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Nonlinear dynamics of a parametrically driven sine-Gorgon system
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We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is
demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the
small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation. For an ar-
bitrary frequency of the applied field the threshold field for the breather stabilization is determined by a
perturbation method and it is compared to direct numerical simulations. We also analyze the variation
of the breather parameters in the stationary regime and calculate the frequency of such a modulation for
a general type of driving force.

I. INTRODUCTION

The sine-Gordon (SG) model is known to describe
many physical objects in a one-dimensional approxima-
tion, mostly, in solid-state physics, for example, Aux

propagation in long Josephson junctions, dislocations in
solids, nonlinear spin waves in superAuid phases of He,
ferromagnetic, or antiferromagnetic systems, etc. The
simplest localized (soliton) solutions of the model are di-
vided into two different classes, namely, kinks and
breathers. The kink solutions describe motion of topo-
logical excitations, for example, Aux quanta (Auxons) in

long Joseph son transmission lines or various domain
walls in magnetic systems (see, e.g. , the review paper,
Ref. l and references therein). The kink connects two
nearest ground states of the system, say u =0 and u =2~
when the field variable u is an angle, so that this topologi-
cal object may be called a "2~ kink. " In real physical
systems when dissipative losses are included, the kinks
may exist in the form of static stable configurations, and
they will move under an external force. '

The other type of soliton solutions, the so-called
"breathers, " may be considered as dynamical bound
states of kink-antikink pairs, and they are nonlinear oscil-
lating states. Under the inhuence of dissipative forces
and constant fields, the breather excitations usually decay
into either a kink-antikink pair or small-amplitude
(linear) waves eventually decaying because of dissipation.

In a number of physically important systems, an ap-
plied external field is periodic in time. When an ac field is
applied to the SG system, it can compensate for the dissi-
pative losses and maintain a stationary breather. In the
small-amplitude limit, when the SG system is described
by an effective nonlinear Schrodinger (NLS) equation, the
problem was considered by Kaup and Ne well, who
found a phase-locked soliton by means of perturbation
theory. A more detailed investigation reveals complicat-

ed and stochastic dynamics of the ac driven SG system
with loss. ' The main physically important result is
the following: a small-amplitude ac driving force may
compensate for dissipative losses so that a SG breather
can be maintained as a stabilized phase-locked object.

In other physically important systems, e.g. , magnet-
ic" ' or long Josephson junctions' ' the applied
periodic force acts parametrically, i.e., it varies the pa-
rameters of the model. As was demonstrated in our pre-
vious paper, ' a parametric force may stabilize a breather
and the threshold amplitude of the force may be calculat-
ed analytically.

It is the purpose of this paper to give a detailed
analysis of the SG dynamics under the presence of exter-
nal parametric forces of different kinds. For such a para-
metric force we present an extended analysis of the
breather dynamics in the phase-locked regime. In partic-
ular, we analyze analytically and numerically a modula-
tion of the breather frequency around its steady-state
value.

The paper is organized as follows: in Sec. II we de-
scribe our model and discuss some of its applications.
Section III is devoted to the stabilization of the SG
breather dynamics in the presence of a LF parametric
force. In Sec. IV we analyze the modulation of the
phase-locked breather frequency. In this section it is also
demonstrated that a general expression for the modula-
tion frequency of the breather frequency can be found, re-
gardless of the origin of the drive. In all problems
presented in this paper, the analytical results are in excel-
lent agreement with direct numerical simulations of the
corresponding nonlinear effects. Section V concludes the
paper.

II. THE MODEL

The model we deal with in this paper is described by
the perturbed SG equation
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P—„—sing=a/, —E„sincotsin(gln ),
where a is the loss parameter, c„ is the amplitude of the
external parametric force, co is its frequency, and n is a
rational number. Equation (1) arises, for example, as an
effective equation of motion for the magnetization vector
in magnetic systems, P being an angle describing its
orientation in a selected plane. For definiteness, a one-
dimensional easy-plane ferromagnetic like CsNiF3 or
TMMC is described by the well-known Landau-Lifshitz
equation in which the dimensionless form may be written
as the following:

M, =MXM« —P(M e)(MXe)+MXH —aMXM, ,

recently a few papers have appeared' ' in which the
possibility of parametric excitations in Josephson junc-
tions is discussed. For the latter case, such a parametric
inhuence may change the critical current of the junction
that may be modeled by Eq. (1) for n = 1.

Without perturbations (i.e., e„=a=0), Eq. (1) has two
different types of soliton solutions. The kink is given by
the expression

x —vt
P k( x, t)=4tan 'e', z=+

1 —v
(3)

where the sign "+"or "—"corresponds to the kink po-
larity (kink or antikink).

The breather (at rest) has the form

where M is the unit (normalized) magnetization vector, f3

(P& 0) is the easy-plane anisotropy constant, e=(1,0, 0),
and a is a relaxation constant. If we consider the mag-
netic field in the easy plane, H=[H(t), 0,0], when in the
limit P&)(H ), (H ) being the field averaged over the
period of oscillation, we may derive the following SG
equation, P being the easy-plane angle, from Eq. (2):

—P 'P« H( t)sing—=aP, ,

which is, after an appropriate rescaling, identical to Eq.
(1) for n =1.'

Another example is the model of a weak two-sublattice
ferromagnetic (antiferromagnetic) system. ' In that case
the main nonlinearity ( —sing) is caused by anisotropy
(unlike the previous example), and the parameter
E2(n =2) is proportional to the amplitude of the external
(variable) magnetic field. Other examples of physical
realizations for the system (1) may be found, e.g. , in Ref.
1. However, we would like to mention additionally that

Q 1 Ci)b„
(t b„(x,t ) =4 tan

sin(cob„t +0)

cosh(x Q 1 —
cob, )

(4)

III. BREATHER STABILIZATION

If the breather is maintained in the steady-state regime,
all the terms in Eq. (1), except for the driving term, con-
tain odd harmonics of cob„. In order to support the solu-
tion, the driving term must therefore also contain odd
harmonics of cob, . To fulfill that we have to consider

6) —2Mb (5)

i.e., the condition of a parametric resonance.
In this section we will present our result for a general-

ized parametrically driven SG model,

cub„being the breather frequency, 0(cob, & 1, and 0 is an
arbitrary initial phase. The moving breather may be ob-
tained from Eq. (4) by a Lorentz transformation.

—
P«

—sing=a/, —PP, —E'„"sin—sin(cot+0'„") —s' 'P, sin(cot+8' ') —E' 'P«sin(cot+0' ') —E' 'P„„sin(cot+0' I) .
n

(6)

In the Introduction we have mentioned some physical ap-
plications of Eq. (6) at E'„"%0. Here we add that the gen-
eralized model above is more relevant for applications in
the theory of long Josephson junctions and driven pendu-
lums. For example, the term proportional to c.' ' has
been studied both theoretically and experimentally.
This has been done for systems without spatial extension.
The experiments for studying this term were made by
modulating the friction periodically in a mechanical pen-
dulum. In this section we will generalize the analysis'
made on the parametric term c(„"to cover the terms c.' ',
sI", and c.' ' as well as the loss term —P. '

A. Small-amplitude limit

In the small-amplitude limit, 1 —co&„«1, we may look
for a solution in the form

y( , x)=rA(x, r)e "+c.c. ,

A (x, r) being a slowly varying envelope. Substituting Eq.
(5) into Eq. (6) yields for

~ A«~ «
I A, l

«I A
I

the p«-
turbed NLS equation

~(i)
2iA, —A —

—,'~A
~

A = —iaA+ ~A~' + A'e""'
2n 6n

(2) (3) ~(4)
g e~ —2iQt 8 g e —2iQt+ ~ g e —Zi At

2 2i 2i
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—2iq t

2 (x, t ) =4i ri
cosh 2r)x )

(9)

where the asterisk means the complex conjugation. The
effective driving frequency, 0:—1 —cob„ is considered to
be small. 3 is, like all the terms in Eq. (8), oscillating
with the frequency —A(Q «1), since P oscillates with
the frequency cob„.

The unperturbed NLS equation (c.„=a=0) has a solu-
tion in the slowly oscillating form

P„=m /2+ [m/2 —arcsin(2a /E '],
2 i ~+ ( Q( (2)/2)2 2

4 4

(2)
~ 2 .

CX

g, =ir+arccos(2a/8( '),
2 —( f1+ 1 Q( (3)/2)2 2

4 4
—a

(3)/

(14)

g being the parameter of the soliton. From the viewpoint
of the SG system, r)= —,'(1 —cob„)'~ [cf. Eq. (4)]. To ana-
lyze the perturbation-induced dynamics of the oscillating
NLS solution [Eq. (9)] we use a perturbation theory for
solitons, ' considering the perturbative terms as small.
According to this approach, we look for a perturbed solu-
tion in the form

—ig( t)

3 (x, t ) =4i r)(t)
cosh 2' t x

(10)

where rI(t) and g(t) are slowly varying functions.
Using the so-called adiabatic equations of the perturba-

tion theory for solitons, ' we can obtain the equations for
the time-dependent soliton parameters i) and p:

(1)
d'l7 CX ~n 32 2

dt 2 4n
(1 —rt)= ——rt+ (1 —

2) )2) cosg

E(2) ~(3) ~(4)+ 2) sing —
2) cost)j — r) cosP,4 4 4

(1)
dQ 2 en 64=4i) —2Q — (1— rI )sing
dt 2n 9n

~(2) ~(3) ~(4)
+ cos1(+ sing+ r) cosg,

2 2 3
(12)

i', = +arccos(2a n /c. '„"),
+ '((/ ( e'„",/2—n )

—a

=c.'„"/a ~2n .

(13)

where g(t) =2y(t) —20t denotes the phase of the soliton
relative to the parametric drive. In a steady state, the am-
plitude r) and the phase 1( equal their fix points i)=2)„
and P= P„. Treating each parametric force independent-
ly, we obtain from the lowest approximation in g:

These solutions correspond to nonpropagating solitons
whose amplitudes and phases are fixed but whose posi-
tions in space are arbitrary. Therefore the small-
amplitude breather [Eq. (4)] considered as a NLS soliton
is stabilized at one-half of the external frequency (as a
parametrically phase-locked state). At the threshold the
amplitude of the stabilized soliton is g =

—,'&0; however,
for the soliton phase there is zero mismatch between the
soliton and the phase of the parametric force. We con-
clude that the soliton can be maintained in an energy bal-
ance between the loss and a parametric force, but it is im-
portant to note that the parametrical term —E ' does not
produce any phase-locked soliton state in this limit. The
NLS regime fails to give us the threshold value of the am-
plitude of the applied drive for finite (but small) values of
the detuning A. Further, the threshold value of the
external drive can be obtained only for cob, = 1, which is a
somehow uninteresting point for the SG breather, since
the amplitude of the breather is zero for this particular
frequency. On the other hand, we can here differentiate
stable from unstable fix points. As seen from Eqs. (13),
(14), and (15), we have obtained the fix points in pairs.
Using Eqs. (11) and (12) and making the stability analysis
around (r)„g, ) we easily obtain that the stable fix points
are given for E„"', sing„)0; E' ', cosg„&0; and for E' ',

sing„& 0.
B. Energy balance approach

To calculate the threshold amplitude of the parametric
field allowing the steady-state oscillating breather to have
an arbitrary amplitude, we use the approach proposed in
Ref. 13. The method uses energy considerations, and the
assumption that the breather mode of the perturbed SG
system, (()b„(x,t), may be chosen in the form of Eq. (4). A
similar approach has also been applied to the kink
motion in the perturbed SG equation.

Let us define the energy of the system as

H= —,
' + —,', +1—cos dx . (16)

For the pure SG breather [Eq. (4)] this energy is
Hb„=16+1—cob„. In the perturbed SG system Eqs. (16)
and (6) yield

= —e,dx — „tdx+c„"'sin cot+0„"' tsin n dx+c' 'sin cot+0' ', dx
dt 00 oo

+e( 'sin(cot+6( ')f ™
P, P„dx+e( 'sin(cot+0' ) f P, P dx .

The change in the system energy during one breather period is then found by integrating Eq. (17) over the period

(17)
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br d~AH= dt —I111 I lo s

0 dt
(18)

where the integrals for the breather energy loss I"",and the energy input to the breather, I'", must be calculated at
co —2cob .

2' f6)

b„ tdx dt =32m+ sin mb OUI 1 (19)

and

I'"=I(')+I( )+I( )+I( )
n

Here

(20)

yields the results

(l)
en thr 1 16 6 P=2n 1 —0—7—

CX 9 n m a +O(Q ), (29)

I( —g( )I ) os/(
n n n n

where

271/cobI("(1)= f sin(2coh, t )f t/th, , sin
0 Qo

I' '=E' 'I' '(1) ist' '

(21)

dx dt;
n

(22)

(2)
~thr 2 1 P=2 1 —0— 1 ———
a 3 7T A

(3)
thr 1 2/3=2 1+0—1+——
o. 3 JT CX

(4)
thr 1=3' +O—(Q ),0

a A

+O(O ),

+O(Q ), (31)

(32)

where
277/cobI' '(1)=f cos(2coh„t) f t/)h„ tdx dt;

I(3)— e(3)I(3)( 1 )cosg(3) (23)

where
2~y~bI' '(1)=—f sin(2coh, t)f (/)h„, t/)h„„„dx dt .

where
2~y~bI' '(1)= —f sin(2coh„t ) f t/)h, r(/th, «dx dt;

I' '= 'I' '(1) —os&' ', (24)

It is important to note that Eq. (29) shows crucial depen-
dence on n when n is compared with the value
&16/7=1.51. As was found from the NLS treatment in
the previous section, we here find that the small-
amplitude breather cannot be stabilized by a parametric
term —c.' '. Further, we note that if the parametric
terms were not considered independently and more than
one of the forces were active at a time, we have to make a
more careful optimization of the phases. The equations
above show that the p loss term in Eq. (6) plays a smaller
role for the threshold of the driving amplitude than the o.
loss term for the small-amplitude breather. Hence we
will in the following neglect the P term in Eq. (6).

A power balance is established between energy input and
output when the change in the system energy is zero dur-
ing one breather period. By putting Eq. (18) to zero, and
treating the parametric terms independently, we find the
balance conditions

I (1) en thrloss (&)

cos((9„)=—
I„"'(1)

I loss( 1 )stn(e(") =
I(2)( 1 )

I loss( 1 )cos(8' ) = I( )(1)
(4) gloss( 1 )cos(8' ')=

I(4)( 1 )

(25)

(26)

(27)

(28)

where E', h', is the threshold value of e". In Eqs. (25)—(28)
the phases 0" are adjusted in order to balance the energy
input and output of the driven breather.

We have not been able to calculate any of the integrals
[Eqs. (21)—(24)] analytically; however, in the limit
1 —cob„&(1, a first-order approximation in 0=1—cob,

C. Numerical experiments

In order to check some of our assumptions and our
theoretical results we have performed numerical experi-
ments on the system [Eq. (6)] and numerical calculations
of the integrals [Eqs. (21)—(24)] together with Eq. (19).
Solving Eq. (6) we have used a second-order implicit finite
difference method in time and a fourth-order method in
space. The space and time grid size were chosen to be
Ax =0.02 and Et=0.01 of the normalized units. The
breather tt(x, t(=0) is placed at x =0 and we have im-
posed the boundary conditions to be P (0)=(tt„(L)=0.
The system length was chosen to be L =2S.

Figure 1 shows our results for c,(,". Shown is the per-
turbation theory results and the results of direct numeri-
cal solution of Eq. (6) for e( '=e' )=e' '=0, (a) for
a=0. 1 and (b) for a=0.2. The solid curves represent the
perturbation results [Eq. (25)] with the integral [Eq. (21)]
calculated numerically for different values of n (8(„''=0),
the dashed lines show the analytically evaluated asymp-
totic behavior for coh, ~ 1 [Eq. (29)]. The error bars
represent the direct numerical integration of Eq. (6). The
numerical procedure for determining the threshold for
stabilization of the breather was the following: for each
value of the applied frequency we chose an amplitude of
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the driving field, E, which can stabilize the breather.
Then by decreasing c in steps of 6c, we monitor for which
value of c the breather disappears. After each change of
c., we allow the system to relax for 100 periods of the
driving field, after which we calculate the total energy of
the system. If this energy is within S%%uo of the energy of
the unperturbed breather [see comment below Eq. (16)]
we define the breather to be stabilized, otherwise we
define it to be lost. Hence the top of the error bars
represents the lowest of the tried values of the amplitude
c. for which the breather was found to be stabilized, and
the bottom of the error bars represents the value of c. for
which the breather was lost. As is obvious from the

0.;3

0.2-

E

p p ~wi L~s
-00 0.2 04 06 OH 1 0

~br
FIG. 2. The threshold value for the amplitude c,

"' as a func-
tion of the phase-locked breather frequency. Solid lines are the
perturbation results using the numerically calculated integral
[Eqs. (22) and (19)]. Dashed lines are the analytically calculated
tangents for cob„~ 1, [Eq. (30)]. Error bars represent the results
of numerical simulations on the wave equation (6). Parameters
are L =25, /3=0.

—0.0 O. d 0.4 0.6 O. H 1.0

figures, excellent agreement between the results of numer-
ical experiments and the perturbation results is found.

Figures 2 and 3 show the results for the parametric
forces E' ' and E' ', respectively. Again we find excellent
agreement between the results of numerical integration of
Eq. (6) and the energy consideration of the threshold of

0.6

0.5

-- 0.0 0.' 0.6 O. H 1.0
0.2

—-0.0 0.2 0.4 0.6 O. H 1.0
~br

FICx. 1. The threshold value for the amplitude c(„') as a func-
tion of the phase-locked breather frequency. Solid lines are the
perturbation results using the numerically calculated integral
[Eqs. (21) and (19)]. Dashed lines are the analytically calculated
tangents for cob,~ 1, [Eq. (29)]. Error bars represent the results
of numerical simulations on the wave equation (6). Parameters
are L =25, (a) a=0. 1, (b) a=0.2, P=O.

G3 br
FICz. 3. The threshold value for the amplitude c' ' as a func-

tion of the phase-locked breather frequency. Solid lines are the
perturbation results using the numerically calculated integral
[Eqs. (23) and (19)]. Dashed lines are the analytically calculated
tangents for co„,~ 1, [Eq. (31)]. Error bars represent the results
of numerical simulations on the wave equation (6). Parameters
are L =25, P=0.
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the driving amplitude. Qne thing that is common for all
the parametric forces is that they were not able to stabi-
lize the breathers in the low-frequency limit. We have
not been able to observe any stabilized breathers for fre-
quencies lower than those indicated by the error bars in
Figs. 1 —3.

To conclude this section, we note that the energy bal-
ance approach to the problem seems to be preferable in
comparison to the small-amplitude (NLS) limit. In the
latter case, we have only been able to obtain the threshold
value in the point cob, —= 1. For this point, we find exact
agreement between the NLS treatment and the energy
balance approach. However, when ~b, =1—0&1, the
energy balance approach, using the numerically calculat-
ed integrals [Eqs. (21)—(23)], still gives the correct bal-
ance condition while the NLS regime is limited to ~b, =—1.
Even the analytically obtained asymptotes [Eqs.
(29)—(31)] show very good agreement in the appropriate
1IIlit& QPb ~ 1.

IV. MODULATION OF THE PHASE-LOCKED
BRKATHKR FRKQUKNCY

il=g„+5g, g=g, +5/, (33)

where 5il and 5i)'j are small deviations from the equilibri-
um (steady-state) oscillation. Substituting Eq. (33) into
Eqs. (11) and (12) and expanding in small 5il and 5$, we
may derive the set of equations:

We have now investigated the possibility of maintain-
ing a phase-locked breather. The threshold value of the
amplitude of the applied parametric force was found and
the results were verified by numerical experiments. We
will now investigate how the phase-locked breather mode
responds to a perturbation if the drive amplitude is larger
than the threshold value. Following the idea of Ref. 8,
we will show that when c.',")c,„",'„„,we can excite a slow
modulation of the locked frequency.

A. Small-amplitude limit

To analyze the dynamics near the critical point

4iI, =II+Qc,„/4n —a, itj, =cos '(2an/c„),

we will derive a system of linear equations describing
small modulations of the soliton parameters. Let us put

(36) is valid for the variation of the soliton amplitude 5il.
Equation (37) describes modulation of the soliton phase
(amplitude) with the frequency AM, however, because of
dissipative losses these modulations are decaying.

Analogous to Eq. (37), we can derive the expressions
for the modulation of the breather frequency for the
forces -s' ' and -s' '. The result is as Eq. (37), but the
threshold values for the amplitude of the parametric
drive are now given by Eqs. (14) and (15) respectively.

Thus at the level of the small-amplitude approach it
has be shown that above the threshold [Eqs. (13)—(15)]
the parametrically phase-locked soliton is stable and its
parameters are modulated with the frequency [Eq. (37)].
However, this conclusion is valid only when the breather
frequency fulfills 1 —

cob, «1. In the next subsection we
will analyze the more general case.

B. Energy balance approach

We will here write the unperturbed breather in the
form of Eq. (4), where we chose the varying breather fre-
quency in the form

e)b, =~o+ 60, cob, =60, (38)

where 60 is small and slowly varying and mo is the sta-
tionary value of cob„. Throughout this section we will as-
sume that ~b, 9~ &&1, ~68~ &&coo. Then the energy change
for the breather during one period can be obtained from
Eq. (18) as follows:

2' brdH

COb„dt
b, H= I'" I"" (39)—

Q 1 cop„

The loss contribution to the energy change is, of course,
given by expressions (19) and (20), but since we here have
an extra phase value in consideration, we will modify the
exPressions by writing 0=0o+ 60 - ~b, =coo+ 60 in or-
der to describe the phase mismatch between the breather
and the drive as an average phase 0o and a modulation
50. During one breather period, we then have the sys-
tem energy change given by Eq. (18) or (39), provided
~b, 0~ && l. In this equation I'"' is given by Eq. (19). If
c.,h, denotes the threshold value, for which the breather
can be maintained (note that we do not specify the type of
the driving force at this point), the energy input is given
by

5il= —il„+(s~„"/2n )
—a 5itt,

5$= 871,5g a5$ . —
(34)

(35)

I„'"=I'" I+6.9 'I/ I —(s /s)
~O ~thr

(40)

Comparing Eq. (34) with Eq. (35), we may obtain the
equation for the phase variation 5P,

Using this in Eq. (39), we find the general expression

60= —0~60 . (41)

5q+ (n' ")'5y= —a51t,

where the frequency A~' is given by

(36) The result defines the frequency of the breather modula-
tions:

(0'") =(0'") Q(s"'/s"' ) —1 (0'") =8i) a QM =QOQ(c, /s, „,) —1,
Go=a(co/coo)+ I —coosin '+ I —coo . (42)

O, M' is given by the threshold value of the amplitude of
the driving field [Eq. (13)]. An equation similar to Eq.

In the small-amplitude limit, when Ql —
coo «1, Eq.

(42) may be transformed into
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QM =a(ro/coo)(1 —coo)Q(e/e„, „,) —1, (43)
1.5

which after substituting c,„,&,
——2O'n, coo —= —,

' co, and

Ql —coo-—2r)„gives exactly the result of Eq. (37) ob-
tained for the NLS equation limit.

In Fig. 4 we have plotted some examples of the time
evolution of the breather for different values of the drive
amplitude in the case of the drive -c' '. We show the
phase value in the center of the breather, since this quan-
tity very well describes what we want to show here.
Clearly, we find that there is a modulation of the breather
amplitude (frequency) depending on the amplitude of the
drive. In most cases we have observed that the modula-
tion decayed away after some transient time, but in some
cases we have not been able to see any decay of the
modulation. In these relatively high amplitude drive
cases it seems that there exist steady states of modulated
breathers. The modulation frequency has been measured
for different drive amplitudes and for two values of the
driving frequency (su=1. 8 and r0=1.9). The results of
these measurements are shown in Fig. 5, where the solid
curve represents the perturbation result, the +'s

0 '

—0 100 200 300 400 500
t

l~+T I T I ~T

o 0!

100 200 300 400 500

FIG. 4. The time evolution of the center of the breather
P(O, t) in case of the parametric force e' '. Parameters are
a=0.05, P=O, cob„=0.9, and L =25. (a) e' '=0. 11, (b)
c' '=0 12

1.0

1.0 1.2 1.4
(~) (~)

FIG. 5. The square of the modulation frequency as a func-
tion of the driving amplitude c,

' '. Parameters are a=0.05,
P=O, and L =25. (+) cob„=0.90. (*) cob„=0.95. The solid line
is the perturbation result [Eq. (42)] and the markers are results
of numerical experiments.

represent the coo=0.9 cases, and the e's the ct)0=0.95
cases. We find very good agreement between the analyti-
cal result [Eq. (42)] and the numerical experiments.

From Fig. 4 it is possible to estimate the damping of
the modulation. The observed damping is found to be
much smaller than what one, a priori, would expect,
namely a damping given by a, cf. the result of the NLS
treatment [Eq. (36)]. In fact, the damping has in most
cases been measured to be one or two orders of magni-
tude smaller than that given by a (see also Ref. 8). If the
damping is included consistently in the energy balance
approach it would yield an additional term,

coo 2
8 inc,„,

Ao 60= —a'50
co

Bazoo

in the right-hand side of Eq. (41). The size of a' is one to
two orders of magnitude smaller than a in most cases,
but the sign is given by the sign of —(Be,t„)/(Bcuo), which
in some of the cases is negative, as seen in Figs. 1 —3. In a
perturbation treatment like this, the correct conclusion is
that the damping is very small and we are not able to
derive any details. This is because the effective damping
of the modulation arises as a small difference between two
almost equal numbers, -a and -c..

Let us as a final comment in this section note that the
derivation of the expression for the modulation frequency
has been done without any specification of the nature of
the driving force. This indicates that the expression may
be applicable for a general type of force. As an example,
we note that the expression for the modulation frequen-
cies in the case of an ac driving force is completely iden-
tical to our Eq. (37) when co=coo, i.e., when the frequency
of the driving term equals the frequency of the stabilized
breather. In Ref. 8 it was shown that there was good
agreement between the analytical expression for the
modulation and the numerical experiments. Here, we
will try yet another different driving mechanism to see if
the stabilized breather will be modulated in frequency ac-
cording to Eq. (37). In Ref. 27 it was demonstrated that a
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0.5

. L

FIG. 6. The square of the modulation frequency as a func-
tion of the amplitude of the point drive 8. Parameters are
cc=0.025, /3=0, and L =25. (*) cob„=0.90. (+) cob„=0.80. The
solid line is the perturbation result [Eq. (42)] and the markers
are results of numerical experiments.

breather could be stabilized in a system defined by Eq. (6)
for s"=f3=0 if the following boundary conditions are
imposed:

$, (0, t ) =B coscoot, P, (L, t ) =0, (44)

and the threshold value for the driving amplitude was
found to be

8,„„=2a+(1+coo)/(1—coo)sin '+1—
coo . (45)

Using this threshold value in Eq. (42) for Ao and compar-
ing the result to the results of numerical simulations of
the system defind above, we found good agreement as
shown in Fig. 6. Here, we have shown the general per-
turbation result as a solid curve and the results of the nu-
merical experiments as markers for two different values
of the driving frequency.

In conclusion, we have analyzed the breather dynamics
in the perturbed sine-Gordon system, driven by different
types of parametric forces. The condition for stabiliza-
tion of the breathers has been given using two different
perturbation approaches. One of the methods, valid only
in the small-amplitude limit (the NLS regime), gives the
correct threshold value for the amplitude of the driving
force in the point where ~b, ——1. The other approach, the
energy balance approach, gives the threshold value for
any value of the breather frequency, —1 (cob, ~ 1. Com-
parisons between the obtained perturbation results and
results of numerical experiments made on the perturbed
sine-Gordon equation show almost perfect agreement for
the energy balance approach.

In the second part of the paper, we have demonstrated
that a breather, out of the phase-locked equilibrium, will
relax with a slow oscillating modulation around the fre-
quency and amplitude of the phase-locked state. This
modulation frequency has been found analytically for a
general type of driving force and it has been compared to
results of numerical experiments for different types of
external drives. It is interesting to note that the modula-
tion frequency is, independently of the type of external
force, directly given by the damping coefficient a in the
field equation.
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