
order by counterterms, which have the tail structure de-
picted in Fig. 3.

(3) For any N, the on-site spin fluctuations are given
by

N
(S, g 8, g ) = s(1+ (s), (8.1)

B. What we do not understand

(1) For the VBS states, the mean field, O(1/N) and
the exact N = 2 correlations are simply proportional.
We conjecture that the higher-order terms behave in the
same manner, i.e. ,

where ( = 1 (—1) for bosons (fermions).
(4)Each diagram can diverge due to the divergence of

the propagators [see discussion after Eq. (7.7)j. However,
the sum of all diagrams of the 1/N order is finite. We
conclude that in general, large-N expansions are prone
to such intermediate divergences, due to the "hardness"
of the constraints (or lack of "self-interaction" for the A

fields). The lesson to be learned is that results which are
based on any subset of diagrams, or on partial resumma
tion schemes, are highly suspect.

impurity model and the s =
2 Heisenberg antiferromag-

netic chain are 2 = N/(N —1). It would therefore be
very useful to understand this relation in order to correct
the mean-field approximation for other problems. The
apparent simplicity of this correction factor may have
its origin in some group theoretical relation between the
saddle-point approximation and exact integrals over Haar
measures.

(2) The above discussion indicates that for these sys-
tems the 1/N expansion is not just an asymptotic series
but a convergent, well-behaved expansion. On the other
hand we are faced with the apparent failure of the boson
large-N theory for the valence bonds solid at s =

2 in one
dimension. The 1/N series yields exponentially decaying
correlations, while the correct state (the nearest-neighbor
dimers state) has vanishing correlations beyond nearest-
neighbor separations. We therefore strongly suspect that
there is an essential singularity in the expansion of the
form

2 [1+exp(i2vrNs)j (8.3)
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which cannot be obtained at any order in the expan-
sion. Such a factor distinguishes between integer and
half odd integer spins for N = 2. This is similar to the
famous topological Berry's phase, or "0 term, " of the
continuous theory of half odd integer Heisenberg antifer-
romagnets in one dimension. This term must be added
to the Schwinger boson mean field Lagrangian to obtain
the correct ground state degeneracies. 2

(3) We note that the Fermion large-N approximation
is quite successful for the s =

2 GPFG state in one di-
mension. The 1/N corrections enhance the long-distance
correlations from r 2 to r 21n(r). It would be interest-
ing to find out how the full 1/N series modifies the power
law to r i for N = 2.

We recall that the fermion mean-field theory for the
spin half Heisenberg chain is successful in reproducing
the Fermi-liquid features of the exact solution. Here we
have found another empirical evidence that the fermionic
approach is better than the bosonic approach for s =

2
antiferromagnets in one dimension. In two dimensions,
the relative advantage of the fermionic versus bosonic
large-N approach is not clear.

gmgm' (k) gmgm'(0) (A, )N+1 (8.2)

For Schwinger bosons, we know that this relation holds
for the on-site sum rule (8.1), but its validity for all A: is
a surprise. We can recall however that similar surprises
have been found in other large-N calculations, both with
bosons and with fermions, where mean field results dif-
fer from the exact result by the factor N/(N + (). For
example, the mean-field susceptibilities of the s =

2 fer-
romagnet in one dimension, and antiferromagnet in two
dimensionsi (both for N = 2) are off by a factor of

s ——N(N + 1). Also, the Wilson ratios of the Kondo

This work has been supported by the National Sci-
ence Foundation, NSF-DMR-9213884, and Grant No. 90-
0041/1 from the U.S.-Israel Binational Science Founda-
tion.

APPENDIX A: THE PROPERTIES
OF MEAN-FIELD STATES

The major goal of this appendix is the derivation of
Eq. (4.12). We will define here the mean-field states ~u)
by
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lu) = exp —) u,,atat (0), (A1)

where a; are either bosons or fermions, satisfying the
usual commutate relations

a, a —ga, a, = b,j,

( = +1 (—1) for bosons (fermions) and matrix u satisfies
the symmetry condition u = (u (u+ = uj, ). We have
dropped the m indices for simplicity. The states lu) have
the following important properties:

(1) The overlap of mean-field states is given by

The proof of these properties may be found in Ref. 22
(see also Ref. 23).

Following Ref. 22 we will write the whole set of creation
and annihilation operators as a 2JV-dimensional vector
(lV is the lattice size):

p =—{a,a }= {ar, . . . , tv. , a„.. . , ajv }
with commutation relations

where p is the 2JV x 2JV matrix

r' 0p=l ( 0

(ulv) = det(l —(ut6) (A3)
We have pz = —(, so p

i = —(p. Following Balian and
Brezin22 we dehne

(2) Let A be an arbitrary operator, the product of any
number of creation and annihilation operators. Then the
extended Wick's theorem holds: the normalized matrix
element of A, (ulAl&)/(ul6), is equal to the sum of all
possible completly contracted products of creation and
anihilation operators (with the usual sign for fermions),
in which each contraction involves two operators. A con-
traction of d1, d2 is the normalized expectation value
(uldrdzl8)j(ulv).

(3) The contractions are given by

(ula'a&l~)

(ulu)

~ (6la~tat lu) )
(flu)

(ula~ajl") (-t -(1 (-l -) —i)
(ul~)

(ula&a,'l~)
(ule)

11g = exp —pRp:—exp p&R&j fjr
ij=1

(A8)

where the 2A x 2JV matrix R satisfies the symmetry con-
dition R = r', R (in this appendix we wi11 call such ma-
trices symmetric} and 2JV x 2JV matrices

11 12
l

PR
T22) ( 9)

It is shown in Ref. 22 that the matrices (A9) faithfully
represent the second quantized operators (A8), i.e. ,

~(R,)g(R, ) = Z(R)

We will now prove the inverse statement,

e~ 'e ' = e ~ Z(Rr)Z(Rz) = Z(R),

(A10}

(A11)

that is to say, the representation of operators J' by ma-
trices T is isomorphic. To prove the (All), we use the
Baker-Campbell-Hausdorff formula, which gives24

e"e" = exp ) )
i

�n=1

L1)...)t~=1,2
~r, ,t. («.[«. " («. «.)" 11

where we denoted cr, q = 2pRr 2p and ar, ~ are some constants, which we do not need to know explicitly. On the

other hand, since e~+'e~ ' = e~, the same formula gives

R=p '). ).
~=1 t1, . . . , L =1,2

crt„.. . ,(„[pR)„[pRt„,. [pRt„pRr,] . . ]] .

Correspondingly, (All) will be proven, if one can show that

(«. («. ~" [«, «, ) "]]= 2~p '[pRt. [pRi. , "[pRi, pRt, l" )]~ (A14)



5130 MAXIM RAYKIN AND ASSA AUERBACH

Let us denote

A„=p '[pRt„[pRI,„,. [pRI,„pRt,, ] ]], (A15)

so that the right-hand side (RHS) of (A14) is equal to
2pA„p. We will first prove by induction, that A„is
symmetric, AT = gA„.For n = 1 it is correct; then, for
A„+qwe have

A„+g= p '[pR(„+„pA„]
= Rt„,pA„—A„pRi„,, (A16)

and since JRt +I is symmetric and p is antisymmetric,

p = —I,"p, the symmetry of A„+&follows from the syrn-
metry of A„.

Now we will prove by induction the relation (A14). For
n = 1 it is trivially correct; then, if it is correct for n, we
have for n+ 1:

[ct„,[ct„[cg„ct,] ]] = [ 'pRt„,-p, -'pA„p]. (A17)

M = (ul exp a~ ja lu)

= (ol Jj exp a ja +2lo), (A19)

where gj = exp 2auta and Q2 = exp 2aiuat are op-
erators of the type (A8) and g is JV x JV matrix. We can
transform exp at ja also into the form (A8) by writing

Using symmetry of B~„+,and A„and the commutation
relation for p (A6) it is straightforward to show that RHS
of (A17) is equal to

—,'Wp '[p»t.„,pA ]~
= 2&p [pRt-+~ [pRt- ' ' [pRt» pR~~] ']]»

which completes the proof of (All). Note that we have
also shown that the product of two operators of the type
(A8) is another operator of the same type, represented
by the matrix R of (A13).

Now we shall use this "multiplication rule" to calculate
(4.9). The expectation value is of the form

Thus, T, which corresponds to J' = Jj Jq&2, is

( e& e~u
T = TgTsT2 =

l

g —(u e" e " —ju e" u
(A23)

It is shown in Ref. 22, that for every operator J (A8)
and corresponding matrix T the following relation holds:

(pl J'lp) = [detTs2] (A24)

Using Eqs. (A24), (A23), and (A21) we will obtain for
the case of symmetric (in usual sense) rI, rI = q, the final
relation

APPENDIX B: CALCULATION OF (7.12)

Here we explicitly calculate the 1/N order diagrams for
the Schwinger boson case. The diagrams are depicted in
Fig. 5. We use the integration variable z = e'" instead of
the momentum k. For example, for the nearest-neighbor
bonds problem uvres of (2.18), we have

1vBS( ) +
z (B1)

The conservation of momentum at every vertex is equiv-
alent to the rule that the product of all z's entering a
vertex is equal to unity. Each sum over k (Ref. 25) is
replaced in the thermodynamic limit by a contour inte-
gration over z on the unit circle

(ul exp atrIa lu) = det (1 —(ute" ue")

= exp ——Tr ln (1 —(use" ue")

(A25)

which yields the expression (4.12) for the generating func-
tional (4.9).

exp a~pa = exp ——Tr g exp
2 2

:—exp ——Tr 'g
2

w here Jq is of the type (A8), so we have for M

M = exp ——Tr r) (Olg~~sg~ lO)2

det e" (ply &3&72[0).

(A20)

(A21)

lim A ) FI,
A ~oo

k

dkFg

1 dz—F(z)
2jt 4 jz/ ] z

= ).R-[F(,)i"] (B2)

For the quadratic part of the action (7.5) the integral is

d'
S~ l(z) = —) . , u~(z')u~(zz')+ s+ e, (B3)2 27rl zl

The T matrices, corresponding to Qj, Jq, and gs are
where

Tq ——exp
(1 01

u~(z) = uu(z) [+1—uu(z)] (B4)

o 1i (o 0T2=exp
q pll p

(1 u
0 1, (A22)

( O 11 (O qqTl (e& O

pelt„- 0 ~l =I(0

and for the valence bond case u(z) is given by (Bl) and
u by (7.9).

Since trigonometric integrands FI, are replaced by ra-
tional functions F(z), it is easy to determine their poles
z, (including a pole at z = 0), and their residues at these
poles. The sum over residues in (B3) yields
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zz'
zz'z"

k k
p+q+k

2
p+k p+Q+k

FIG. 7. Assignments of integration variables in Eq. (B7). FIG. 8. Diagrams contributing to the correlations of the
GPFG (Appendix C).

where

z+1
(z —r) (1 —zK)

(B5)
2k' —1 =— &0.

7r 27r
(Cl)

S

s+2 (B6) The role of 6 is similar to that of e —it regulates the
divergence of the propagator Thu. s we obtain

The propagator D(z) is equal to —(NS&~l(z)) . The
diagrams are generated by the rules of Sec. III, and shown
in Fig. 5. As an example, the integrations of the vertex
diagram (see Fig. 7) are

S&»(k) =

so that

6 + /k)

27r

x u~ (zz'z" ) u~ (z'z") D (z")
(B7)

Each diagram in Fig. 5 diverges as 1/e. However, the
divergences cancel in the sum, and the overall 1/N result
is finite for e ~ 0. The simplicity of the residues method
allowed us to use the symbolic manipulation program
"MATHEMATICA" to perform the integrations analyti-
cally on the computer. The program identifies the poles
and residues of the rational functions. Intermediate ex-
pressions, especially for the diagram Fig. 7, involved up
to hundreds of terms. Expanding these terms and find-
ing common denominators became too cumbersome for
manual calculations, and therefore automating this pro-
cess was essential. The result of this calculation is given
by Eq. (7.12).

1 2~
( )

Ri(k) = D(q)P(k + q) (C4)

where P(k) is the polarization bubble. By Fig. 4, for k
in the 6rst Brillouin zone

(C5)

We erst note that the last two diagrams of the top row
in Fig. 5 cancel since they difFer by one u~ line, which
yields a factor of —1. For the same reason, the sum of
the first two diagrams is equal to twice the contribution
of the second diagram. The remaining contributions to
g~&~ (il(k) are depicted (including combinatorial fac-
tors) in Fig. 8. By reHection symmery we can restrict
ourselves to k ) 0.

The first diagram of Fig. 8 is given by

APPENDIX C: CALCULATION OF (7.lg)

Here we derive the order 1/N correlations of the
Gutzwiller-projected Fermi gas state, Eq. (7.19). The
quadratic part of the action is given by (7.18), so by (7.6),
we have a diverging propagator at; A: = 0. We control this
divergence by letting k~ ) vr/2. We denote

which yields for (C4)

( k) ~ —k
Ri(k) = —

~
1 ——

~

ln
N q

aery

b

k k 2k——ln + 1

The contribution of the second diagram of Fig. 8 is

(C6)

2Rg(k) = 2
2

D(q) (C7)

We denote the integral over p in (C7) as (2vr) iA(q), where

sr+ q
A(q) = & vr —k

(~ —q —k) 8 (vr —q —k)

if —vr(q& —k
if —I &q&O
if 0 & q & +

(C8)
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which yields

1 "~+q 1 7t. —k j. "~—q —k
2R2(k) = ——— dq —— dq —— dq

q ~ -~a —q ~ 0 ~+q

The last diagram of Fig. 8 is

Rs(k) = — D(q)
clq

(C10)

The integral over p is equal to (2n) ~(7r —k —
~q~) 8 (vr —k —

~q ), so (C10) cancels the last term of (C9), while first
two terms of (C9) yield

1( b k b k
2R2(k) + Rs(k) = —

~

ln ———ln —+ 1 ——
N q 7r 7r k

By adding (Cll) and (C6) we obtain Eq. (7.19).

(C11)
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