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Simulation of an ensemble with varying magnetic field: A numerical determination
of the order-order interface tension in the D =2 Ising model
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In analogy with a recently proposed multicanonical ensemble we introduce an ensemble where the
partition function is simulated with a term in the action containing a varying magnetic field. Using this
ensemble we demonstrate on lattices with periodic boundary conditions that it is possible to enhance the
appearance of order-order interfaces by many orders of magnitude. To perform a stringent test of the
method we consider the D =2 Ising model at P=0.5 and simulate square lattices up to size 100X 100.
By a finite-size scaling analysis, the order-order interface tension per unit area is obtained. Our best
infinite-volume extrapolation is in excellent agreement with Onsager s exact result.

Interfaces between ordered and disordered and, corre-
spondingly, between ordered and ordered physical states
play an important role in statistical mechanics, as well as
in field theoretic models of fundamental gauge interac-
tions. ' Past numerical studies of the properties of in-
terfaces were, however, hampered by a problem of princi-
ple. The surface tension per unit area F' between ordered
and disordered states or between ordered and ordered
states has a finite value. Thus in the canonical ensemble,
where configurations are samples with the Boltzmann
weight P ~e ~, configurations containing interfaces
with an area A of typical size O(L ') on the D-
dimensional lattice with linear extension L are suppressed—AFby exponentially small factors e " . The aim of numer-
ical studies of interfaces consists in obtaining many sta-
tistical independent interfaces on large lattices. This is
prevented by the exponentially small suppression of
configurations containing interfaces, resulting in a corre-
sponding exponentially fast increase of the tunneling time
with the area A between pure phases of the system, when
the system is simulated with local Monte Carlo (MC) al-
gorithms. To overcome these difficulties two of the
present authors recently proposed MC simulations of a
multicanonicaI ensemble. Originally the ensemble was
formulated for a temperature driven, order-disorder first
order phase transition and the two-dimensional (2D) 10-
state Potts model has been the first applicational target.
In the present paper we generalize the method to the case
of a magnetic field driven order-order phase transition.
We introduce a multimagnetic ensemble and illustrate
how things work by simulating the 2D Ising model. The
aim of the present paper is to check the numerical ap-
proach versus the exactly known interface tension of 2D
Ising model. The discrepancy between Refs. 1 and 2 il-
luminates that such stringent tests are desirable.

Let us introduce the notation. Spins s; =4 1 are
defined on sites of a square lattice of volume V=L XL
with periodic boundary conditions and the symbol (i,j )
is used to denote nearest neighbors. The Ising Hamil-

tonian

H=Ht —hM, with Ht= —g s, s and M = gs;,
I

for p~ p, =
—,'ln(1+v 2) =0.4406. . . . (2)

Following Binders, ' we are going to extract the inter-
face tension from the probability distribution of the mag-
netization M. Probability distributions PL(M), as for
h=O obtained with our new algorithm, are depicted in
Fig. 1, where we have adopted the normalization
+st PL(M) =1. The distributions are sharply double
peaked and we denote the positions of the maxima by
+MI '". Our measured distributions show deviations
from the symmetry PL (M)=PL (

—M), due to statistical
Auctuations, and the average of the absolute values of the
positions of the measured maxima is taken to define
ML '". Correspondingly we define PL

'" as PL
'"

= [PL ( ML '")+Pt (+M—t '")j!2. The distribution
takes its maximum at PL'"=PL(0). The logarithmic
scale of Fig. 1 displays that more than twenty orders of
magnitude are involved. The standard MC algorithm
would only sample configurations corresponding to P,
if one could generate of the order O(10 ) or more statist-
ically independent configurations. Here we overcome
this difficulty by sampling configurations with a mul-
timagnetical weight factor

PL (M) exp(aL +—ht"PM PHt ) for MLk (M—&M~ +'
(3)

contains the nearest-neighbor interaction term Hl and a
term which couples the magnetic field h to the magneti-
zation M = g; s;. For the 2D model the exact planar in-
terface surface tension is, since long, known to be given
b 6

F'=2P —ln[(1+e ~)/(I —e ~)]
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FIG. 1. Boltzmann probability distributions Pi(M) for the
magnetization.

instead of sampling with the usual Boltzmann factor P .
In Eq. (3) we partition the magnetization —V~M~ V
into k =0, . . . , N (N odd) intervals Ik=(ML, MI+']
with M"+') M and the idea is to choose the intervals
Ik and parameters hL", aL such that the resulting mul-
timagnetical probability density PL(M), as opposed to
PI (M), has an approximately flat behavior. Let
ML = —V and for k =2, . . . , N/2 we define Mi &0 such
that Pl (MI" ) = r ' "PL '", where r ) 1. Similarly, we
define M + = V and P~(M )=r P " with
ML )0 for k =N/2+1, . . . , N. It follows from Ref. 4
that, in the limit r~1, the rnultimagnetical probability
distribution Pz (M) can be made arbitrarily flat by adapt-
ing the following choice of parameters:

0 for k =O, N/2, N,
+P 'ln(r)/(-M, "+' M,")—

gk for k =1, . . . , N/2 —1, (4)

p'ln(r)/—(Mi"+' —ML )

for k =N/2+1, . . . , N —1,

where we require validity of the recursion relation

~k+1 —&k +(h k h k+1)p—1Mk+1 &0 —0 (5)

The standard Markov process is well suited to generate
configurations which are in equilibrium with respect to
this multirnagnetical distribution and the probability dis-
tribution PI (M) corresponding to the Boltzmann weight
is then obtained from PL (M) by weighting with
exp( —al —

hL PM).
Our simulations were performed at p=0.5 on square

lattices with linear size L=2 up to L=100. On the
smallest systems we get the parameters in Eq. (3) from
standard heat bath simulations. This is no longer possi-
ble for L ~ 18 and in this case we chose them by making
everytime a finite size scaling (FSS) prediction of the
quantity PL (M) from the smaller systems. To optimize
the parameters we performed a second run and in some
cases further runs to control our results. Our statistics
for this investigation was 4-10 sweeps per run and lattice
size for L=2 up to L=50; for the larger lattices we in-
creased our statistics to 8 10 sweeps. In each case
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FIG. 2. Tunneling times vs lattice size. The upper data are
for the standard heat bath algorithm and the broken line extra-
polates by means of fit (6) into the region where no data exist.
The lower data points are obtained with our multimagnetical al-
gorithm.

200000 additional, initial sweeps were performed for
reaching equilibrium with respect to the multimagnetical
distribution. One sweep updates each spin on the lattice
once.

To compare the efticiency of our method with standard
MC we measured the tunneling time ~L. Similarly as in
Ref. 5 we define the tunneling time ~L as the average
number of sweeps needed to get from a configuration
with magnetization M = —ML

'" to a configuration with
M =ML '" and back. (The tunneling time is a direct mea-
sure for the number of statistically independent generated
interfaces in the simulation, because for every completed
tunneling the system has to pass twice through a region
in phase space with M=0.) Our data are collected in
Table I and in Fig. 2 we display on a log to log scale both
the tunneling times for the multimagnetic MC algorithm
and the heat bath algorithm. A reliable direct calculation
of ri (heat bath) was only possible for lattices with
L & 16, for the larger systems standard MC runs would
not tunnel often enough to allow for a reliable estimate.
To compare with the multimagnetical algorithm, we use
the fit

r' (heat bath) =6.gOL'"e'"""" (6)

as depicted in Fig. 2. The ratio R =xi(heat bath)/
rL (multicanonical) is a direct measure for the improve-
rnent due to our method. R increases from a factor 4 for
the smallest lattice (L=2) up to R =450 for L=16, the
biggest lattice size where it was with our statistics possi-
ble to get data from standard MC. The extrapolation to
L=100 yields R =6.1X10', i.e., an improvement by
more than fifteen orders of magnitude. The real improve-
ment is presumably even bigger as we cannot reliably
determine the parameters in the fit (6). Our multimagnet-
ic data allow a highly precise determination of the inter-
face tension per unit area. Following Binder, the inter-
face tension F' can be defined from the infinite volume
limit of the quantity of Pl '"/PL '", which for sufficiently
large L takes the form

PL '"/Pl '"=constL ~ exp( 2LF')—
on lattices with periodic boundary conditions. Physically
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TABLE I. The tunneling times and efFective interface ten-
sions as functions of the lattice size.

2
4
6
8

10
12
14
16
18
20
30
40
50
60
74
80

100

multimagnetic

16.57(S)
94.81(36)
256(12)
498(3)
856{43)
1365(14)
1909(24)
2851(45)
3669(68}
5369(118)

16688(550)
37 875(1861)
80 526(7562)

135908(10".~".)
376 843(32 804)

857 073(162730)
2 469 200(924 055)

heat bath

62.87(23)
588(5)

2808(49)
10750(383)

42 872(2136)
121 786(16004)
361 055(69 141)

1 265 491(540 106)

0.6516(79)
0.5852(54)
0.4780(06)
0.4028(04)
0.3641(04)
0.3369(14)
0.3201(07)
0.3075(06)
0.2991(04}
0.2914(07)
0.2689(07)
0.2580(05)
0.2509(09)
0.2478(07)
0.2443(09)
0.2442(07)
0.2403(12)

this definition assumes that at values of the mean magne-
tization M =0 a rectangular domain enclosed by two in-
terfaces spanning the lattice via the periodic boundary
condition is formed. On finite lattices we define the
effective tension by means of

Fs ( 1/2L)ln(Pmax/PmIn) (8)
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FIG. 3. Infinite-volume estimate of the interfacial tension by
means of Eq. {8).

Our thus obtained FL estimates are also contained in
Table I.

To estimate F' requires a FSS extrapolation towards
L =IIII. Equation (7) converts into a fit of the form
FL =F'+a/L +b ln(L)/L. We arrive at the result
F'=0.2325(7) from lattices of size L = 8—100, an estimate
by several standard deviations inconsistent with
Onsager's exact value F'=0.228 06. . . at P=0.5(2).
When we omit the ln(L)/L correction, i.e., assume p=0,
and include instead the 1/L next order correction to the
interface tension into the fit, we arrive at the three pa-
rameter fit Fr' =F'+a/L+b/L, as depicted in Fig. 3.
For the range L=8—100 this fit turns out to be about
equally well acceptable as the previous one, but yields
F*=0.2281(5). This value is now in excellent agreement
with the exact result. From this we are very tempted to

suggest that, indeed, p=0. Combining both fits into a
four parameter fit reduces greatly our precision. Again,
the first self-consistent result is found for the range
L =8—100 with F'=0.2312(18) and the prefactor of the
ln(L)/L term comes out to be —0. 146(86), compatible
with zero on a two o. level. More important, we have
seen that excluding the ln(L)/L term altogether does not
spoil the goodness of the fit in a statistically significant
way. Performing the two parameter fit FJ =F'+a /L, we
have to omit some more smaller lattices to get a self-
consistent fit. This is now obtained for the range
L =30-100 with the estimate F'=0.2281(8), a result
clearly favorable for the assumption that 1/L is the lead-
ing order correction. In summary, we would like to
quote

F'=0.2281+0.0005,

as our best and final numerical result.
It is worthwhile to inspect the distributions PL (M) of

Fig. I more closely. As the lattice size increases we ob-
serve a pronounced Qattening of the logarithm of the
probability distribution close to values of the magnetiza-
tion m =0 and it appears that in the thermodynamic limit
the probability distribution becomes constant in a finite
range of mean magnetization m ~m'. Such a behavior
for the V=2 Ising mode1 with periodic boundary condi-
tions was in fact rigorously predicted. It was demonstrat-
ed in Ref. 9 that in this situation there exists a value of
m' such that for values of m ~ m' the probability distri-
bution is a constant. The value of m' is calculable from
the Wulf construction' for the asymptotic shapes of
droplets of one phase Aoating in the opposite phase.
Physically this result means that in the region m ~ m ' the
minimum free energy excess is dominated by a single rec-
tangular domain, extending throughout the lattice by
making use of its periodic boundary conditions. In order
to gain a visual impression, we decided to write
configurations on the computer disk which describe a
tunneling transition on our 100X 100 lattice. We depict
some examples in Figs. 4(a)—4(d). On a qualitative level
we find support for the droplet model. Figure 4(a) de-
picts a fairly ordered configuration with magnetization
m = —0.9. With increasing m a single droplet cluster be-
gins to dominate the configuration Fig. 4(b) for
m = —0.6. This cluster grows, Fig. 4(c), for m = —0.4,
until it extends throughout the lattice by means of the
periodic boundary conditions, Fig. 4(d), for m =0. With
further increasing m (m 0), similar pictures, with black
and white interchanged, are seen to emerge.

In summary, we have introduced a multimagnetic en-
semble which on lattices with periodic boundary condi-
tions is suitable for the numerical simulation of order to
order interfaces in statistical mechanics as well as field
theoretic models. The multimagnetic simulation elimi-
nates super critical slowing down -or an exponentially
fast increase of the tunneling time between the pure
phases of the system with increasing area A of the inter-
faces. The remaining critical slowing down is of the type
of a power law divergence. Due to our method it is possi-
ble to explore configurations in phase space, which in the
canonical ensemble are suppressed by many orders of
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FIG. 4. (a) Configuration at
m = —0.9 on the 100X100 lat-
tice. (b) Configuration at
m = —0.6 on the 100X100 lat-
tice. (c) Configuration at
m = —0.4 on the 100X 100 lat-
tice. (d) Configuration at m =0
on the 100X 100 lattice.

(c)

magnitude. In a region of configurations with mean rnag-
netization close to zero we have found clear numerical
evidence for the formation of a rectangular domain,
which is enclosed by two interfaces. We have performed
a finite-size scaling analysis of the finite volume estimates
of the interface tension and our infinite volume value for
the interface tension of a planar rigid surface. Another
interesting approach to the numerical calculation of sur-
face tensions exploits correlation functions, " and it may
be worthwhile to try to combine this with a multimagnet-

ical simulation.
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