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We consider a stoichiometric metallic Anderson lattice with orbital degeneracy and finite U. The
correlations in the f shell are formulated in terms of a complete set of “auxiliary bosons,” generalizing in
this way Kotliar and Ruckenstein’s approach for the Hubbard model to arbitrary electronic
configurations. A Gutzwiller type of mean-field approximation is introduced for the case where the oc-
cupancy of the f" configurations for n >2 is excluded. The occupation probabilities are discussed as a
function of U and the f-level position. For sufficiently large U the paramagnetic solution becomes unsta-
ble towards ferromagnetism. This instability is suppressed with increasing orbital degeneracy. The case
of a Kondo insulator with electron-hole symmetry is also discussed in mean-field theory.

I. INTRODUCTION

The unusual low-temperature properties of heavy-
electron systems, in particular the development of coher-
ence in stoichiometric compounds, has received a large
amount of attention in recent years."?> The coherence
manifests itself most dramatically in the low-temperature
resistivity and magnetoresistivity. At high temperatures
(compared to the Kondo temperature T ), the properties
of a metallic system are similar to that of dilute impurity
systems.’ The scattering of the electrons is said to be in-
coherent, i.e., independent from site to site, giving rise to
a large resistivity. At zero temperature, on the other
hand, as a consequence of the translational invariance of
the lattice, there is effectively no scattering (Bloch
theorem) and the resistivity is then ideally zero for a
heavy fermion metal.

The formation of the coherent state in the Kondo lat-
tice can also be studied by introducing disorder into the
system,* i.e., by alloying nonmagnetic impurities (Kondo
holes) substituting for the rare earth or actinide ions.
Adding impurities to a Kondo lattice breaks the transla-
tional invariance and gradually destroys the coherence of
the heavy-fermion ground state. In recent publications™>®
we reported a simple microscopic theory of the Kondo
hole, for both the metallic and the insulating situations,
and on the formation of impurity bands in Kondo insula-
tors.

Antiferromagnetic long-range order in heavy-fermion
metals has been a subject of intensive theoretical stud-
ies.””!! Experimentally a faint antiferromagnetic order
has been observed in several heavy-fermion metals at low
temperatures. The ordered magnetic moment is very
small due to the competition between the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction with the
Kondo effect. For small Kondo coupling antiferromag-
netic order is expected, while if J is large the groundstate
is paramagnetic. In a recent paper we studied the insta-
bilities of the orbitally nondegenerate Kondo insulator to
ferro- and antiferromagnetic long-range order'? using a
Gutzwiller type of mean-field approximation formulated
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in terms of four slave bosons per site in analogy to
Kotliar and Ruckenstein’s approach!® for the Hubbard
model.

In this paper we extend our analysis of the ferromag-
netic instability for the Kondo insulator to the metallic
situation and to orbital degeneracy for the f electrons.
The possible multiple occupancy of the f level and the
degeneracy of the f" configurations require a large num-
ber of ‘““‘auxiliary bosons” to describe all the correlations
in the system. The model and its ‘“‘slave-boson” variant
are introduced in Sec. II. In Sec. III we discuss the
mean-field (saddle-point) approximation for the case in
which only the 4/°, 4f!, and 4f? configurations have a
nonzero probability of occupation. In mean field the bo-
son operators are replaced by their expectation values,
which are then determined by minimization of the total
energy of the system. The limit U— o is also explicitly
treated in this section. The extension to the electron-hole
symmetric situation of a Kondo insulator with orbital de-
generacy is derived in Sec. IV. In Sec. V we present the
numerical solution of the mean-field equations derived in
Secs. III and IV and discuss the ferromagnetic instability.
Conclusions are drawn in Sec. V1.

For sufficiently small U the ground state is paramag-
netic. The ferromagnetic instability occurs when the 4!
configuration is sufficiently stable and becomes the dom-
inant one, i.e., with increasing U or with decreasing f-
level energy. An external magnetic field favors the fer-
romagnetic long-range order. Quantum fluctuations
about the mean-field solution are believed to reduce the
magnetic order; this probably shifts the paramagnetic to
ferromagnetic boundary to larger U values. Although
the mean-field approximation already introduces precur-
sors of antiferromagnetic correlations among the f elec-
trons at different sites, the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction mediated by the conduction
electrons is expected to be the responsible one for antifer-
romagnetism. Since the RKKY interaction is not explic-
itly incorporated into our approach, we do not consider
the instability towards antiferromagnetism in this paper.

The definition of the projectors renormalizing the hy-
bridization is not unique. There are several possible
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choices for the normalization of the projection operators
that reproduce all matrix elements correctly. The one
used here is associated with the Gutzwiller approxima-
tion and reproduces the U =0 limit correctly in mean
field, although the approach is actually intended for high-
ly correlated states. Within the mean-field approxima-
tion it gives a collective enhancement of the Kondo tem-
perature and a tendency towards magnetic long-range or-
der. This is very different from the 1/N slave-boson ap-
proach,'*'® which in mean field and with Gaussian fluc-
tuations about the mean field, shows no collective
enhancement nor magnetic order, and yields universal
properties as a function of one energy scale.!”!® In both
approaches fluctuations play a fundamental role: Within
the Gutzwiller approximation the tendency towards mag-
netic order and the energy scale are expected to diminish,
while within the 1/N expansion magnetic order has to be
induced (probably to order N ~2).

A possible motivation to study the ferromagnetic insta-
bility as a function of magnetic field is the metamagnetic
transition observed in several heavy-fermion compounds,
e.g., UPt; and CeRu,Si,.!° A magnetic field suppresses
the antiferromagnetic correlations (not appropriately in-
cluded in our approach) and induces a rapid increase in
the magnetization at a characteristic field H*. This
metamagnetic transition correlates!® with a peak in the
susceptibility at T*, so that uH* ~kzT*. The width of
the transition increases with temperature and also the
specific heat y is maximum for H ~H*. A sharp peak is
also observed in the magnetorestriction, d(In¥V)/dH. The
strong sensitivity of M (H) to alloying impurities into the
system suggests that frustration of predominantly antifer-
romagnetic correlations could play an important role in
this transition.

Within the mean-field approximation the low T specific
heat is proportional to T with the y coefficient given by
the density of states of f electrons at the Fermi level. In
the paramagnetic heavy-fermion situation the y
coefficient is large corresponding to a heavy effective
mass. Its dependence with the magnetic field is difficult
to estimate except in the U— oo limit. With increasing
field or magnetization the system undergoes a metamag-
netic transition. A peak in the specific heat as a function
of T is expected due to this transition. The density of
states and hence the effective mass is reduced in the fer-
romagnetic phase, since the Kondo peak of the majority
band is considerably broadened, while the width of the
minority band remains roughly unchanged. In addition
the peaks for both bands are off resonance with the Fermi
level. The orbital degeneracy strongly reduces this
change in the effective mass.

II. MODEL AND AUXILIARY BOSON
FORMULATION

We consider the Anderson lattice with orbital degen-
eracy, on-site hybridization ¥ and Coulomb repulsion U,

(DY, (D=
Qi 'Q,‘ =

myo;,myo,,. .., m;o,;

b0t [0
2 i;mlol,mza2 ..... myo,Yiimyo,myo,, ..., mo, -

V. DORIN AND P. SCHLOTTMANN 47

— T
H= 2 ekclmackma+6f 2 fimcrfima

kmo imo

+V E (Citnofimo+fi]:nacima)

imo

+U >

i(mo)#(m'c’)

fitnafimaf;n'a"fim'a’ » (21)

where €, is the f-level energy, c,i,,g(f,«t,,(,) creates a con-
duction electron (f electron) with orbital index
m,|m| <L and spin o at the site R, and clmg is the cor-
responding Bloch state with momentum k. For simplici-
ty we consider decoupled spin and orbital degrees of free-
dom, with the magnetic field only coupling to the spin.

The constraints on the f occupation of the sites caused
by the Coulomb repulsion U leads to a complicated
many-body problem, which can be reformulated in terms
of “auxiliary bosons.”!*2%2! The slave-boson method has
been extensively used for the U — oo limit in terms of one
*“slave boson” per site. Within the saddle-point approxi-
mation and Gaussian fluctuations about the mean field
one obtains universal Fermi-liquid properties in terms of
a single energy scale, Tx.!”!® The method has been ex-
tended by Kotliar and Ruckenstein'? to the finite U situa-
tion without orbital degeneracy by introducing four
““slave bosons” per site. They studied the Hubbard model
with this approach, and later Balseiro et al.?®?! applied
this slave-boson technique to a model for highly correlat-
ed bands of hybridized Cu 3d and O 2p orbitals. The
slave-boson approach has been formulated with spin-
rotational invariance,? but this does not affect the mean-
field results.

In this paper we generalize the non-spin-rotationally-
invariant formulation of Kotliar and Ruckenstein for
finite U to include orbital degeneracy. As already stated
it is assumed that spin and orbital degrees of freedom are
not coupled (no spin-orbit interaction) and that the mag-
netic field couples to the spin via the Zeeman effect, but
not to the orbital moment. We introduce 22V Bose an-
nihilation operators for each site (N =2L +1):

(n
ismyo,my0oy, ..., mo, (2.2)

and the corresponding creation operators. Here all the
index pairs mo have to be different, otherwise the opera-
tor is identically zero. The supraindex / determines the
configuration onto which the slave-boson projects, i.e.,
for [ =0 there is only one operator corresponding to the
f° configuration (no f electron); / =1 represents the f'
states and there are 2N such operators; the operators for
[ =2 form a symmetric second rank tensor of order 2N
and zero diagonal which describe the f? states; etc. In
general the slave-boson operators can be represented by a
tensor of rank / and order 2N, which is symmetric in its
ar(g”uments and has all diagonal elements equal to zero,
b,

To simplify the notation we introduce the following
product operations between the tensors.

(i) A full contraction (scalar product) is defined as
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(ii) For I = 1 we define a partial contraction where m, o, is kept fixed as

(DT, 4 (D — (Ot (n
(-b-i Qi )m”an— 2 bi;mlvl,mzaz,...,m,a,bi;mlal,mzo2 ..... mpo, (24)
MG My 1% =My 1%+ M9

In terms of these operations the completeness relation takes the form
Seei=1, (2.52)
and the correspondence between bosons and fermions is established via
Fhrofime= S B0, =i, (2.5b)
=1

These bosons act as projectors onto the corresponding electronic states. In the physical subspace defined by Egs. (2.5)
the operators f, ! and fimo are replaced by

mao

lmaflmo’ fimozima ’ (26)

so that the matrix elements are invariant in the combined fermion-boson Hilbert space. The constraints (2.5) are incor-
porated into the Hamiltonian via Lagrange multipliers, A!!’ and A{?) , respectively, and

imo?

2N
H= E 6kcl.‘;mcrckma'_’_ef 2 fitncrfima—*‘U 2 Cé(—b— 5’1)1.'& 5’1))

kmo imo nl=2
i il il 1) J DY.p (D (2 t
+V 2 (cimafimazima+Zimafimocima)+ E KE Eb i ) b i -1+ 2 K!m)cr fimafima_hima) ’ (27)
imo i =0 imo

where C/ is the number of possible combinations to choose k electrons out of /(I > k), i.e

Ccl= X

As shown by Kotliar and Ruckenstein!® the definition of the operators Z,mg is not unique, but the following choice
yields the correct matrix elements and the correct expectation value of (Z,mUZ,m,) within the mean-field approxima-
tion as U —0,

ZimU=(1 hlm(r 71/2 2 b (]71 b (hima)_l/2 ’ (2'8)

=1 mo

where the partial contraction is defined as a summation over (/ —1) pairs of indices, while mo in b D is kept fixed. In
the Appendix we show that the above choice of normalization correctly reproduces the U — 0 limit.

In the next section we apply the mean-field approximation, in which the boson operators are replaced by their expec-
tation values, first to the general situation and then to the case where only three f-electron configurations are allowed,
namely f" with n =0,1,2, while configurations with n >2 are excluded by a very large Coulomb repulsion. This in-
cludes as a special case the U— o« situation, which has previously been discussed within the saddle-point approxima-
tion in Refs. 23 and 24. The electron-hole symmetric Kondo insulator with orbital degeneracy is treated in Sec. IV.

III. MEAN-FIELD APPROXIMATION

To calculate observable quantities we express the partition function Z of model (2.7) as a functional integral over
coherent states of Fermi and Bose fields. The constraints (2.5) commute with the Hamiltonian, so that the Lagrange
multipliers are time independent and the physical Hilbert space is invariant under time evolution. The procedure is
standard!? and we obtain

z= [[pb"] [ [DAV] [ [DA? Jexp (3.1)

- foﬁdTLeff(T)

where 8 is the inverse temperature and the site, spin, orbital, and / indices are implicit in the integration variables. The
effective action can be written as the sum of two terms, Leﬁ—LB + L%, where the first term involves only boson fields,
while the second term also contains the Grassmann variables associated with the Fermi fields,

2N 2N
LB:z 2 I)T _'_)\’(1) b h__ 2 2 }‘Erzn)a b(l)Tb(l)) +Uz zcé(bglﬁ'b 51)) , (3.2)
[ =0 mo =1 i =2
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exp —foﬂdTsz(T) [DfY Dclexp f dr L% ] (3.3)
Foy— i |9 a )
L*(r)= E Cimo —u +f:m +6f :u’+)‘1ma fimU
imo a7
+V E tmcr SimoZimoth.c.)+ 2 ekcltmo'ckmo' > (3.4)
imo kmo

where p is the chemical potential. The chemical potential adjusts the total number of electrons in the system.
The resulting saddle-point free energy functional, F = — T InZ, is obtained by minimizing the free energy. For the
paramagnetic phase it is given by

2N 2N 2N
F=—2T 3 In(1+exp{ —BlE,(k)—u]})+UN, 3 CNCib}+A1VN, { S cbi—1 ]~2N)J2’NS S, 3.9)
ak . 1=2 =0 =1

where N, is the number of sites, « =1,2 and
E (kK)=1{e,+A?+e, +(—1)[(e,+ AP —¢, )*+4Z*V?]'/*} (3.6)

is the effective dispersion relation of the hybridized states. The minimization of (3.5) with respect to b;,,A'" and A?
leads to the set of equations for these parameters.

This approach is equivalent to the mean-field approximation in which all boson operators are replaced by their expec-
tation value. The effective Hamiltonian is then bilinear in Fermi operators and the expectation value for the mean-field
groundstate energy can straightforwardly be obtained via the one-particle Green’s function. The Hellmann-Feynman
theorem is then used to derive the mean-field equations.

In the remainder of this section we consider the metallic situation involving only the 4/°,4f!, and 42 configurations.
We assume that the occupations of the configurations 4" with n > 2 can be neglected due to a large Coulomb energy.
Projecting out these states corresponds to equating b, =0 for / >2. In mean field the Hamiltonian takes the form
(N=2L+1)

H= E 6-kcz;mockma + nggfitnafima+ vV 2 Zo(citrrofima+fi;acim0)
kmo imo imo
N(N —1)

FNAD [N Zpo +

2df,+N2dé—1]

—N,N 3 A?[p2 +(N —1)d2 +Nd}]+N,NU N=1
(o

2d§+Nd6’ , 3.7

where €,, =€, + km—aB is the renormalized f-level energy and B is the Zeeman splitting. Here we used the following
notation for the slave-boson expectation values: e corresponds to b'%, i.e., the empty f configuration, p, to the 4f!
states with spin o, i.e., bosons with index / =1, d, to a doubly occupied f state (I =2) with both electrons having spin
o and d to a doubly occupied f state (I =2) with one electron having spin up and the other spin down. We do not dis-
tinguish between the spin-singlet and zero-component spin-triplet states, since the formulation is not spin rotationally
invariant from the beginning.

We impose another simplifying assumption to reduce the rather large number of parameters to be determined self-
consistently, namely, we approximate

d:=p2d?, di=p.p,d> (3.8)
in terms of only one d parameter. With this simplification Z, in mean field takes the following form

Z,={p,le+(N—1)p,d]+Npl?p32d}ia,(1—A4,)] ",

(3.9)
A, =p2[1+(N—1)d*]+Np,p_,d*

The parameters €fg,}x(1”e,pT ,p |, and d are obtained by minimization of the ground-state energy of (3.7) with respect
to these parameters,
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<fi]:nafima>zpi+(N"1)p(27d2+Npap_0d2: Ao ,

N_1d2

e2+N|1+

S pi+N%p pidi=1,

0Z
NVZ _aTa<fitnacima>+}\'(”e :0 )
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0Z, N OZ,
VY |2 ——=—{2p, +[(N—=1)p, +Np_,1d?} |{f} oCimo’
§ apa e ae { o o ] mo im
+U[(N—1)p,+Np_,1d*=A* Np_,d*+A2{2p [1+(N —1)d?]+Np_,d?} ,
9Z, Nd9Z, ([N—1
2 [ adg ——T aea 2 2Pi'+NPaP~a <fitno‘cima>
N—1 2 - )
+Ud > Sps+tNp,p_, |md ISAS[Np_,+(N—1)p,]. (3.10)
I
The expectation values {f5 f. ) and (f} ci,) are  e>+Np*[2+(2N —1)d?]=1,
obtained from the one-particle Green’s functions. We as- ) g2
sume a flat density of states for the conduction electrons A=pT1+(2N -1d?],
in the energy interval (—D, + D). Note that in the U —0 Z2p2 n
limit for N > 1 we still have highly correlated states (rath- €,=p+ SDA’ u=D N 1—-24 |, (3.12)
er than noninteracting electrons) in view of the excluded
occupancy of configurations with more than two f elec- ) 18Z d 8Z 2N 8Z ¢
trons. Below we discuss the solution for some special A 14 > 30 »23d e e (fimoCima?
cases. por p e oe
N 3z 1 4 t
U=y |——F————— D Cimo ) 202
e ae (2N—1)P2d ad ]<f:mac1ma)
A. Paramagnetic solution in zero field <ft ) ZVl D+ ?f
imoCimoe! = T S | T
moti 2D ,éf —u

In the paramagnetic phase and for B =0 we have that
Ps=P—0> ’éfazgf*o:gf ’
(3.11)

Z,=Z_,=Z, A,=A_,=4,

and the self-consistency equations (3.10) are reduced to

Here n is the number of electrons per site. The numerical
solution of the above equations is presented in Sec. V.

B. Paramagnetic and ferromagnetic
solution in the U — oo limit

In the U— o limit only two configurations, namely,
4f%and 41!, play a role and the above equations simplify
considerably.?* Only three slave-boson operator expecta-
tion values have to be taken into account, e,p;, and p |,
while d is identically zero. After some algebra the self-
consistency equations can be reduced to

V2 1 1

—=[1=Npi+p})] | ——=5In(F;)— In(F,) | =2, —%,,—2B , (3.13a)
v2 | 2N —14+N(pi—p?) 2N —1+N(p3 —p?)

2D (l—p%)z In(Fy)+ (l_pzl)z In(F) | =€, +&,—2€, . (3.13b)
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When we evaluate the integrals contained in F, we
have to distinguish three situations depending on the po-
sition of the chemical potential, p=D(n/N —1
—p% —pzl ), relative to the gaps in the mean-field density
of states. Considering the paramagnetic and ferromag-
netic solutions, in general, p; = p |, so that there are ma-
jority and minority bands for the hybridized conduction
and f bands. Considering a bandfilling of less than two
electrons per site the lower minority band is always par-
tially filled, while the upper one is empty. On the other
hand, the Fermi level can lie in the upper or lower major-
ity band or in the gap.

(i) If u is below the gap we obtain that

+e 1—N
Fo=28 e
6-fa._:u’

N (pi+pl) v
pi(l=py) 2D~
(3.14a)

This result holds in general for the minority band, i.e.,
o=1.

(ii) If u lies in the gap between the two majority bands,
we have

1-p?

F:
"IN pi+pd) V2

(3.14b)

(iii) for p above the gap between the two majority
bands, we have

D —€
_ 1 _
Fy=—"—, en=n—
K€t

1—=N(pi+pl) p2
(1—p3)* 2D °
(3.14¢)

The self-consistent solution of Eqgs. (3.13) and (3.14) then
determines the p, and &;,. The numerical solution of
these equations for various fields B is presented in Sec. V.

C. Phase diagram for the ferromagnetic
instability

The approximations introduced in (3.8) to reduce the
total number of independent parameters are strictly valid
within the saddle-point approximation only for small
magnetizations, but they represent further approxima-
tions if p; and p, are substantially different. Equations
(3.10) yield then the correct mean-field phase diagram for
the ferromagnetic instability. The numerical solution of
Egs. (3.10) for B =0 and several N is presented in Sec. V.

IV. SYMMETRIC KONDO INSULATOR

In this section we generalize our previous calculation
for the symmetric nondegenerate Kondo insulator!? to in-
clude orbital degeneracy. For the sake of simplicity we
restrict ourselves to two situations with electron-hole

symmetry: (a) N =2 and (b) arbitrary N but by keeping
only the three most relevant configurations, i.e.,
foN*l andi+].
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A. N =2 with electron-hole symmetry

The five f configurations that play a role in this case
are the 4f° and 4/* which are both singlets and have the
same atomic energies, the 41! and 4f° that are both four-
fold multiplets which are degenerate with each other, and
the 412 states which are the ones with lowest energy (six-
fold degenerate atomic groundstate). The symmetric sit-
uation is realized for €,=—3U/2. N =2 could corre-
spond to a crystal-field ground doublet with all other or-
bital states having large excitation energies. In the
paramagnetic phase all matrix elements of the slave-
boson operators are independent of spin indices and only
depend on /. Hence, only three independent boson expec-
tation values have to be considered, i.e., e for the empty
and f* configurations, p for the f! and f? states and d for
the configuration with double occupancy.

With the above notation the Hamiltonian reads

_ t . t
H= 2 Ekckmockma+€f 2 fimafimcr

kmo imo

+vZ E (CiLafima_f_fiTnacima)

imo
+N AP (2e2+8p2+6d2—1)—
+6N, Ule?+2p2+d?),

2NSA,(2)
4.1

where Z =4p(e +3d). The minimization of the free en-
ergy with respect to the five parameters e,p,d,A'!’, and
A? leads to the following set of self-consistency equa-
tions

w(fh e ,mo>l§§+3u+x

1 0Z

V{fl e ,m0> % ——=+3Uu+22"=0,

2V ot ,ma>f, 2

— T —
ez+4p2+3d2 %’ <fimafl'mcr>_% .

+3U +3A'"=0,

For a half-full flat density of states of the conduction
electrons we obtain

Y44

<f1m0 1m0>: _~E'1n

D

7V (4.3)

Eliminating A" from the above equations we arrive at
pi=L1—6d?—2e?),

4d (1—6d*—4e*—6ed)=3(d —e)(1—6d*—2e?) ,

4.4
(d —e)(e +3d)(1—6d*—2e?)
ed
2
X1n D =D .

2(e +3d)X(1—6d*—e?)V? Ty

Next we discuss these equations in two limiting cases:
(i) U=0 and (ii) the very large U limit. If U =0 we
straightforwardly obtain d =e =p =1, which corre-
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sponds to noninteracting electrons. The Fermi level lies
in the gap, E =2V?%/D. If U>>V, on the other hand,

gap
we have that d >>e,p and
N UD
Egap—ZD exp | — e } s
(4.5)
- 1 UD
1—6d*=8p*=4V2e=— | -
P €T3 PN T

The characteristic energy scale for the paramagnetic
phase then decreases exponentially with U. This result is
an expected Kondo feature, consequence of the infrared
logarithmic singularities caused by electron-hole excita-
tions of arbitrarily energy which are implicit in the for-
mulation. The exponent itself, however, differs from the
usual Kondo exponential for an impurity. This is charac-
teristic of Gutzwiller type of approximations and is
known as the “lattice enhancement of the Kondo
effect””!!23 believed to arise from the “‘coherence” in the

lattice. The numerical solution of Egs. (4.4) is presented
in Sec. V.

B. Excluded occupation for configurations
other than f¥, f¥ =1 and f¥*! for arbitrary N

We consider the totally symmetric situation with arbi-
trary orbital degeneracy N, i.e., e, = —(N —1/2)U. If in
addition electron-hole symmetry is assumed for the con-
duction band we have that b, =b,, _,; in the paramagnet-
ic phase. For finite U the states with lowest energy are
those of the fV configuration. The two configurations
next in the hierarchy are the ¥ ~! and f¥*!. The occu-
pancy of all other configurations is assumed to be negligi-
ble and so that these states can be projected out. This
means that even in the U—0 limit for N > 1 the states
are highly correlated. Hence, only three slave-boson ex-
pectation values are nonzero, which we denote by by =p
and by _,=by, =d, and

T ~
H= 2 e-k(“krru:rckrna%_ef 2 fitnafima_f_ vz 2 (Cilrnofimo_i’_fitnacima)

kmo imo imo
2N N2—N+1 N—1
+ (1) CZN 2+_—d2 —1|—N )\,(2)+ d2+ 2 CZN, 4.
NAD R [p2 = NADHNNU [ S P |Gk 4.6)
I
where Z =2C3"pd. The minimization of the free energy B UD
with respect to the four parameters p,d,A'", and A Egp=2Dexp | — AN+ |
leads to the following set of self-consistency equations
(4.10)
10Z , N(N—1) _ 2N
2NV(fiJf,,gcimo);¥+—2 crutcial=o, 1-CpP= oo
t 1 0Z 2 IN N p UD
AN+ DV fhoine) 75 + (NP =N+DCPU 47) __N D . UD
2AN+1) |V 4N +1)p?

+2c3MA'V=0,
CHN(N +1)p2+2Nd?|=N+1, {fl _fi.)=1/2.

For a half-full flat density of states of the conduction
electrons we obtain

VAL
<fitn(rcim0>: —Eln

2D
E

gap

212
,EZZZV.

=277 4.8)

Eliminating A" from the first two equations of the set
(4.7) we arrive at

2D

Egap

_UD
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4CZN[(N +1)p?—2Nd?]In

We now discuss the asymptotic solution of (4.9) for ar-
bitrary N in the limit of large U. This equation yields the
energy gap (about the Fermi level) within the paramag-
netic phase. For large U,d <<p and p2~[C2"]™}, so that

which correctly reproduces the results for the orbitally
nondegenerate (N =1) (Ref. 12) and the N =2 [Eq. (4.5)]
cases.

V. RESULTS

Below we present the solution of the mean-field equa-
tions derived in the previous two sections.

A. Kondo insulator: N =2 with
electron-hole symmetry

We now consider the situation of the orbitally degen-
erate Kondo insulator with electron-hole symmetry dis-
cussed in Sec. IV A. For the insulator the Fermi level lies
in the energy gap, E,,,.- The corresponding mean-field
equations for N =2 are given by (4.4). N =2 could
represent a ground doublet caused by a large crystal field
splitting. The numerical solution of these equations for
D =10V and as a function of U /V is shown in Fig. 1(a).
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FIG. 1. Paramagnetic solution for the electron-hole sym-

metric Kondo insulator for N =2 and D =10 V. (a) Occupation
probabilities for the f" configurations: e? for n =0 and 4,p? for

n=1and 3, and d? for n =2, and (b) the energy gap E,,, nor-
malized to V, as a function of U /V.
As expected for U=0 we obtain e =p =d =1. As a

function of U,d? increases monotonically and asymptoti-
1

cally reaches the value ! for very large U. p” and e?,
which represent the occupation probabilities of the 4f!
and 4f° configurations, decrease exponentially for
sufficiently large U. Note that for large U the U depen-
dence approximately follows p2?/e ~const. The magni-
tude of the energy gap, normalized to V, is displayed in
Fig. 1(b). The exponential form given by Eq. (4.5) is ap-

proached asymptotically for large U.

B. Paramagnetic and ferromagnetic
solution for the metal in the U — oo limit

Next we present the numerical solution of the mean-
field equations (3.13) and (3.14) as a function of the bare
f-level position for the paramagnetic and ferromagnetic
phases. Here we consider the orbitally nondegenerate
case, i.e., N =1, with 1.8 electrons per site and
D /V =10. The results are displayed in Figs. 2(a) and
2(b). For a sufficiently large €, there is only the paramag-
netic solution, i.e., p; =p |, and the zero-field magnetiza-
tion is zero. When € is reduced to about 3.8 V a second
solution with p;¥p, with lower energy than the
paramagnetic one appears [see Fig. 2(a)]. The system un-
dergoes a second-order phase transition to a ferromagnet-
ic state. The magnetization grows monotonically when
€, is decreased further until the lower majority band is

filled. At this point the increase of the magnetization
with decreasing €, becomes flat until the upper majority
band starts to be occupied. Energy calculations show
that this transition is of first order and occurs at about
€,~1.1 V. The small variation of m with €, is due to the
dependence of p; and p, on €,. Asymptotically as
€,— — oo the system is fully polarized. An external mag-
netic field shifts the threshold of the paramagnetic to fer-
romagnetic transition to larger values of €,. The range of
the flat region due to the gap in the majority band de-
creases with an external magnetic field and the first-order
transition as a function of €, becomes continuous for
B >0.05V.

In Fig. 2(b) we show the magnetization as a function of
the field for various values of €, representing four
different situations. If €, <3.8 V we obtain a spontane-
ous magnetization in zero field. The magnetization is al-
ways an increasing function of the magnetic field. The
discontinuous transition shown for €,=1.5 V arises
again from the upper majority band which at that field
starts to get filled. This transition is continuous for € ,=3
V. For €,=4 V and for small fields the paramagnetic

[(rr Tttt T T T T T T ]
os () €/v=00 _—— A

1.5

06}

PP S BT B B R
0.0 0.1 0.2 03 0.4 0.5

B/V

FIG. 2. Magnetization m of the paramagnetic and ferromag-
netic phases for the metal in the U— o limit for N =1, D =10
V and 1.8 electrons per site. (a) m as a function of €, normal-
ized to V for various fields B. The field is in units of V. There is
a second- and a first-order transition if B =0; the discontinuous
transition becomes continuous for B >0.05 V. (b) m as a func-
tion of B /V for representative values of €,, which show the four
different situations that may occur.
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solution is the stable one.

Asymptotically as €, becomes very negative, the
valence, v =e?, of the paramagnetic state for arbitrary N
is given by

(2N —1)(D +e;+1)D

NP2

_@N—DA?D
AN?V?

v=1—nf=

(5.1)

Xexp

In this limit also €f+)t(2)~,u, so that this expression
agrees with the one derived previously by Ueda and
Rice?>?* within the Gutzwiller approximation. It should
be pointed out that the exponential dependence for large
€, in (5.1) differs from the usual Kondo exponential.
This different exponential dependence is characteristic of
Gutzwiller type of approximations and is known as the
“lattice enhancement of the Kondo effect,”'"?* which in-
creases the ground-state Kondo-boundstate energy of the
lattice with respect to that of the impurity. This
difference is believed to arise due to the “coherence” in
the lattice. For N— o the energy scale agrees with the
corresponding one for the one slave-boson treatment.'> !¢

The orbitally degenerate situation has been discussed
in more detail in a previous report.?* There is only one
second-order transition if N > 1, since the lower majority
band can never be completely filled if the total number of
electrons is kept constant at n =1.8.

C. Paramagnetic solution for the metal
in zerofield

We now present the numerical solution of Egs. (3.12),
which refer to the metallic paramagnet for arbitrary N
and involving only the 4/°4f!, and 4f2 configurations.
All other configurations are projected out. The results
are displayed in Figs. 3 and 4 for D =10 V, »n =1.8 and
U=V. In Figs. 3(a)-3(c) e, p?, and d? are shown as a
function of €,/V for N =1, 3 and 5, respectively. e2(d?)
monotonically increases (decreases) with €, while p2
shows a maximum as a function of €,. This behavior can
be understood in terms of the ionic energies of the three
configurations, which are E(f°)=0, E(f1)=6f and
E(fz):26f+U, respectively. There are crossovers of
the levels when €,=0, €,=—U, and €,=—U/2. The
former two level crossovers separate three regimes with
different ground states. The hybridization smears out the
sharp transitions between the ionic states and shifts the
level crossovers to lower values of €,. The degeneracy in-
troduces a strong asymmetry in the curves, since the
number of states of the three configuration differs consid-
erably, in particular, the degeneracy of the f?
configuration grows rapidly with N, while the f° is al-
ways a singlet.?

In Fig. 4(a) the probability of occupation of the f?
configuration is shown as a function of f-level position
for N=1, 3, and 5 and the same parameters as above.
This occupation, of course, decreases with €, and strong-
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ly depends on the orbital degeneracy. A similar behavior
is observed for the total number of f electrons [see Fig.
4(b)].

D. Phase diagram for the ferromagnetic instability

In Figs. 5(a)-5(c) we present the mean-field phase dia-
gram for the magnetic instability in the metallic situa-
tion, i.e., the numerical solution of Egs. (3.10) for B =0
and N =1, 3, and 5, respectively. The phase correspond-
ing to the larger values of €, is the paramagnetic one. If
€ is more negative than the paramagnetic to ferromag-
netic boundary, the localized moment character is higher
and there is the tendency towards magnetic order. As ex-
pected magnetic order becomes more unlikely with in-
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FIG. 3. Paramagnetic solution for the metal in zero field,
D =10V, n=1.8 and U =V. Shown are the occupation proba-
bilities for the f' configurations as a function of €,:e? for I =0,
p?for I =1, and d* for I =2, all other configurations are exclud-
ed by a large Coulomb repulsion: (a) N=1, (b) N =3, and (c)
N =5.
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FIG. 4. (a) Probability of occupation of the f? configuration
and (b) total number of f electrons, n;, as a function of €, in the
paramagnetic phase for the metal in zero field, D =10 V,
n=1.8, U=V,and N =1, 3,and 5.

creasing N. For instance, since D =10 V, if N =5 the
ferromagnetic boundary already lies outside the original
conduction band.

The Gutzwiller saddle-point approximation is believed
to overestimate the magnetic order. Quantum fluctua-
tions about the mean-field solution will reduce the fer-
romagnetic long-range order. This would shift the
paramagnetic and ferromagnetic boundary to larger U
values.

VI. CONCLUSIONS

In order to treat the correlations within the f shell in a
metallic Anderson lattice with orbital degeneracy ade-
quately, we generalized Kotliar and Ruckenstein’s treat-
ment'>2° of the Hubbard model and introduced a com-
plete set of “slave”’-boson operators, b"(>1")1101vm202 _____ mo,
These boson operators act as projectors onto the corre-
sponding electronic states. In the physical subspace the
fermion creation and annihilation operators are replaced
by a product of a fermion operator and a function of Bose
operators Z;,, . so that the matrix elements are invariant
in the combined fermion-boson Hilbert space. The con-
straints limiting the Hilbert space to the physical one are
introduced via Lagrange parameters. Subsequently we
performed the standard mean-field approximation and re-
placed the slave bosons by their expectation values. The
boson expectation values and the Lagrange parameters
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are determined self-consistently by making use of the
Hellmann-Feynman theorem and minimizing the ground-
state energy.

We studied the T'=0 properties of the paramagnetic
and ferromagnetic states as a function of N,e;/V, and
U /V for the metallic situation (the Fermi level does not
lie in the gap). For U— « the valence in the paramag-
netic state has the characteristic exponential Kondo
dependence, which includes the “lattice enhancement of
the Kondo effect”!!"23 typical of Gutzwiller-type approxi-
mations and differs from the standard impurity Kondo
temperature dependence, unless N is very large. For
finite U and N > 1 the role played by the f° and f? is
different?® and introduces a strong electron-hole asym-
metry, as a consequence of the large difference in the de-
generacies of the configurations. Note that for U =0 and
N >1 this situation does not correspond to noninteract-
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FIG. 5. (a) Mean-field phase diagram for the paramagnetic to

ferromagnetic instability for the metallic situation in zero field,
D=10V,n=1.8and (a) N=1,(b) N=3,and (c) N=5.
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ing fermions.

Fluctuations about the mean field are expected to
reduce the magnetic instability, in the same way as an in-
crease in the orbital degeneracy for a given €,. In this
sense we believe that the tendency towards ferromagnetic
order is exaggerated within mean field. Fluctuations also
will reduce or even smear the discontinuous transition
shown in Fig. 1 for N=1 and U— . Since our ap-
proach does not generate the RKKY interaction between
the rare-earth ions, which is a fundamental component
possibly leading to antiferromagnetic order, we have not
attempted to study this instability.

Finally, we extended our treatment of the Kondo insu-
lator!? to include orbital degeneracy. The paramagnetic
phases of two cases have been discussed: (i) N =2 with
electron-hole symmetry which involves five f configura-
tions and (ii) the electron-hole symmetric situation for ar-
bitrary N where only the three most important
configurations are kept, while the occupation of all other
configurations is assumed negligible in view of large
Coulomb interactions within the f shell. The Fermi level
lies in the gap, which in both cases has an exponential
Kondo dependence.
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APPENDIX: NORMALIZATION
OF THE OPERATORS Z,,,

The physical subspace in which the “auxiliary bosons”
represent the correlations among f electrons is restricted
to the boson-occupation numbers zero and one. This is a
consequence of the constraints (2.5). All the matrix ele-
ments of Qf” become independent of mo in the limit
U —0. In this limit the full and partial contractions sim-
plify considerably. Within mean field we introduce ex-
pectation values of the boson operators, b;, which are in-
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dependent of the spin, the orbital momentum and the
site, and obtain

(Q §»’”~Q i‘”>:C12Nb12 ,
<(Q E_I)T.Q 5‘1))mg>:ClziV171b12 .

(A1)
(A2)

It is now straightforward to show that for U =0 and
within the mean-field approximation the minimization of
the groundstate energ¥ is equivalent to maximize the
expectation value of Z,,,.Z; ., where Z; is defined by
(2.8). In mean field this expectation value is given by
z*=(z} .,z

imo im0>
J 2N —1 ’
Eck-l bk—lbk
k=1

J 2N —1p2 X 2N —1p2
Eck— bk zck—l bk—l
k=1

k=1

where A,B, and C are functions of the b; defined by Eq.
(A3). The function Z has its maximum with respect to
the variables b; when 8Z /3b,=0 for all /, i.e.,

[Ib,_,+(2N —1)b, ,,]AB=b,[IB+(2N —1) A]C .
(A4)

Equation (A4) defines a set of recurrent relations, which
has the following solution

bi=B*N"*ak. (AS5)

Inserting this solution into Eq. (A3) we obtain that
C2= AB, and consequently

Z=1, (A6)

which is the correct result in the absence of correlations.
This extends the proof of Kotliar and Ruckenstein'® to
our more general case.
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