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The drag forces controlling the amount of relative flow induced in a fluid-saturated porous material by
a mechanical wave are modeled here from first principles. Specifically, analytical expressions for the
drag are derived for material models that possess variable-width pores; i.e., pores that have widths that
vary with distance along their axis. The dynamic (complex, frequency-dependent) permeability deter-
mined for such a variable-width pore model is compared to estimates made using the models of Johnson,
Koplik, and Dashen (JKD) and of Biot. Both the JKD model and the Biot model underestimate the
imaginary part of the dynamic permeability at low frequencies with the amount of discrepancy increas-
ing with the severity of the convergent or divergent flow, i.e., increasing with the magnitude of the max-
imum pore-wall slope relative to the channel axis. It is shown how to modify the JKD model to obtain
proper low-frequency behavior. It is also shown that a simple series sum of constant-width flow chan-
nels does a poor job in approximating the drag of a variable-width channel.

I. INTRODUCTION

This paper is concerned with modeling the fluid flow
induced in a fluid-saturated porous material by a mechan-
ical wave. The material type to be considered is charac-
terized as having continuously distributed fluid and solid
phases; i.e., it is assumed that no isolated pockets of one
phase are completely surrounded by the other phase.
One example of this material type would be a packing of
solid grains. As a compressional wave propagates
through such a material, it both generates a pressure gra-
dient in the fluid phase and accelerates the solid frame-
work of the material. These two forces drive an ac-
celerated flow of fluid relative to the solid frame. For a
shear wave, the relative flow is driven only by the ac-
celeration of the frame. As the fluid flows, traction forces
are set up on the fluid/solid interface that act to resist the
flow. These traction forces are called “drag forces.” The
magnitude of the relative flow is determined by the bal-
ance between the driving forces of the wave, the drag
forces, and the inertial forces. In past work, the drag
forces have been modeled by assuming the pore space to
consist of a collection of constant-width flow channels,
i.e., flow channels whose widths do not vary with dis-
tance along their axis.'”™® In this work, allowance is
made for variable-width flow channels.

The mechanical waves considered here have wave-
lengths much larger than the grains and pores comprising
the material. Therefore, the response of interest is that
which has been averaged over volumes much larger than
a characteristic pore size but smaller than the wave-
lengths. Upon carrying out such a volume average on the
force balance equations obeyed by the fluid and solid
phases of a porous material, Pride, Gangi, and Morgan*
have obtained the following coupled equations of motion:

47

ou, oW
PB 5, _V'TB_pr’ (1
Py oW _ _ aﬁs
o T TV TP @

where d is the drag force defined by
1
d—7f fswn"rde. (3)

T, are the actual fluid stresses acting on the “wall” sur-
face S,, that separates the fluid and solid phases within
the averaging volume. V, is the volume of fluid in the
averaging volume. Equation (1) corresponds to a force
balance on the bulk material, while Eq. (2) corresponds to
a force balance on the fluid in relative motion. Overbars
denote volume-averaged quantities. The average relative
fluid velocity W is defined as W=¢(il, — i), where ¢ is
porosity, @l is the average fluid velocity, and W, is the
average solid velocity. 7 is the average stress tensor act-
ing on the bulk material, pp is the bulk density, p, is the
average fluid pressure, and p is the fluid density. For an
isotropic porous material, the stresses are related to the
strains by

Ty =(KgV-U,+CV-WI+G(Va,+Va!/—2v-a,l) (4
and

—py=CV-U,+MV-w. (5)
K, C, M, and G are the four moduli of isotropic poroe-
lasticity. The definitions of these moduli obtained by

Pride, Gangi, and Morgan* using volume-averaging argu-
ments are identical to those initially obtained by Biot and
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Willis.> Once the drag vector d has been specified, Egs.
(1), (2), 4), and (5) (plus boundary conditions) form a
complete description of isotropic porous-media dynamics
and are consistent with Biot’s®” equations.

The objective of this paper is to evaluate the drag in-
tegral defined by Eq. (3) for specific pore models so that
analytical expressions for d are obtained in the form

Pr oW
Y.

¢ ot
In general, v is an integrodifferential time operator (or, in

the frequency domain, a complex frequency-dependent
quantity). Equation (2) can then be written

d=— (6)

oW ot
e — - > 7
where
pE=(1+y)—p¢f (8)

is the effective fluid-density operator that controls the
magnitude of the wave-induced relative flow. For time-
harmonic e’®’ behavior, py can be related to the so-called
“dynamic permeability” k (w) by

klo)=——L—, ©)

iovpg(w)
where p is the shear viscosity of the fluid. Such a substi-
tution is seen to put Eq. (7) in the form of Darcy’s law.
Jonson, Koplik, and Dashen® (to be referred to as

“JKD”) have provided an interesting model for k(w)
that can be expressed entirely in terms of three parame-
ters. After defining how the average time-harmonic flow
through a porous material behaves in the limit of both
low frequencies (Darcy’s law) and high frequencies (invis-
cid flow except for a thin viscous-boundary layer near the
pore walls), JKD simply connect the two limits with a
postulated function given by

k(w) i

w
+i—
kg lwo

—1

= | [1+iP=-
Wy

(10)

The three parameters are the dc permeability k,, the
transition frequency w, that separates viscous-force-
dominated flow from inertial-force flow, and a pore
geometry term P that JKD suggest is commonly equal to
4 for many porous media. The JKD model defines w, as

.Uf¢

Oy= "7, (1n
0 pfaeokO

. where a, is called the “tortuosity” and will be given an
exact definition later. Brown® has shown that a_, can be
equated to the electrical formation factor F (the ratio of
the fluid electrical conductivity to the bulk electrical con-
ductivity of the porous material) as a, =F¢; however,
this relation is only valid if the solid phase is nonconduc-
tive and if surface conductivity is negligible. The JKD
model defines the geometry term P as
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where A possesses the units of length and has a formal
definition in terms of the velocity potential for time-
harmonic, inviscid flow. A/2 may be interpreted, ap-
proximately, as the pore-volume to pore-surface ratio
V,/S,; however, it is found in this work that simply tak-
ing P =1 is a much better approximation. The frequency
dependence of the JKD model is nearly identical to that
of a grouping of constant-width flow channels; however,
it is simplified in analytic form.

Charlaix, Kushnick, and Stokes! have experimentally
measured the dynamic permeability for samples of fused-
glass beads and crushed glass. Their samples have poro-
sities on the order of 50% and grain sizes ranging from
200 to 1000 um. They obtain that Eq. (10) generally fits
the data well; however, discrepancies occur for the imagi-
nary part of k (w) at frequencies w <w, with differences
on the order of 35%. They determine the parameter P of
Eqg. (10) to be between 0.4 and 0.5 for their samples in
agreement with JKD. Zhou and Sheng!'! have provided
finite-element modeling of the dynamic permeability for a
variety of specific pore models that possess variable-width
flow channels. They also find the JKD model to be gen-
erally satisfactory with the only deviations from Eq. (10)
occurring when the throat regions of the flow channels
become “‘sharp;” i.e., when the slope of the channel walls
relative to the channel axis significantly deviates from
zero in the throat region. Discrepancies in these cases
are again largest for the imaginary part of k(w) at fre-
quencies w <w, The discrepancies can be as large as
90% for some of their numerical simulations. The trend
in both the studies of Zhou and Sheng!' and Charlaix,
Kushnick, and Stokes!? is for the imaginary part of k ()
to be underestimated by Eq. (10) when o < w.

The reason for the discrepancies is that JKD do not re-
quire the imaginary part of k (w) to satisfy the exact fre-
quency dependence in the limit of w <<®,. In this paper,
the frequency-dependent flow properties of a variable-
channel-width model are analytically solved for. It is also
shown how to generalize the JKD model so that it con-
tains the correct low-frequency behavior.

(12)

II. DRAG MODELING ASSUMPTIONS

To evaluate the drag force d, the actual fluid stresses
T, acting on the walls of a given porous medium model
are required. These stresses are given by

where p, and u, are the actual (nonaveraged) thermo-
dynamic fluid pressure and the fluid velocity. «, is the
coefficient of bulk viscosity. To obtain p, and u,, one
must solve the equations of motion

da
Py a—tf+ﬁ,-Vﬁf =V-r, (14)

subject to the continuity equation [3p, /3t = —V-(p /)]
and the boundary conditions for a particular pore model.
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In general, this is a rather intractable problem that can
only be solved numerically. Fortunately, several assump-
tions can be made that greatly simplify the analysis.
These assumptions will now be laid out.

A. Fluid incompressibility

In the local modeling of Ts it can assumed that the
fluid responds incompressibility (V-u,=0) so long as the
wave frequencies are small enough that scattering from
the grains of the material does not occur. Batchelor!? es-
timates how much the fluid density changes due to time-
harmonic shaking of an object whose size is of the order a
(a can be interpreted to be a typical grain size). He ob-
tains that if

f2a2

cj

where f is frequency in cycles per second and ¢y is the ve-
locity of sound in the fluid, then density variations are
negligible in the equations of motion and V-u,~0. Since
¢y is the order of typical wave speeds in porous materials
(albeit usually two or three times smaller), it is seen that
condition (15) is equivalent to the no-grain-scattering
condition A >>a, where A is the wavelength of the
mechanical waves. It will be assumed throughout that
condition (15) is satisfied.

<1, (15)

B. Framework incompressibility

It is assumed that in the modeling of d, the framework
of grains, is rigidly accelerating. In other words, it is as-
sumed that within an averaging volume (i) variations in
the amount of wall-surface area S,, due to compressional
stressing are negligible and (ii) spatial variations in the
acceleration of the walls are negligible. It has already
been assumed that linear stress-strain relations [as given
by Egs. (4) and (5)] govern the material response. Experi-
mental evidence shows this to be the case if
compressional-wave strains € are less than 10~ % If the
wall-surface area S, is expressed as S,=S,,+0S,,
where S, is the surface area in an averaging volume pri-
or to stressing, then it is easily established that
[8S,, /S0l <€. For example, if the pores are modeled as
cylinders, then

188, /S0l =V 1+e—1<e .

Thus S, may be replaced by S, in the drag integral with
great accuracy and assumption (i) is satisfied. Assump-
tion (ii) is also trivially satisfied because variations in the
acceleration of the walls occur over distances associated
with the wavelengths. If the averaging volume is as-
sumed to be much smaller than the wavelengths, then the
wall accelerations can be modeled as being constant
within an averaging volume.

One additional consideration must be addressed. In
granular materials, pore fluid may be present in the grain
contact regions. It is the asperities on the grain surfaces
that are in contact, so fluid may reside in the regions sur-
rounding the asperity contacts. Although such regions
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contribute only minutely to the total porosity, they can
have a significant effect on the overall compressibility of
the material as discussed by Murphy, Winkler, and Klein-
berg.!* For small background stress levels prior to wave
stressing, the grain-contact regions are ‘“open’ and are
highly compliant. When such a granular material is
compressed by a wave, a fluid pressure develops in the
grain contacts that is much larger than the fluid pressure
in the main pore volumes. A local flow of fluid from the
grain contacts to the main pore volumes is induced that
acts to equilibrate the fluid pressure imbalance. Such lo-
cal flow can be roughly modeled as being radially sym-
metric about the center of each grain contact area and
will, therefore, volume averaging to zero (i.e., it does not

directly contribute to W). By the same argument, such lo-
cal flow will not contribute to the drag integral [Eq. (3)].
However, the local flow will tend to enhance slightly
the macroscopic wavelength-scale pressure gradient in
the main pore volumes. Such a pressure-gradient
enhancement will relax (be reduced) when the wave
periods become smaller than the amount of time it takes
for the pressure equilibration between the contacts and
the main pore volumes to occur. The material will
effectively stiffen at such small wave periods. For the
special case where W=0, Murphy, Winkler, and Klein-
berg'® have provided initial modeling of these effects and
show how to allow for such ‘“‘contact relaxations” by add-
ing a complex, frequency-dependent term to the elastic
constants K; and G of Eq. (5). Generalizing their results

to the case where W0 is the subject of a future investi-

gation. It is clear that when W#0, the contact relaxation
will affect all four poroelastic moduli K, C, M, and G.
In this work, it is simply assumed that variations in the
macroscopic fluid-pressure gradients due to contact re-
laxation are allowed for in the stress-strain relations.

The only way that such local flow could affect the drag
calculations of this paper is if the fluid being injected
from the contacts into the main flow channels
significantly altered the flow pattern in the main chan-
nels. However, the dominant contribution to the drag in-
tegral comes from the throat regions of the flow channels,
while the local flow is being injected from the grain con-
tacts, which are typically in the ‘“‘calm” regions of the
channels where little drag contribution is occurring.
Such an effect is therefore ignored.

In conclusion, then, it may be assumed that the actual
relative fluid flow v(r) within an averaging volume may
be expressed as

C. Ignoring the nonlinear convective acceleration

The force balance on the fluid within a flow channel
may now be expressed as
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U,

at’
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where 70 represents the “deviatoric” stress and is given
by

P=p (Vv+VvT). (18)

To arrive at this equation, both Eq. (16) and V-v=0 have
been substituted into Eq. (14).

It would be convenient to ignore the convection term
in Eq. (17). For relative flow induced in constant-width
flow channels, the convection term is exactly zero; how-
ever, it is nonzero for relative flow in channels that pos-
sess a half-width function 4 (z) that varies with distance z
along the channel axis. If it can be shown that @,-Vv is
negligible, then v-Vv will also be negligible because the
induced relative flow v is smaller in magnitude than the
wall velocity.

Two frequency domains control the nature of the rela-
tive flow. At sufficiently low frequencies, the viscous
shear forces V-72 dominate the inertial forces P fav/at,
while, at sufficiently high frequencies, p ,dv /0t dominates

V-7P. Therefore, for i{,-Vv to be negligible, the
Reynold’s number

R=|pu,-Vv|/|V-7P|

must be much less than one at low frequencies, while the
Strouhal number

S=|a,-Vv|/|ov /8t

must be much less than one at high frequencies. It is
straightforward to establish* the following estimates for S
and R in a variable-width flow channel:

1 |dh |ec
S=~— |2 | = 19
hy |dz | o (19
and
R~25, (20)
(]
where
o =—L @1
prhio

®, is another expression [c.f., Eq. (11)] for the transition
frequency separating the low- and high-frequency
domains, c¢ is the wave speed, € is the wave strain, A is
the mean channel half width, and |dh /dz| is a charac-
teristic (i.e., flow-controlling) channel-wall or streamline
slope. It is clear that both S and R tend to zero in the
limit of high and low frequencies, respectively, as desired.
At the transition frequency, S and R are given by

_ eh opfc
Ky

dn

S =R dz

. (22)
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For water as the saturating fluid and a maximum allowed
strain of 107 one obtains the geometric condition that

ho |21 | <100 (um) (23)

if the nonlinear convection terms are to be considered
negligible. Since flow-controlling channel-wall slopes are
likely to be characterized by |dh /dz| <1, the condition
simply becomes that 4y <<100 um, which is satisfied by
many porous media of interest. It is assumed that condi-
tion (23) is satisfied.

D. Form drag and friction drag

Given the above assumptions, the drag vector may now
be written as

d:d(form)+d(fric), (24)
where
d(form):VL fs _an ds’ (25)
f w
and
d(frm:*l*f n-(Vv+VvDhds’ (26)
v, st '

The equations satisfied by the relative velocity v and the
fluid pressure p, are the incompressibility condition
V-v=0 and the equation of motion (the Navier-Stokes
equation)

av aﬁs
Pray = Vst ViV_p @7

The separation into form drag and friction drag is made
because the two have distinctly different character. The
form drag depends strongly on the shape of the pore
channels, this being significant when there are convergent
or divergent, or tortuous, flow channels. It is largely (but

not entirely) an inertial effect proportional to 3w /3t. The
friction drag, however, depends mainly on the smallest
channel aperture, and is, as the name implies, largely (but
not entirely) a frictional effect proportional to W. For
time-harmonic motions, the two drags therefore have
different frequency dependence. In particular, it should
be noted that for constant-width flow channels, the nor-
mal to the walls is perpendicular to the average-flow
direction and, therefore, the form drag provides no flow
resistance. In a variable-width model, however, there is
always a form-drag contribution with the contribution in-
creasing with increasing slope of the channel walls.

III. THE VARIABLE-CHANNEL-WIDTH MODEL

In this section, the drag integrals will be determined
for two-dimensional flow in channels possessing periodic
and smooth variations in their half-width function 4 (z).
A typical channel cross section is depicted in Fig. 1.
Cartesian coordinates (x,z) are employed. Only wall os-

cillations #, and macroscopic pressure gradients 9p /9z in
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FIG. 1. A variable-width flow channel.

the z (axial) direction need be considered because the x
components of these quantities do not generate drag.
The subscript “f” referring to the fluid will be dropped
henceforth. The channel periodicity may be expressed as
h(z)=h(z+L), where h(z) is the half-width function,
and it is further assumed that L >>h(z). L being
significantly larger than A (z) (say at least a factor of 4)
will provide the basis for an analytical solution to the
problem. Adjusting the results to accommodate flow in
channels possessing circular cross sections will be briefly
discussed in a later section.

A. Flow velocity and pressure determination

For time-harmonic stressing, the Navier-Stokes equa-
tion can be rewritten as

9’ 9? 2 _10p | . 5.
222 3 v, —i&v, oz +i&cu,, (28)
62 82 P I 1 gﬂ_
322 + ax? |2 i§v, wox (29)
where
E=Vawp/u. (30)

The relative velocities v, and v, must also satisfy the in-
compressibility condition

. Ly 31)
3z  ox

and the boundary and symmetry conditions

v,(x =xh)=v,(x =xh)=0, (32)
v,

v, (x =0)= (x =0)=0. (33)
ox

Analytical solutions to this differential problem are ob-
tained if it is assumed that

a? 9?

dz? Ax?
li.e., h2<<(L /2)*]. A successive-approximation solution
scheme begins by making the additional assumption that

o __9p
dx << oz (35)

(i.e., |dh/dz| <<1). Taking 9p/dx <<dp/dz is equiv-

alent to saying that p(x,z)~p(z) (i.e., variations in pres-
sure across the channel are insignificant). That this is
equivalent to the statement |dh /dz| ~|v, /v,| <<1 is easi-
ly determined from the Navier-Stokes equations. This
condition will be relaxed through the successive-
approximation scheme; however, condition (34) will not
be relaxed and is the fundamental restriction on the
geometry.

Given conditions (34) and (35), the governing equations
become

% 19
zZ e 1 Op S, N
axz lg v, = w aZ +l§2u2 (36)
and
x OV,
v,=—[ 5, dx. (37)

These equations, subject to the given boundary and sym-
metry conditions, can be solved with the result

(1) .
1) = Q; Fli— coshi !/%£x 38)
z h .1/2 >
coshi ' "“&h
. dh x _ sinhi!/%gx
(D — ;20 (1) G:|X—
R el (39)
and
)
dp'V o e o
=— F
da & U, +— , (40)

where the superscript (1) on the velocities and pressure
means that this is the first-order approximation to the
problem. F and G are auxiliary coefficients defined as

i 1/2§h
i'726h —tanhi'%¢h’
tanhi !/?£h
i'26h —tanhi'2Eh’

while Q! is the volumetric flow-rate constant defined as

z‘”= fohvz(”dx. (42)

(41)
G =

Q!V therefore represents half the total volume of fluid
fluxing axially through a cross-section of the channel per
unit time and per unit length in the y direction. Since the
fluid is incompressible, Q! must everywhere be constant.

To proceed to the next level of approximation, the
neglected x component of the Navier-Stokes equation
[Eq. (29)] is integrated so that pressure variations across
the channel width are allowed for. This gives

p(Z}(x’z):p(l)(z)
b |*
X g2 X (1)
Nl 1§,ufovx dx (43)
2
=p(“(z)+‘qu(”§4%G2xT : (44)

It is easily shown that the real part of G is negative (at
least for £h < 1), which gives the intuitive result that in
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converging portions of the channel (dh /dz <0) the pres-
sure at the wall is greater than at the axis, while in
diverging portions (dh /dz > 0) the pressure at the wall is
less than at the axis.

The updated pressure gradient is then given by

ap(Z)(x,z) _ ap(l)(z) (1) LZ_
% % +uQVEH ' (45)
where
— 0 |dh
3 | dz G j (46)

Returning to Eq. (36) with this new pressure gradient al-
lows v, to be updated:

b=V QH | 141525 sz
c£2p 2 1/2
~ i i&h coshzl/zgx ‘ 47)
2 coshi'?£h
From the continuity equation [Eq. (37)], v, is updated,
oH i§2x3
(2)—, (1) (n
=pV—QN=2 | |x +
UX UX QZ az X 6
2213 | i 1/2
P i&h s¥nh11/2§x . 48)
6 sinhi '*£h
and, finally, the flow-rate constant is updated,
0= ["olPdx =0V (1+hHI), (49)
where J is another auxiliary coefficient given by
272 ) :1/2
J= l+1§h . 1+z_é‘h tanhi §h' (50)
6 2 i\2¢h

The last step is to replace Q" by Q!?/(1+hHJ) in the
above expressions for v/?, v!?, and p'®, where Q!? is
now taken as the flow-rate constant. What Eq. (49) says
is that, in reality, Q! as defined by Eq. (42) was not real-
ly a constant independent of z. Strictly speaking, this
means that an additional term proportional to 3Q." /dz
should have been allowed for in the expression for
dp'?/dz. If this additional term is carried through into
the expression for QZ(Z), it is easily shown to be propor-
tional to |dh /dz|*. Since the other terms at this level of
approximation are at most proportional to |dh /dz|?, the
process of taking Q!! as constant until it is replaced at
the end with Eq. (49) is therefore justified. Terms propor-
tional to |dh /dz|* are allowed for at the next level of ap-
proximation.

The error in the first-order approximation is of
O (|dh /dz|*), while the error in the second-order approx-
imation is of O (|dh /dz|*). The process could clearly be
continued ad infinitum, generating an infinite series so
long as |dh/dz|,,, <1. For |dh/dz|,,,>1, the series
would almost certainly diverge; however, the constraint
of |dh /dz|,,,, <1 seems reasonable for many porous ma-

terials. In practice, the successive-approximation scheme
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has not been taken further than the second-order results
given above.

B. A flow-modeling example
Consider the simple pore model given by

Tz

= 2mz
h(z)=hy+ecos 2 } (51)

For the particular case of e=h,/2 and L =2mh, (which
then gives |dh/dz|,,,=1), the first- and second-order
solutions given above are compared in Fig. 2. v,, v,, and
dp /dz are plotted from the channel axis to the wall at an
axial position of z =L /4 (i.e., in a converging segment of
the channel). The plots are for a low applied frequency
characterized by £h =0.01; i.e., the fluid-flow response is
everywhere controlled by the viscous forces. Both v, and
v, in Fig. 2 have been normalized by 3Q, /(2h) (the value
of vV in the center of the channel at dc). The pressure
gradient was normalized by 3uQ,/h3 (the value of
—3p'V /3z at do).

The differences between the two levels of approxima-
tion arise completely from the fact that the pressure near
the wall in a converging channel is higher (due to the
“collision” with the wall) than at the center. As stated,
the first-order approximation ignores this completely.
The increased pressure results in an enhanced radial flux
of momentum as is seen in the v, plot. It also causes the

1.2
1.0 ==z,
0.8 |
0.6 >

0.4 N

0.2 N
0.0 ] : ] .

0.0
-0.2 Te T TTTTTTIET
-0.4
-0.6
-0.8 1
-1.0
-1.2 T T T T
1.0

0.5 | == first order Re

Vz
L/
2,

Vx

*
=== = second order .
0.0 e

-0.5 e
-1.0 ad
-1.5 T T T T

dp/dz
‘

x/h

FIG. 2. Composition of the first-order and second-order solu-
tions for the flow problem in a variable-width channel. The
profiles are taken in a converging portion of the channel.
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axial pressure gradient near the wall to be reduced and
even reversed which, in turn, causes the axial flux of
momentum near the wall to be reduced as is seen in the v,
plot.

In Fig. 3, the onset of boundary-layer flow has been in-
vestigated for the same channel geometry and axial posi-
tion (z =L /4) as in Fig. 2. The curves have all be nor-
malized by the same constants used in Fig. 2. Only the
second-order results are displayed. It is seen that as fre-
quency increases there develops a viscous boundary layer
(i.e., a region near the wall where the velocity is reduced
enough that viscous forces still dominate inertial forces).
The thickness of the boundary layer is seen to be of the
order £, as is expected from the equations.

Now that a solution procedure has been established for
flow in variable-width channels, the drag may finally be
determined. In all the drag calculations to follow, the
second-order results from above will be used.

C. Drag analysis

Consider the idealized (x,z) plane cross section of a
porous material depicted in Fig. 4. Each periodic pore
channel is assumed to be identical except for an arbitrary
shift §; in the z direction. There are assumed to be N
pore cross sections within the averaging area. For each
pore of the cross section the drag integrals are written

dz”“"“):%fL —pn,dl (52)

and

Vz
o©
[«]

1

-0.2 pae PR o’
T e’ .

-0.4 -

Vx
.
o
»
|

S A

dp/dz

-12 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

x/h

FIG. 3.
solution.

The onset of boundary-layer flow. Second-order
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v, N ov,
ox oz

drie) = 2u f dl. (53)

v,
nx+2—&-n2

A is the area and L, the length along the wall of each
pore cross section. Both 4 and L, are constant for all N
pores. The factor of 2 denotes that both walls of a chan-
nel contribute to the drag. The length element along the
wall is dl =[1+(dh /dz)*]'/%dz, while the (outward) nor-
mal vector to the wall is

1 —dh /dz
[1+(dh /dz)*1"?’ [1+(dh /dz)*]'?

(n,,n,)= |

(54)
The form drag within the cross section is then given by
2 pL*idn
(form) an
derm 2 R P Xt (55)

:“l

where the sum is over each pore comprising the cross sec-
tion. Integrating by parts gives

d (form) — 2 4
STTUN 2

{h(Qf)[P(L +8)—p(6;)]

—f h—ﬂd ] (56)

The second term in the brackets is independent of &,
since both 4 and dp /9z are periodic with length period L.
The first term, however, depends on §;. Although it is

N

FIG. 4. A cross section of a hypothetical porous material.
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true that the pressure drop [p(L +§;)—p(&;)] is a con-
stant for each of the pore cross sections and when divided
by L is simply the macroscopic pressure gradient dp /9z,
h (&;) takes on, in general, a different value for each pore.
However, it will be assumed that the shifts §; are uni-
formly distributed so that

_1rL
:LLhMﬁ

The pressure gradient dp /9z along the wall involved in
the second term is [from Eq. (45)]

-~ 2 h(&;)=h, (57)

Iv—l

.92.:

= —iwpili, —

. y4
YO Y hHT

F_ .o H
gt 2], (58)

so that the form drag is given by (note that 4 =h L)

Lho_h (Z)

H
2241
1+hHJ + ieh

dz.

1
d(form)__
2 tprzh I3 f

(59)

Q, is next replaced with the filtration velocity w,. By

definition, i, is given by
., 2 rL h(z)
wz——qij fo dz fo v,dx, (60)
N (61)
ho

where ¢ is the porosity represented in the cross section of
Fig. 4. The form drag may now be expressed in the
desired form:

dz(form)z (form)

. (62)

—iwpy

where the dimensionless complex form-drag constant
,}/(form)is

| ~rho—h(2)
(form) — 2 JE
L4 Lfo 1+hHJ

The friction drag is obtained more directly since the in-
tegral of Eq. (53) is independent of &; and is the same for
all the pore cross sections in Fig. 4. The pertinent veloci-
ty gradients (at the wall) are

+§2h2H dz. (63)

h

aU Q 2h2
LA St S iEh”
. 1§y |G HhH | === ||, (64)
dv Q 5
_z_ 2 +
2z 54 dz T+nms |© hH‘ (69
and
Oy _c2dh 2 |dh hdH /3z J 66)
3z dz 1+hHJ | dz ‘/zgtanhil/zgh

d°) can therefore be expressed as
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d(mC)——la)p'}/(fnC) w (67)
V4
¢’
where the complex frictional—drag constant y ¢ js
; 1 dh
(fric) — 1
4 L Iy o 191" a2
i£h? dh |’
+hH —J | |14+2|—
6 z
hoH /3zJ  dh dz (68)
il/zgtanhil/zgh dZ l+hHJ.

In general, the axial integrations of Egs. (63) and (68)
must be done numerically. The total drag coefficient y
involved in the expression for the effective fluid density
[Eq. (8)] is simply y =y form) 4 (fric),

In terms of the drag coefficients, the dynamic permea-
bility is expressed as

1 _i 2 (form) (fric)
R E | + i), 9
k(€) ¢( v Y ) (69)

The real part of k ! is related to the effective frictional
resistance opposing relative flow, while the imaginary
part (divided by w) is related to the effective fluid inertia.
The dc permeability k is given by

_1_ —_ i lim §2 Im{ y fnc)] +Im{ ,V(form)} ). (70)

ko ¢ £—0

For the variable-channel-width model just developed, the

result is
an |’
— +
dz ] ]

1 3 M
ko ¢Lfl

ho 3

+l7—1H1+5M

1+
2

h dh dM

I+ 10 dz dz

dz
h2(1+3M /10)

(71)
where M is defined as
d*h dh
M=h——F—4|— 72
dz? dz 72

The first two terms in the curly braces of Eq. (71) are the
friction-drag contributions to the permeability, while the
third term is the form-drag contribution.

So far, only the second-order results from the
successive-approximation scheme have been employed.
Results valid to the first order of approximation may be
obtained by setting H =0 (and, therefore, dH /3z=0) in
the expressions for y'™™) and 9! and by setting M =0
in the expression for k; i.e.,

1 rL| ho
(form) — _
ragm™ 7 fo W 1|Fdz, (73)
. 1 pL dh
(fric) — udddl 7
Y ZJo + ldz Gdz, (74)
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and

hO _—l— 2
S

dh

. 75
iz dz (75)

1 _3 ¢
ko) ¢L Yo

An even lower order of approximation, to be called the
“zeroth-order” approximation, is made by modeling a
variable-width channel as a collection of constant-width
channels that are simply added in series. The drag in a
constant-width channel goes as y©™ =0 and y'f®'=G.
It is assumed that, in the limit, each constant-width chan-
nel has a half width 4 (z) and a length dz. Thus, perform-
ing a sum over one length period of a variable-width
channel gives the zeroth-order estimates

Him=o, 76)
. 1 L
(fric) — 2
Yoy = 3 fo G dz, (77)
and
! 3 [rdz (78)

koo T gL Yo p?

The three different levels of approximation are com-
pared in Figs. 5, 6, and 7. The three figures are plots of
the real and imaginary parts of the dynamic permeability

PRIDE, MORGAN, AND GANGI

as a function of frequency for three different realizations
of the pore model previously employed:

h(z)=hy+ecos(2mw/L).

The three pore models are

1 dh 1

1 : =2 h = — , —_— =—;
model - L=2mho, e=5ho 1% | =3
3 dh 3

model 2: L =2mho, e=7ho 10| Ty

model 3: L=12hy, e=-hy, |90| =1
m dz max 2

Model 1 is the same as that used in Figs. 2 and 3.

The frequency in the figures has been normalized by
the relaxation frequency w, of Eq. (11). The tortuosity
a,, required in the expression for ) is defined as

a,= lim (1+yform)

w—> ©

(fric)

(79)

(note that y''™®’—0 as w— o so no viscous effects are al-
lowed for in a,). The tortuosity is a measure of the

Model 1 (a)
100 +——F—— L
(=] -
=4 r \
~
= . smmaen 211 OTdeT
&’ 10 _E == == =15t order
HEEEEER] Oth order
104 =
-3 -1 1 3
10 10 o/ (DO 10 10
. Model 1 (b)
10% ——rrrrrmf—rrrrrmf—rrrrmf——rrrm r—rrrm
) — /‘\
<10t 4 ;-
3 i
E{ I 2nd ord
g 5 nd order
i 10 E == == = ]st order
_:‘. = « = » » Oth order
1073 10! 10! 103

FIG. 5. Real and imaginary parts of the dynamic permeabili-
ty for model 1. Comparison of second-, first-, and zeroth-order

drag solutions.

(1)/0)0

Model 2 (a)
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o E E
=
3 \ ;
i:; 102 " ==———=2nd order :
o, = == =15t order E
. » === Oth order
R AW
1073 !t e 10 103
0
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10° £ e
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o 4 .
5 ¢ .
107! 3 /’I N
~ E /
= o . /
8 T il
I <’ /
ig 02 Lt )/ e——indorder
— g ,I == = =15t Order
[ ’/ ----- Oth order
’
YIRS LA S S
1073 10°
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0

FIG. 6. Real and imaginary parts of the dynamic permeabili-
ty for model 2. Comparison of second-, first-, and zeroth-order
drag solutions.
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enhancement in the effective fluid inertia due to pressure
interactions with the pore walls. For the variable-
channel-width model, a, is determined from Eq. (63) to
be

1 rL|ho 1+N /2
= +— _— [ . A
a,=1+ [ |5 1H1+N/6 dz, (80)
where
2
N=pLh_,|dh 81)
dz? dz |’

Similarly, the dynamic permeability in each figure has
been scaled by the k, obtained using the second-order re-
sult of Eq. (71). The difference in dc permeability esti-
mates between the three levels of approximation is then
clearly seen from the plots. For a mean half width of
hy=10 um and a porosity of 20%, the three models give
the following (second-order) results:

model 1: a,=1.15, k;=279.8 mD;
model 2: a,=1.51, k;=76.0 mD;
model 3: a,=3.37, ko=1.1 mD.

, Model 3 (a)
10 T T T T
(= % ."
100 f
~
= N
% E e 2 11d OXdET
a7 10-2 _E_ ....... = == m=]st order
E «=0usOthorder \
10 [ L .,..\ s
1073 10! 10! 103
o/ 0N
Model 3 (b)
10" ~—rrrrmmt—rrrrm
o 10° ¢ E
~ F ‘ . 3
e / ]
i 10 E /. 3
E E / e )11d OTdeT E
' 10-2 ; p == == =]st order ;
7 + « =« » Oth order ,E
USRS SO
1073 107! 10! 3
0 o/ @, 10

FIG. 7. Real and imaginary parts of the dynamic permeabili-
ty for model 3. Comparison of second-, first-, and zeroth-order
drag solutions.
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Figures 5-7 show that the zeroth-order model is not
very reliable and that the difference between the first-
order and second-order results is only a function of the
maximum channel slope. The error in the zeroth-order
model is dramatically greater in model 3 as compared to
model 1, even though the two models have the same max-
imum channel slope; however, the first- and second-order
results do not vary from model 1 to model 3. In Fig. 8,
the three different solutions are plotted as a function of
maximum pore slope for a frequency of w/w,=0.1. For
|dh /dz| ., < 1/2, the differences between the first-order
and second-order results become negligible. The zeroth-
order result only becomes valid when |dh /dz|,,, <1/5.
The error in the first-order result is proportional to
|dh /dz|%,,, while the error in the second-order result is
proportional to |dh /dz|,,. Thus, for |dh /dzl|,,, >3/4
(roughly) the second-order result will also become in-
valid.

o/, =0.1 (@)
L3 e
1.2 =
o :
1.1
~ - .”
S 1.0 £ : e ]
T 09 F Mg N
~< [ =e—e2nd order \\ E
08 b = = =istorder \\
0.7 - =====0thorder \\:
: ! : \
0.6 H -
0 0.1 02 03 04 05 06 0.7 038
Idh / dzl
max
o/ =0.1 (b)
0.25 RIS L B B B LD B AL B SLELE B
0.20 + /
- ]
A [ .- ]
oy N - ]
= 0.15 + - v
o - — T~ 1
E 0.10 1 i
|  =2nd order M ]
[ N ]
0.05 + == m= = ]st order i
i = « = » » Oth order ]
0.00 _}} 1
0 0.1 02 03 04 05 06 0.7 0.8
Idh / dzl
max

FIG. 8. Real and imaginary parts of the dynamic permeabili-
ty as a function of maximum channel-wall slope at a frequency
w/w,=0.1. Comparison of second-, first-, and zeroth-order
drag solutions.
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D. Comparison to Biot and JKD

The second-order variable-width model is now com-
pared to the constant-width model considered by Biot!
and the model of Johnson, Koplik, and Dashen® (the
“JKD” model). In the comparison, all models are re-
quired to have the same porosity and dc permeability.
Again taking k, to be determined from the second-order
results given above, one obtains that the half width s, to
be used in Biot’s constant-width model is

hg=1V"3ky/¢. (82)
The values of Y™ and y® corresponding to the
constant-width model are obtained by setting h(z)=hy

in Egs. (63) and (68) with the result
,}/(Bform):O, (83)
v =G (i'Ehp). (84)

From Eq. (69) and the fact that F =1+ G, we then have
the Biot estimate of dynamic permeability kj,

ko  i&hj
kpg(E) 3

F(i'Ehp). (85)

To define the JKD model, the circular frequency w will
be employed as the independent variable instead of the
inverse skin depth £ (=V'wp/u). The total drag constant
vy for the JKD model will be expressed in terms of a
complex dimensionless function f () as

viw)=a, 1+—[—(9—)~

iw/wy

-1, (86)

where w, is the transition frequency defined by Eq. (11).
In terms of f(w) , the dynamic permeability k,(w) is
written

ko _ e
@) —f(w)-!—zwo. (87)

The f(w) function is defined so that (1) Darcy’s law is
satisfied at low-frequencies,
lim f(w)=1, (88)
w—0
and (2) ideal flow is obtained at high frequencies except
for a thin viscous boundary layer of thickness £ ! near
the pore walls,
172

. W

lim f(w)=

-— ©

where P is defined by Eq. (12). The argument used by
JKD to define this high-frequency limit is exact and is
similar to a development given by Landau and Lifshitz.'*
It provides a formal definition for A/2 (which is con-
tained within P) that can be interpreted, approximately,
as the pore-volume-—to—pore-surface ratio. Alternative-
ly, as mentioned in the Introduction, JKD suggest that
taking

P=1 (90)
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is an adequate approximation for many porous media.
Charlaix, Kushnick, and Stokes'® experimentally deter-
mined that Eq. (90) held (to within 10%) for their sam-
ples of lightly sintered glass beads and crushed glass. Fi-
nally, the functional nature of f (w) is obtained by postu-
lating a function that connects these two limits in a “sim-
ple” fashion. The function employed by JKD is

172

frlo)= ‘1+iﬂp 91)

(o]

Although there is inherent nonuniqueness in defining
such a function, Eq. (91) does appear to be the most sim-
ple such function.

In Figs. 9-11, the second-order results of this study
are compared to the Biot and JKD results for the three
pore models already considered in Figs. 5-7. In the JKD
estimates, Eq. (90) was assumed, and o was taken from
the second-order results. It is seen that at frequencies
o <@g, the imaginary part of the dynamic permeability is
underestimated by both the Biot and JKD models. How-
ever, for pore slopes less than or roughly equal to 1/2, the
discrepancies are negligible. In the JKD estimate, the
correct behavior of the real part of k (w) at large frequen-

Model 1 (a)
100 & 3
° F N 3
f L \. .
s N
% 102 - this study \ E
=2 F = = =Ref. 8 \ E
- e==s= Ref. 1 \ 5
104 sl il il \
1073 10! o/ o 10! 103
. 0
. Model 1 (b)
10° + rrrrr—rr e
ol 4
2 10!+ .
3 f /
=z i
_% 102 s 4 his study
E = = =Ref. 8
: LN Ref 1
1073 10! 10! 10°

0)/0)0

FIG. 9. Real and imaginary parts of the dynamic permeabili-
ty for model 1. Comparison of second-order, JKD, and Biot
drag solutions.
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cies depends entirely on the value of P assumed. It was
numerically determined that for all three models, Eq. (90)
gave much better results than interpreting A/2 in Eq.
(12) to be the pore-volume to pore-surface ratio. In Fig.
12, the Biot, JKD, and second-order results are com-
pared as a function of maximum channel-wall slope at the
same frequency considered in Fig. 9 (0/wy=0.1). It is
seen that for slopes above roughly 0.6, the JKD model
begins to break down.

E. Modified JKD model

The JKD model can be modified so as to match the
low-frequency behavior exactly. This is done by requir-
ing the f (w) function to satisfy the exact limit

lim f(0)=14+i2-p, (92)
@q

w—0

where the parameter 3 depends on the low-frequency real
parts Of,y(form) and ,V(fnc) as

L [1+ lim Re{y ™) + fim Re{'"}]—1. (93)

a, w—0

B:

The parameter f3 is a measure of the effective fluid-inertia
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FIG. 10. Real and imaginary parts of the dynamic permeabil-
ity for model 2. Comparison of second-order, JKD, and Biot
drag solutions.
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enhancement at low frequencies; however, we note that
unlike a, viscous forces affect its value. Recall that at
low frequencies, JKD only require that f(0)=1.

There are an infinity of f(w) functions that can con-
nect the high-frequency and low-frequency limits [the
high-frequency limit is still given by Eq. (89)]. Five such
possible functions are

f1<x>=l—%+% 1+ixiP;- ]m, (94)
fz(x)=?1—J:::§‘%m, (95)
! “(x):1~3%+ tanh[((izc))‘l//;fi[)’/P] ’ ©7
f5(x)=1——2%+(ix)”2——j(:[§z;zz:g;2, 98)

where the frequency has been rescaled as
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FIG. 11. Real and imaginary parts of the dynamic permeabil-
ity for model 3. Comparison of second-order, JKD, and Biot
drag solutions.
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x =wP /wy, (99)

the parameter a is defined

2 172
1__ﬁ

=1— , 100
a P (100)

and I, and I, are modified Bessel functions of the first
kind. We can reject f, and f5 as being too difficult to
numerically calculate as compared to the others.

With frequency a real variable, each of these functions
has nearly identical frequency dependence. However, if
analysis is extended into the complex o plane (as is
convenient—but not necessary—when returning to the
time domain via the inverse-Fourier transform), each of
these functions has different behavior off the real axis.
Johnson, Koplik, and Dashen® demonstrate that the
zeros and singularities of k (o) must lie on the positive
imaginary axis (note that we employ an e'®’ time depen-
dence, while JKD employ the more common e ~'“Y). The
singularities present no problems in the inverse-Fourier
transform so long as analysis is restricted to the lower-

o/ w,=0.01 (a)
- 1.00
4 = BERR LRI TRl ol Bt
B i \\
= 0.95 i
‘a'; L
[« | —this study
0.90 -~ = == =Ref. 8
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’MO 0.20 _.—_ = = =Ref, 8 /
= I ]
3 I ]
< 0.15
E ]
0.10 o LD
0.05 4
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Idh/dzlma

FIG. 12. Real and imaginary parts of the dynamic permeabil-
ity as a function of maximum channel-wall slope at a frequency
®/wy=0.1. Comparison of second-order, JKD, and Biot drag
solutions.
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half w plane as is usual [note that k (w) is exponentially
unbounded as Im{w} extends to positive infinity because
of the e’®’ time dependence and causality]. Indeed, from
a computational standpoint, all that is needed is that the
zeros and singularities of k(w) lie in the upper-half o
plane and not necessarily on the positive-imaginary axis.

All of the f () functions given above can lead to k (w)
singularities in both the upper-half and lower-half planes.
However, the following combination never has zeros or
singularities in the lower-half plane,

ky, |fi0)+ix/P, P<2B

k(x) |f2x)+ix/P, P>2B. (101)

When P =2f, the JKD estimate is recovered. Clearly,
2B/P is a fundamental material property controlling the
frequency dependence of the dynamic permeability.

Although the definition of 3 given by Eq. (93) is exact,
it requires knowledge of how the real parts of the drag
coefficients behave at low frequencies. It is possible that
such information is only obtainable by solving the time-
harmonic viscous-flow problem for each porous material
type that is considered. For the variable-width model,
these low-frequency limits are obtained from Egs. (63)
and (68) as

Model 2 (a)
10°
> § N 3
o - \ ]
~
= | \ é
2 T ]
o 107 F 3
R~ [ methis study 3
- == = =modified JKD [Eq. (101)] \ 5
-3 -1 1 3
10 10 ®/® 10 10
0
. Model 2 (b)
E 7
- i
A /
= 0t 4 4 \
3 2
= [
= 107 /
F e this study
B = = =modified JKD [Eq. (101)]
10-3 BRI BRI NIRRT B URTIT BN AR ETIT | B SRS T
10°3 10°! 10! 103

O/ o
0
FIG. 13. Real and imaginary parts of the dynamic permeabil-
ity for model 2. Comparison of the second-order and modified
JKD drag solutions.
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6 rL|ho N, 1| 14+3M/2 4M N dz
: (form)y — _Y — - - | —_— _— —_— 102
lim Re{y ™™} =31 fo r U Ty TS im0 | |7 s || 1m0 (102)
and
1 d an |© | 3m dn |’
: (friecy — 1 L z an | _ | 2M 142 | &2
lim Refy ™} =5 fo 1+3M/10 dz 2 N‘ d
dh | 1 dh am | 1 dh , dN
dz | 14 M dz dz 5 Ndz h dz
4M/T—N/5 M dh h dh aM
AM/T—N/S M4 |en n_ah aM 103
310 [ 15 dz 10 dz dz ] (103)

These rather cumbersome expressions do not appear to
relate in any simple manner to the definitions of o, and
k, given by Egs. (80) and (71).

In Fig. 13, the “modified” JKD estimate based on Eq.
(101) is compared to the second-order results of this
study for the same model 2 considered earlier. Although
the modified JKD estimate is required to have the correct
behavior in both the limits of high and low frequencies, it
still has some trouble mimicking the behavior near the
transition frequency with maximum discrepancies of
about 40%. Some of this discrepancy could be due to our
own second-order results beginning to break down.
However, for channel slopes less than or roughly equal to
1/2, the modified JKD estimate becomes essentially ex-
act. The values of 3 obtained for the three pore models
discussed earlier are model 1 [3=0.296, model 2
B=0.956, and model 3 =0.225. Thus, with P =1/2, it
is seen that 2f3 can be both greater than and less than P.

F. Generalizing the variable-width model
to three dimensions

The variable-width model presented so far has been
limited to two-dimensional flow channels all aligned in
the same direction. Adjustments can be made to extend
the model, in an approximate manner, to three-
dimensional isotropic media. First, it may be assumed
that in an isotropic medium supporting compressional-
wave propagation in a particular direction, roughly one
third of the pore space will be involved in the conduction
of relative flow. This one third of the pore space is
modeled as a collection of variable-width channels
aligned in the direction of wave propagation. The
remaining two thirds of the pore space can be thought to
consist of flow channels aligned perpendicular to the
wave direction and, therefore, not involved in the flow.
Because the average relative flow W will be reduced by a
factor of 3 in such an isotropic model, the drag results
given above should be modified by replacing 1+7y in Eq.
(8) by 3(1+v). This allows W to be interpreted as a filtra-
tion velocity as in Darcy’s law. It also means that the

[

tortuosity a,, will be enhanced by a factor of 3, while the
dc permeability will be reduced by a factor of 3.

If it is desired to model the channels as having circular
cross sections as opposed to the planar cross sections con-
sidered so far, one must simply make the substitution

I,[i'%a(z)]

tanh[i'2€h (2)] >~ 20 2L
R ATI Py

(104)

in the above expressions for y'©™) and y® [Eqgs. (63)
and (68)], where again I, and I, are modified Bessel func-
tions of the first kind and a(z) is the pore-radius func-
tion. This substitution is determined by carrying out the
flow modeling in cylindrical coordinates. Of course, such
a replacement will affect the high- and low-frequency lim-
its used to define k), a ., and Egs. (102) and (103).

IV. CONCLUSIONS

A model has been presented that determines the drag
force in porous-material models that possess variable-
width flow channels. The flow channels are assumed to
have widths that vary smoothly, a periodicity L that is at
least a factor of 4 greater than the mean channel half
width, and maximum channel-wall slopes that are less
than or equal to 3/4. The dynamic permeability deter-
mined from such a model has been compared to the dy-
namic permeability predictions of Biot! and Johnson, Ko-
plik, and Dashen.? It has been shown that for maximum
channel-wall slopes less than 1/2, the JKD model is very
good. The Biot model is less adequate, particularly if
large tortuosities are present (as in model 3). The JKD
model has also been modified so that it is guaranteed to
have the correct behavior in the limit of small frequencies
(the existing JKD model is already accurate in the limit
of high frequencies). It was also shown that a simple
series sum of constant-channel-width flow resistances
does a poor job in approximating the drag in variable-
width channels. This is because form drag is neglected in
such a model.
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