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Surface magnetism: A Monte Carlo study of surface critical behavior
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We study the critical behavior of an Ising model on a simple cubic lattice with two free surfaces using
the Monte Carlo method. The effect of both the ratio of surface to bulk coupling J, /J&, and the length
to width ratio, r =L /D, are considered. The spontaneous magnetization and the magnetic susceptibility
near the critical point are calculated for both the surface and the bulk. For sufficiently large ratio J, /Jb,
we find that the surface magnetizes at a higher temperature than the bulk; as has been reported previous-
ly. However, we find that the critical value of J /Jb, where the surface and bulk magnetization vanish at
the same temperature, depends on the aspect ratio r, and that for a range of values of r this can be less
than the value 1.55 valid for a semi-infinite geometry. The results reported here may be applicable to
thin magnetic films.

I. INTRODUCTION
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FIG. 1. Cubic lattice with two free surfaces separated by L
lattice spacings with periodic boundary conditions in the trans-
verse dimension. The first, second, (N —1)th, and Xth layers
are considered as part of the surface.

The field of surface magnetism has gained new vigor
due to the development of new tools and techniques for
the study of surfaces. The conventional techniques of
surface science involving electron spectroscopy have re-
cently been improved so as to routinely allow the detec-
tion of spin ordering. These experiments have been
mainly concerned with the microscopic description of
phase transitions from the paramagnetic to the ferromag-
netic state of 3d metals. Studies on NiO, ' Ni, Fe, and
Gd on W (Ref. 4) have been performed. Some of these
authors have indicated the existence of a ferromagnetic
layer on a paramagnetic bulk. In some cases a critical
temperature difference T„—T,b between the surface (T„)
and the bulk (T,b) as large as 22 K has been reported.

The same phenomenon has been predicted on theoreti-
cal grounds by Seltzer and Majlis, Hohenberg and

Binder, Nakanishi and Fisher, and others. Some of
these authors have pointed out that in order for surface
magnetism to occur in the absence of bulk magnetization,
the ratio of the coupling between spins on the surface and
those in bulk, J, /Jb, must be larger than the critical
value J, /J„= l. 55.

We consider an Ising Model on a cubic lattice of length
L, side D, and periodic boundary conditions in the trans-
verse dimensions (see Fig. I). The effect of different
values of J, /J& and L/D are considered. Most of the cal-
culations of this sort found in the literature were done
with an applied field, and in those cases where no field
was applied, only specific values of these ratios were con-
sidered. The excellent work of Binder, and Hohenberg
and others was focused on the critical properties of
the model in the limit of a semi-infinite geometry
(L /D ~ ao). In this study we examine in detail the effect
of the aspect ratio on the transition.

It is well known that free boundary conditions can
strongly affect the results of a Monte Carlo simulation,
especially near the critical point. Therefore in order to
distinguish the effects of surface magnetism from finite
size effects it is necessary to study the effect of varying
both the total number of spins and the ratio L /D.

The Ising model is directly applicable only to strongly
uniaxial magnetic systems, but we expect that the general
behavior of the surface and bulk magnetizations in more
realistic models (e.g. , the Heisenberg model) is similar.

II. THEORY AND DEFINITIONS

Our approach is to consider the Ising spins in the sur-
face layer and first layer below the surface to constitute
"the surface, " and the exchange coupling, J„between
spins in these planes may or may not be different from
the coupling, Jb, between spins in the bulk. The coupling
between spins on the surface and spins in the bulk is tak-
en to be equal to Jb. Only nearest-neighbor interactions
are considered so the Hamiltonian for the system is

H= —g J;Jo';o,',

47 5037 1993 The American Physical Society



5038 CASTELLANOS, FARACH, CRESWICK, AND POOLE 47

where

J, for i,j on the surfaceJ;='
Jb otherwise (2)

and &ij & indicate nearest neighbors.
The susceptibility g, the specific heat C, and the mag-

netization m are defined as

y, =N, (&m,'& —&m, &')/~,

yg =N$( & mt, &
—

& mg & )//,
C =N (&E'& —&E, &')/~'

Cq =Nq( & EI, &
—

& EI, & )/~

and for a single Monte Carlo run

bI — CT;, mb = 0;
s i —1 b i=1

(4)

g P(m;)=1

and is characterized by the moments & m "&,

&
I"

&
= g P(m;)m;" .

For a sufficiently long simulation we will find that
P(m)=P( —m), so that the first moment &m &=0. For
T & T, P(m) is symmetric about the single maximum at
m =0 and the width of the distribution, ( & m & )', is re-
lated to the susceptibility per site g by

where E is the calculated energy per spin, ~=k~T/JI„T
being the temperature and kz the Boltzmann constant,
N, is the number of spins on the surface, and Nb is the
number of spins in the bulk. In a long Monte Carlo cal-
culation the values of the magnetization per spin ob-
tained from (5) are used to generate a distribution func-
tion, P (m), for the magnetization.

In a finite system the magnetization per spin will as-
sume all possible values between -1 and +1 during a
sufficiently long Monte Carlo simulation. The probability
distribution for m, P(m), will exhibit a single maximum
for T & T, at m =0, while for T (T, P(m) will have two
peaks about I =+mo.

It is well known that systems exhibit spontaneous sym-
metry breaking only in the thermodynamic limit. In
finite systems the order parameter is identically zero.
The same is true of sufficiently long Monte Carlo simula-
tions of finite systems. The question then arises as to how
one can determine the order parameter from Monte Car-
lo data.

Let P(m) be the calculated distribution function for
the magnetization per spin obtained from a Monte Carlo
simulation. The distribution is normalized

—0.6 —0.2 0.2 0.6

FICs. 2. Probability distribution for the magnetization I
fitted to the sum of two Gaussians centered at mo =+0.6. The
data points are calculated by Monte Carlo and symmetrized.

The proper thermodynamic averages & m "&, are taken
with respect to P, (m ), not P (m ). For example, by (7) we
have

& m'& =
& I'&, +m,', (10)

where & m &, is the second moment of P, . This leads to
a susceptibility

y=PN(&m &, +mo)

=y)+PNmo .

The second term, being proportional to N, overwhelms
the first and leads to an erroneous value for the suscepti-
bility. In fact if the true susceptibility y, is negligible, as
it is for T~O, then mo can be found by

m, =(& m'& )'" (12)

&m'& —3&m'&'= —2m4 . (13)

Unfortunately this procedure does not allow one to deter-
mine yi, which is the proper susceptibility. In general,
calculating higher moments of P(m) will not solve the
problem since each new moment introduces a new un-
known. However, in the limit of large (but finite) systems
we can argue that P, (m) is Gaussian.

Let us divide the system under consideration into
smaller volumes of linear dimension g, where g is the
correlation length. Within each such volume the magne-
tization per spin will assume a value randomly distribut-
ed about mo (or —mo). Whatever the distribution within
each such volume, if L/g»1 their cumulative distribu-
tion will be Gaussian by the law of large numbers.

Given that P, (m) is Gaussian, the fourth moment of
P(m) is

y=PN&m &, T & T, ,

where N is the number of sites and P= 1/kz T. For
T (T, the situation is not so clear. The distribution de-
velops peaks centered at +m o as shown in Fig. 2, and we

may write

P (m) =
—,
' [P~(m +mo)+P, (m —mo)] .

Solving for mo, we have

m =[(3&m &
—&m &)/2]'

and for the susceptibility from (10) and (11)

y, =PN[&m'& —m', ] .

(14)

(15)
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III. RESULTS 4.650

The first step in the calculation was to see if we could
obtain results similar to those reported in earlier works.
We obtained results comparable to those of Hohenberg
and Binder, Binder and Landau, Landau and Binder,
and Mon and Nightingale' for the case L =D =20, and
J, /Jb =1.0.

We next calculated the magnetization mo as a function
of J, /J~ in the range of 0.7~ J, /J& 1.8 for ~=4.0,
L =10, and D =20 (r =0.5). The choice of r(r, =4.52
ensures that the system is below the transition tempera-
ture ~, and we avoid the problems associated with critical
fIuctuations. The results appear in Fig. 3, where the
curve with the squares refers to the bulk and that with
the dots refers to the surface. The same symbols will be
used in the remaining graphs unless otherwise stated. As
one can see from Fig. 3, below J, /J& = 1.14 the bulk
magnetization exceeds that of the surface while above the
crossover point the surface magnetization is larger. The
value of J, /Jt, at which the magnetization curves for the
bulk and surface intersect was found to depend weakly on
both the temperature ~ (~„and the aspect ratio r.

We then considered the effect of varying L on the bulk
and surface transition temperatures, keeping D fixed at
16 and j, /J& = 1.2. (Note that this ratio is below the
critical value 1.55 of Binder and co-workers. ) The tem-
perature ~, was obtained from the maximum in the sus-
ceptibility when plotted against T. From Fig. 4 it is evi-
dent that for small and large values of r the bulk and the
surface have approximately the same critical tempera-
ture. However, there is an intermediate range of r values
for which the bulk critical temperature lies below that of
the surface. We can understand the behavior of the criti-
cal temperatures in terms of the longitudinal correlation
length gl . When gl /L ((1 the two free surfaces are un-
correlated and the system behaves essentially as if it were
semi-infinite. As we bring the free surfaces closer togeth-
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FIG. 4. Critical temperature ~, vs r =L/D where D =16
was kept constant and J,. /Jb =1.2. At those values of r where
there is only one symbol, ~, =k& T, /J& for the surface and for
the bulk are equal. Notice that over most of the range,
0.75 & r (1.75, the critical temperature of the surface is larger
than that of the bulk.

5.90

er, so that gl /L =1, the correlations between spins on
the free surfaces enhance the surface magnetization, rais-
ing the critical temperature for the surfaces. Of course
the magnetization of the surfaces tends to magnetize the
bulk as well so that, as we see in Fig. 4, the bulk critical
temperature is also increased.

Finally, we studied the dependence of ~, on the ratio
J, /JI, for fixed r. We found that both the transition tem-
perature of the surface and that of the bulk increase with
J, /Jb, and the critical temperature for the bulk tends to
fall below that of the surface. For values of J, /J& larger
than 1.4, it is evident that ~,& of the bulk is different from
that w„of the surface. In the region of r values in the

l.00
5.50

0.75

050—
~o 5 10

0.25
4.70

0.00 l i I i I i I i I i I

0.7 0.9 1.1 1.3 1.5 1.7

JsiJb

4.30
1.0

l

1.2 1.4
J./Jb

l

1.6 1.8

FIG. 3. Magnetization mo vs J, /Jq with J& =1.0 ~=4.0,
L=10, and D=20. The curve with the squares refers to the
bulk and that with the dots refers to the surface. The crossing
point corresponds to ratio J, /Jt, = 1.14.

FIG. 5. The graph of ~, =k~ T, /J„vs J, /J„shows the effect
of changing coupling constants while leaving the size of the lat-
tice constants tL =10, D=20 i.e., r=0.5]. As in all previous
graphs the dots refer to the surface and the squares to the bulk.
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range of 0.3 r ~ 2.0 we can see that the critical tempera-
tures for the surface and bulk are different even for values
as low as J, /Jb =1.2. In Fig. 5 we show the results ob-
tained for the case L =10, D =20 (i.e., r=0.5). The
squares refer to the bulk and the dots refer to the surface.

IV. CONCLUSIONS

By extensive Monte Carlo calculations for different
values of r =L/D and J, /Jb we have a complete picture
of the effect of finite width on the surface magnetization.
For sufficiently large J, /Jb the surface magnetizes in the

absence of bulk magnetization. This surface magnetiza-
tion has the effect of shifting the bulk critical tempera-
ture to higher values. This shift is most pronounced
when L/gL —0 (1), and we find that the critical value of
J, /Ji, approaches the value 1.55 only in the limit r~ ~,
i.e., the limit L/(L ))1 where we have essentially semi-
infinite geometry.

The calculations presented here are applicable to thin
films, and it would be interesting to see if the behavior we
find in the critical temperature for the surface and bulk
can be reproduced experimentally by considering a series
of films of varying thickness.
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