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Spin-wave propagation on imperfect ultrathin ferromagnetic films
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The effects of localized imperfections on spin-wave propagation in very thin ferromagnetic films are
examined. The imperfections are assumed to be localized to a few lattice sites and cause local changes in
anisotropy and exchange fields. These imperfections may be due to thickness variations or other geome-
trical imperfections. We find that in very thin films the lifetime of long-wavelength spin waves is rela-
tively insensitive to scattering from even large numbers of imperfections, and therefore cannot explain
large observed linewidths observed in Brillouin light-scattering experiments. On the other hand, we find
that a band of long-wavelength spin-wave modes can exist in an inhomogeneous film with a distribution
of effective anisotropy fields. It is possible to have large bands with bandwidths on the order of 10 GHz
in rough ultrathin films due to the sensitive dependence of effective anisotropy fields on thickness.

I. INTRODUCTION

Magnetometry and Kerr measurements on molecular-
beam-epitaxy (MBE)-grown ultrathin films of Co and Fe
have indicated a spontaneous magnetization for a wide
range of temperatures, but the various experimentally
determined magnetic parameters may vary widely from
sample to sample. ' Although it is generally supposed
that roughness, inhomogeneities, impurities, and other
imperfections are extremely important in determining the
magnetic behavior of ultrathin ferromagnetic films,
surprisingly little theoretical work has been done toward
understanding the effects of imperfections on spin waves
in very thin ferromagnetic films. '

A particularly interesting finding has been the observa-
tion of a remarkably broad spin-wave peak in Brillouin
light-scattering spectra taken on ultrathin ferromagnetic
films. In thick films consisting of several hundred atom-
ic layers, linewidths are typically very small —on the or-
der of 0.5 GHz, which is less than the instrumental
linewidth. But for films just a few atomic layers thick,
linewidths on the order of 10 GHz or more are ob-
served. ' The purpose of this paper is to examine the
effects of imperfections on long-wavelength spin waves in
order to estimate experimentally observable linewidths
and frequency shifts.

We will consider two possible sources of linewidth
broadening:

1. Lifetime shortening due to scattering from imperfec
tions. Two types of imperfection would be occasional
bumps, where an extra atom sits on top of the film, or oc-
casional holes, where an atom is missing. A spin wave
traveling with wave vector q would be scattered by an
imperfection into another state q'. The linewidth of a
mode q observed by light-scattering techniques should
correspond to the rate this mode scatters into all possible

I

states q'. The linewidth of the mode is then proportional
to the local changes in anisotropies or exchange interac-
tions which produce the scattering. To calculate this, we
develop a time-dependent perturbation theory for non-
Herrnitian systems.

2. The formation of new spin waue -states due to local
thickness variations. This could occur, for example, on a
rough film which has a distribution of regions wtih
different thicknesses, each of which have different aniso-
tropies. This kind of structure would create new spin-
wave states, even when each region extends only over a
few lattice sites, and could thus broaden a spectrum if the
energies of these states lie near that of the state belonging
to the perfect film.

In what follows we consider each of these mechanisms
in detail and present some estimates of the consequent
linewidths one might expect in possible light-scattered ex-
periments. We also emphasize the approximations in our
approach. In the second treatment, we consider only di-
polar interactions and ignore possible complications due
to exchange interactions. This puts limits on the validity
of our theory, of course, but we expect that at low fre-
quencies and for long-wavelength excitations the dipolar
interactions will dominate over short-ranged exchange in-
teractions.

In order to provide a background for what follows, it is
useful to review some of the main features of spin waves
in ultrathin films. Long-wavelength spin waves in ul-
trathin ferromagnetic films have been discussed by
several authors, so here we will only review the relevant
results. An ultrathin film may consist of several atomic
layers, and we define "ultrathin" as being thin enough
that only the lowest-order mode is appreciably populated
at room temperatures. For Co and Fe this means films
which are 1 —3 atomic layers thick. The dispersion rela-
tion for such films can be shown to have the form

col@ =[HO+ A, +Dq +47tM, (f—qd /2)]IIIo+ A2+Dq +2ttM, qd sin P] .
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Here Ho is the external applied field, D is an exchange
constant in field units, d is the thickness of the film, I& is
the saturation magnetization, q is the wave vector of the
excitation, and P is the angle between q and Ho.
Effective anisotropy fields are represented by 2, and Az,
and are combinations of in-plane and out-of-plane aniso-
tropies. Also, y=gp~/A, where g is the g factor of the
material, pz is the Bohr magnetron, and A is Planck's
constant. The factor f arises due to an interesting feature
of these modes in that the dipolar demagnetizing fields
for an ultr~thin film differ from those for a thick film.
For a monolayer, q =1.078. The dipolar fields in two di-
mensions appear to h~ especially important in stabilizing
the two-dimensional ferromagnetic order at finite temper-
atures by changing the manner in which co goes to zero as
q goes to zero.

II. IMPURITY SCATTERING

We define our geometry such that the film lies in the yz
plane and assume that both the magnetization and an
external applied field lie in the z direction. The magneti-
zation in each layer of a film is assumed to consist of a
small dynamic part m(y, z, t) and a static part zMs. The
dynamic part exists in the xy plane and varies in time ac-
cording to exp( —icgt). We now want to examine the
equations of motion, and study the effects of localized im-
purities on the allowed co's and m's using perturbation
theory.

The magnetization obeys the Bloch equations of
motion, which also relate m to dipolar fields h. In gen-
eral, one has equations of motion for m in each atomic
layer, but a great simplification can be made for the
lowest-energy mode of an ultrathin film by noting that
the relative phases between the precessing magnetic mo-
ments varies slowly from atomic layer to atomic layer.
For films that are only a few atomic layers thick, the m
and h fields can be assumed to be independent of position
in the direction normal to the atomic planes. Plane-wave
solutions for I and h are assumed, and have the forms

where L is given by

0 Li
—L 0

The fields L
&

and L z are defined as

L, =Dq +Ho+ 3, +2~M, qd sin P,

L2=Dq +Ho+ A~+4~M, f 2
(7)

The positive eigenvalue of Eq. (4) is then given by
co/y =(L ~L~)'~, which can be written as in Eq. (1) using
Eqs. (6) and (7). Some care must be taken when solving
for the eigenvectors of Eq. (4), however, since the matrix
L is not Hermitian. To find the correct eigenvectors, we
define right and left vectors m, and II such that

E ml Lmr

where the sum runs over the atomic layers, 1 to Nz, and
the integration is over the sample area O' . The resulting
right and left eigenvectors for the +co eigenvalue are

m„(q)= i+L)
W+2NI L2 V L2

(10)

mi(q) = [i +L2, QL, ]e'q' .
W+2N~L,

Our goal is to describe the effects of an impurity on the
eigenmodes given by Eqs. (10) and (11) We define an im-
purity as a local change L' from the effective field I„
where the components of L' are defined as 6, and 62
such that

We also require that the modes are normalized across the
film thickness as follows:

NL

1= y fd'rm, * m„,

m(r) =me'q'

and

(2)
L'=

0
a 5(r;) .

2
(12)

h(r) =he'q' (3)

Here q and r lie in the film plane.
This problem has been solved in Ref. 8, and so we only

describe the calculation and present the relevant results
here. First, Bloch's equations are solved using solutions
of the form shown in Eqs. (2) —(3), and the exchange
boundary conditions are applied. The resulting equations
provide an expression relating I and h. Next, the mag-
netostatic form of Maxwell's equations are solved and the
electromagnetic boundary conditions are applied. These
equations are then used to derive a second expression re-
lating I and h. Finally, we eliminate h between the two
expressions and obtain the following eigenvalue equation
for I:

The impurity is located at position r; and assumed to ex-
tend over an area a.

We proceed as in standard time-dependent perturba-
tion theory. The dynamic magnetization at any time is
defined as %(t) and written as a sum over allowed states q
with time-dependent coefficients aq(t). These are defined
separately for the right and left eigenvectors:

(13)

(14)

Writing the perturbed equations of motion for the
right eigenvector as

d
IIl = —

E COHl =PL IIl
dt

(4) ql„=y(L +L')irl, ,
d
dt
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we arrive at the following equation for a (we drop expli-
cit reference to the time dependence of the coefficients for
simplicity):

2y D(L, +L~ )
p(~) = (23)

d
a =yea, e"("'&' "'&')M (q —q')

dt lr
q'

(16)

where the perturbation is contained in the matrix element
MI„defined by

AL

M,„(q—q')= g Jd rm&*(q')L'm„(q) . (17)

An equation similar to Eq. (16) can be derived for the bz,
with the difference that the matrix element M,&

appears
in place of MI„.

N~

M„I(q —q')= g Jd'r m„(q) [mf(q')L'] . (18)

In our problem, L' is such that M„I =M~, .
The coeKcients a and b are approximated using

standard perturbation theory with the requirement that
at time t =0 only state a, b is occupied and that theqo) qo

perburbation L' is turned on slowly. Since we are in-
terested in the lifetime of state qo, we seek the solutions
to

d 1
(19)

and

d 1
(20)

(21)

The quantity b*a, which measures the magnitude of
the fiuctuation in the magnetization with energy co(qo),
thus decays in time at the rate

If the total number of spins is N, then W'=%a for a sim-
ple cubic lattice. Using Eqs. (10)—(12), (17), and (22), we
find that the deay rate for n impurities is

a' n ~ (LIL2+L2L»
I 8 N D (L, +L )gL, L

(24)

For simplicity, consider the special case when the per-
turbation is isotropic so that L', =L& =L'. We define the
change in energy represented by the perturbation as

Aco —pL )

so that the decay rate is written as

(25)

(g~)2 (2Dq +4rrM, f )

8 N yD +Dq (Dq +4rrM f)
(26)

—=0.0001 GHz .1

r (27)

In units of field, 1/yI = 1 G, which is on the same order
of magnitude as the scattering of the ferromagnetic reso-
nance mode from surface pits. ' But this linewidth is
much smaller than that observed or even observable with
Brillouin light scattering.

Thus the lifetime of the spin wave is inversely proportion-
al to the fractional number of impurities on the film, and
directly proportional to the strength of the exchange in-
teraction.

For a numerical estimate of Eq. (26), we use parame-
ters appropriate to bulk Co: y = 17.6 X 10 rad/Oe,
ya =0.0056 Hz cm, 4~My = 17.6 kG, and a =2 X 10
cm. For simplicity, f is set equal to l. A large effective
anisotropy field due to a variation in thickness, for exam-
ple, could be on the order of 10 kG with a corresponding
change in frequency of Dao=10 GHz. Even with a large
fraction of impurities of the order of 0.01, the decay rate
will be on the order of

where Re denotes the real part.
To second order in the perturbation, we find

—=2rry' g ~M,„~ 5[co(q) —co(qo)],
1

q&qo

(22)

where the summation is over a11 states other than the ini-
tial qo state. This expression can be evaluated by first
converting to an integral over q with an appropriate den-
sity of states. The difficulty is that the resulting integral is
best solved numerically when the exact density of states is
used because of the directional dependence of the fre-
quency on the propagation angle P. In what follows,
however, we will make a simple estimate by ignoring the
angular dependence on P. Such an approximation is
unwarranted in a bulk sample, but is reasonable in ul-
trathin films, as can be seen from Eq. (1).

For this approximation, we assume that qd ((1, and
calculate the resulting density of states p(co):

III. THICKNESS VARIATIONS AND ROUGHNESS

Variations in film thickness, i.e., roughness, can change
the effective anisotropy fields experienced by long-
wavelength spin-wave excitations in a thin film. We will
show that even in the limit that the effective anisotropy
fields vary over length scales much shorter than the
wavelength of the spin wave, these variations can lead to
new allowed spin-wave modes. Consequently, a distribu-
tion of anisotropies along a thin film may create a band of
spin-wave frequencies.

We will consider only long-wavelength spin-wave exci-
tations in the dipolar limit and assume that exchange in-
teractions are negligible. The film lies in the yz plane as
before, and the magnetization is directed along the z axis.

We will model these variations with appropriately
weighted magnetic permeabilties using an effective-
mediurn approach. In order to form macroscopic rnag-
netic permeabilities, we must perform an average over
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several lattice sites of the true microscopic anisotropies.
We do this by assigning effective uniaxial anisotropy
fields which are uniform over several tens or hundreds of
lattice sites. For the thin films considered here, the
effective anisotropy fields are therefore constant across
the film thickness, but may vary as one moves across the
film plane. This approximation should be valid when the
wavelength of the spin wave is much larger than the
period of the variations.

For simplicity, we consider the idealized case of anisot-
ropy variations in the y direction only. The variations
are shown schematically in Fig. 1, and are defined such
that an effective uniaxial anisotropy field H& acts in re-
gions of width d& and an effective uniaxial anisotropy
field Hz acts in regions of width d2, etc.

Using arguments similar to those in Refs. 11 and 12,
one can show that the frequency of the long-wavelength
mode in ultrathin film is given by

Pxx (28)

where p is the xx component of the magnetic permea-
bility tensor given by 1+g, where g is the susceptibility
defined by m=yh for a uniform film. In the limit of very
long wavelengths, p for the uniform material is given
by

4aM, H,
Pxx H2 2~ 2

=1+
j

where

(29)

H;=Hp+ 3 .

The anisotropy field is represented by 3, and for simplici-
ty is taken to be the same for both in-plane and out-of-
plane directions.

We now calculate the effective-medium permeabilities
for a simple example of a film with only two different an-
isotropies. The fields in a stripe are denoted by the sub-
scripts "1" and "2," which correspond to anisotropy
fields 3, and A2, respectively. As in Refs. 11 and 12, we
assume that the magnetic b and h fields are approximate-
ly constant across each stripe in the film. The x com-
ponent of the average magnetic field, (b), is defined as

where the filling factors are defined as

d ]I =d, +d, (32)

2
~ =d, +d, (33)

We now define the effective permeabilities (p ) and
(I2, ) such that

(b) =(p )(&) +(p„)(h ) (34)

where the components of (h ) are the average magnetic
induction fields. Under the assumption that the fields are
essentially constant within each stripe, continuity of
tangential h requires that

hi =h2 =(b )

b i„=/12„=(b )

From Eq. (34) one then finds

(V..& =fie.".'+Au.".'

(35)

(36)

(37)

where p' " and p' ' are the permeabilities associated with
each individual region of the form given by Eqs.
(29)—(31).

The frequencies of the allowed spin-wave modes are
given by setting (p ) to zero as in Eq. (28). One finds
that the effective-medium permeability for this example
gives one mode for each region, so that there are a total
of two allowed modes. The frequencies of these modes
depend on the anisotropy in each region, so that the
closer the anisotropies are to one another, the closer the
two frequencies will be.

The frequencies of the spin-wave modes for this exam-
ple are shown in Fig. 2 as functions of f, . The frequency
is shown in reduced units co/y4nMs. The applied field is

Hp =27TMS H i
=4~Ms and H2 =0.4~Ms The arrows

show the frequencies of a spin wave for each material
taken separately, denoted by co& and co&, respectively, and
the solid lines are for the stripe geometry. As f, goes to
1, the frequency of the upper mode approaches co& and

(b )„=f,b,„+f2b2„, (31)
2.0
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FIG. 1. Schematic representation of a thin film with different
regions of effective anisotropy fields. The true film structure is

replaced by a film of uniform thickness but with regions of
different lengths where the effective anisotropy fields are
different.

FIG. 2. Allowed propagation frequencies on a film with two
alternating regions with different anisotropies. The frequencies
are shown as a function of the filling factor f, , which deter-
mines the relative sizes of each region. When f, is 0 or l the
film is uniform.
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(+ ) —y y +(~) (38)

Here f, is the filling factor for the ith region and is given
by

d

d;
' (39)

and p'„' is the permeability of the ith region and d, is the
width of the ith region. It can be shown that variations
of the local anisotropy fields in the z direction lead to
similar results.

the frequency of the lower mode approaches y'(Ho+H2).
As f, goes to 0, the frequency of the upper mode ap-
proaches y(Ho+H&), and that of the lower mode ap-
proaches co&. The modes with frequencies near
y(Ho+Hi) or y(Ho+H~) are resonances which would
make little contribution to a light-scattering intensity,
since they occur only in the limit of an almost perfectly
uniform film.

For values of f ~
well away from one and zero, both

modes should make significant contributions to a light-
scattering intensity and, as pointed out above, the
difference between the frequencies depends on the
difference between the anisotropies. Also, it simple to ex-
tend the above argument to the case of several regions of
different anisotropies. One finds that a spin-wave mode
exists for each different anistropy. Thus in order to
achieve a broad band offrequencies, a distribution of an
isotropy fields is required In this. case we would have

imperfections that cause local changes in the effective
magnetic fields through variations in anisotropies. We
found that for the case of nearly perfect films with widely
spaced imperfections, the scattering of a spin wave with
wave vector q into other wave-vector states will lead to
lifetimes on the order of 10 s. The corresponding life-
time corresponds to linewidths observed in light-
scattering experiments, and would be much smaller than
1 GHz.

We have also examined the other extreme where an-
isotropy variations are clustered together inside regions
much smaller than the wavelength of the spin wave.
Here we studied the electromagnetic problem of quasi-
periodic variations in the local anisotropy field by model-
ing the film with an effective magnetic permeability. We
found that a broad of long-wavelength spin-wave states
could be formed by a distribution of anisotropies. The
width of the spin-wave band would be determined by the
minimum and maximum values of the variations in the
anisotropies.

Finally, we repeat that these calculations have ignored
the effects of exchange interactions. The magnitude of
this assumption is not clear, but recent theoretical work
suggests that geometrical imperfections can have an ex-
tremely large effect on the propagation of exchange-
dominated spin waves in ultrathin films. ' A difficult but
necessary step is to include both exchange and dipolar in-
teractions into the description of spin-wave propagation
on rough film films.
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