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Low-temperature acoustic properties of metallic glasses
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The dynamics of two-level systems (TLS) are substantially different in metallic glasses than in insula-

tors because the TLS are coupled to conduction electrons in addition to phonons. This coupling does
not merely cause a broadening of the energy eigenstates of a TLS; it can alter the fundamental nature of
the tunneling. These effects are reflected in the low-temperature acoustic-attenuation and velocity
changes of these materials. We compare theoretical calculations of ultrasonic properties of a distribu-

tion of TLS in a metal to previouly unexplained 1-GHz acoustic measurements of the sound velocity and

attenuation of the metallic glass Pdo 775Sio, 65Cuo o6 below 1 K.

I. INTRODUCTION

The theory of two-level systems' (TLS) has had great
success in explaining the low-temperature properties of
glasses. For insulating glasses the TLS theory pro-
vides a phenomenological model for the observed specific
heat, thermal conductivity, and ultrasonic properties.
The formal connection with S=—,

' dynamics is the basis
for understanding acoustic resonance experiments such
as phonon echoes.

There is also substantial evidence that TLS's are
present in metallic glasses. ' However, at least some
properties of metallic glasses are significantly different
from those of insulating glasses. For example, in normal
metals the sound intensity needed to observe saturation
of ultrasonic attenuation is several orders of magnitude
larger than in insulating glasses, and phonon echoes have
not been observed. These observations have been as-
cribed to the significantly shorter relaxation times caused
by the coupling of the TLS to conduction electrons,
which has generally been assumed to lead to Korringa-
like broadening of the energy eigenstates of a TLS. The
greatly enhanced relaxation rates thus have been attribut-
ed to the quantitative issue that at low temperatures T
the number of electronic excitations is proportional to T
rather than T, as is the case for phonons. Therefore, the
difference between insulating and metallic glasses has
mostly been assumed to be due to the quantitatively
shorter relaxation time rather than different qualitative
behavior of the TLS.

However, some acoustic properties of metallic glasses
are qualitatively different from those of insulating glasses.
Here we focus on two features of the data of Ref. 9 on
Pdp 775Sip, 65Cup p6 that are not consistent with standard
TLS theory. The first feature is that the saturable at-
tenuation of sound of frequency co/2~=0. 96 GHz at low
temperatures ( —10 mK) is much smaller than the TLS
theory predicts based on velocity measurements. The
second feature is that, given a value for the attenuation at

temperatures T low enough that the sound frequency co

satisfies fico/kii T )) 1 (which is expected to be resonant),
standard TLS theory yields a prediction for the high-
temperature relaxational attenuation which is much
smaller than the experimentally measured nonsaturable
attenuation for T)0. 1 K. In Ref. 9, it was postulated
that, for reasons unknown at the time, the resonant at-
tenuation was partly unsaturable. A modified TLS distri-
bution function with more asymmetric TLS's than the
standard distribution function (and hence larger relaxa-
tion attenuation) was used to fit the data. However, both
these modifications are completely ad hoc and one would
like a more satisfying understanding of the experimental
observations.

This work is motivated by recent measurements of dis-
sipative tunneling of a single defect in a mesoscopic met-
al, " where it is demonstrated that the temperature
dependence of the tunneling rate of a two-state defect in a
mesoscopic metal can be qualitatively inconsistent with
the predictions of standard TLS theory. The coupling of
TLS to conduction electrons as well as phonons leads to
new effects that cannot be described merely in terms of a
short relaxation time T, . The increased spectral density
of electronic excitations compared to phonons leads to
the destruction of coherent tunneling of the TLS when
the temperature is substantially larger than the tunnel
splitting. ' ' This theory has been applied successfully to
measurements of muon diffusion in metals' and of tun-
neling of hydrogen interstitials in niobium. ' The
relevance of this destruction of quantum coherence to the
TLS in metallic glasses has been noted elsewhere in the
literature '' in this paper we show that accounting for
this leads to substantially improved agreement between
theory and measurements of the sound attenuation and
velocity over a broad temperature range.

The coupling between electrons and the TLS has non-
trivial effects on the acoustic properties of all tempera-
tures. At high temperatures the tunneling of a TLS is in-
coherent, and the temperature dependence of the tunnel-
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ing rate is qualitatively different from that predicted by
the usual TLS perturbation theory, where it is assumed
that the effects of the electron bath on a coherently tun-
neling TLS are weak. ' At low temperatures, the dom-
inant "resonant" contribution can also be modified sub-
stantially by the coupling to electrons. One example of
this is a (formally) resonant contribution to the nonsatur-
able attenuation that occurs for metallic and not insulat-
ing glasses that is important at very low temperatures.
This contribution arises because at zero temperature the
coupling of a TLS of energy E to electrons causes the res-
onance linewidth to broaden by an amount AE that is
proportional to E. The integral over the TLS distribution
yields a contribution to the attenuation that diverges log-
arithmically with the upper cutoff of the TLS distribution
function. Since this contribution to the attenuation arises
from TLS's that are very far from resonance, one expects
it to represent a nonsaturable piece of attenuation whose
amplitude has the tanh(13fico/2) temperature dependence
that is usually characteristic of resonant attenuation,
where P=(kz T) '. More generally, we find that the sat-
uration behavior can be complex and sensitively depen-
dent both on temperature (even when I3fico/2)) 1) and on
the electron- TLS coupling.

We compare this theory to previous measurements
of the sound velocity and attenuation of
Pd0775Si»65Cu006. We show that the theory explains
naturally some previously mysterious ultrasonic proper-
ties, although agreement between theory and experiment
is not yet quantitative.

This paper is organized as follows. In Sec. II A we re-
view standard TLS theory and show why it is not con-
sistent with the data on Pdp 775Si0,65Cu006. Section II 8
discusses the general framework of the calculations in
this paper, with particular stress on the relationship be-
tween the acoustic properties of interest here and the
quantities usually calculated in dissipative tunneling
theory. In Sec. II C we discuss the linear response of a
TLS in the incoherent regime (temperature larger than
the renormalized tunneling matrix element) and in Sec.
IID we discuss the low-temperature coherent regime.
Section III is a comparison between this theory and ex-
periment, and the results are discussed in Sec. IV.

II. THEORY

In this paper we assume that the low-temperature
acoustic properties of a glass are determined by the
effects on a sound wave of frequency ~ when it couples to
the distribution of the TLS in the material. An isolated
TLS with asymmetry e and tunneling matrix element A0
has a Hamiltonian

H =e, —AA

The isolated TLS has two energy eigenstates with ener-
gies +E/2, where E=+[(A'60) +-e ]' . The relaxation
of a TLS is dominated by its coupling to conduction elec-
trons, described by the Hamiltonian'

H =Ho+a, g Vuj c„„ck„+H, ,
kk'g

(2.2)

where Vkk describes the scattering potential, and ck„
creates a fermion of wave vector k, energy gk, and spin ri.
The bath itself is described by H„' for noninteracting fer-
mions, H, =gk„gkck„ck„. The coupling of the defect to
the bath is characterized quite generally in terms of a pa-
rameter K which describes the coupling strength as well
as the spectral density of bath excitations. ' For an s-
wave potential ( Vkk

= V) and a bath of free fermions, K is
determined solely by the scattering phase shift for elec-
trons at the Fermi surface; in the limit of weak scatter-
ing, K= —,'(no V), where no is the density of electron
states at the Fermi level. ' In this paper we do not con-
sider the relaxation of the TLS by phonons, which we do
not expect to affect the ultrasonic properties below 1 K.

In Sec. II A we review the standard TLS treatment of
this problem and the procedure used to fit the data of
Ref. 9, and show why the results are unsatisfactory. In
the succeeding sections we will show that dissipative tun-
neling theory can be used to calculate linear response
functions that yield a much more complete understand-
ing of the experimentally observed acoustic properties.

A. Standard TLS theory

P(e, bo)= P
0

or, equivalently,

(2.3a)

Here we review the standard TLS theory used in the
previous fits and discuss the difficulties that arise when
this theory is compared to experiment. To calculate the
effects of the TLS on a sound wave of angular frequency
co, ' ' ' one divides the attenuation into resonant and
relaxational parts. The resonant attenuation arises from
absorption by the TLS of energy splitting E=A'co. The
relaxational attenuation comes from relaxation processes
induced by the change in energy asymmetry caused by
the sound wave. These two contributions are both calcu-
lated using the TLS theory. The two parameters that
enter are K, the electron-TLS coupling constant, and

Py, which is the product of the density of the TLS P,
and the square of the phonon-TLS coupling constant y.
Here we do not vary the distribution function of TLS
P(e, bo); it is assumed to be of the usual form'

where P(E, r)= P
2r&1 r— (2.3b)

and

1
0 z 2 0 with E=[(Ado) +e2]'~ and r =(A'bo/E) . The resonant

attenuation cx„„is given by'

0 1

x 2 1 0
res P I/ Pkco

tanh
pv

(2.4)
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where p is the mass density and v is the sound velocity.
[For Pdo 775Sio &6&Cuo o6, p = 10.52 g/cm and3

u=1.8X10 cm/sec (Ref. 24).]
The resonant contribution to the sound ve1ocity is ob-

tained by a Kramers-Kronig transform of the attenua-
tion; it has the form

~V res u(T) —u(T=O)

p 2

~
[+(—,'+/Mcu) —In(pA'co) ],

pv
(2.5)

bu (T) Py T
ln

U pv T0

where T0 is a reference temperature.
The relaxational attenuation and velocity shift depend

both on Py and K; they are given by '

= J dE sech
CO 0

where + is the digamma function. At high temperatures
where Pkcu « 1,

ments. The two parameters that enter, E and Py, have
correlated uncertainties, so we fit the data to yield values
for Py for different values of E. We then compare the
low-temperature attenuation calculated using these
values of Py and K to the measured attenuation. Since
it is difficult to measure absolute attenuation, we assume
that the attenuation is determined experimentally only up
to an additive, temperature-independent constant.

We find that satisfactory fits to the velocity measure-
ments over the temperature range 20 mK —1 K can be ob-
tained for a broad range of K ( -0.02 —0.2), through for
K) 0. 15 or so the quality of the fit for T &Ace/k~ de-
grades. Figure 1 shows fits for E =0.02 and 0.2; fits for
K between these two values are of higher quality than the
ones shown. Table I shows the values of C=Py /pv ex-
tracted from these fits for different values of K. We esti-
mate the uncertainty in the values of C extracted to be a
few percent for a given value of K.

The description between theory and experiment arise
when one attempts to fit the experimentally measured at-
tenuation. One problem is that the observed intensity
dependence of the low-temperature attenuation is qualita-
tively inconsistent with theoretical expectations.

Py &1—rX dr
pu' 2r (ruT) +1 (2.6a) 40

»re]ax oc'

dE sech
0 2

fX dr
Py' &1—r
pv' 4r (ruT, ) +1

(2.6b)
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Here, T, ' is the relaxation rate of the TLS induced by
the conduction electrons.

In the standard TLS picture, one assumes that the cou-
pling to the conduction electrons is sufficiently weak that
their effects can be accounted for using second-order
time-dependent perturbation theory on the eigenstates of
an isolated TLS. Thus, one takes the Hamiltonian (2.2),
diagonalizes the first two terms, and then accounts for
the third term using lowest- (second-) order perturbation
theory. One obtains a relaxation rate T, ':
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The resonant contribution in this picture is expected to
be independent of the relaxation rate T, ' and hence the
TLS-electron coupling parameter K; increasing T, '

lowers the height of the resonance peak but causes the
number of TLS's contributing to the absorption to in-
crease proportionality. [Of course, the nonlinear (satura-
tion) properties of the attenuation do depend on T, and
hence K.]

Now we compare this theory to experimental measure-
ments of sound velocity and attenuation at fixed frequen-
cy co/2~=0. 96 GHz as a function of temperature for
0.01 & T &1 K.' We first consider the velocity measure-
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FIG. 1. Fit of standard TLS theory to data of Ref. 9; relative
velocity shift AU/U vs temperature T (on a log scale). (a) Fit us-
ing I( =0.02; (b) fit using %=0.2.
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0.02
0.03
0.04
0.10
0.15
0.18
0.20

3.57
3.77
3.92
4.74
5.15
5 ~ 33
5.40

TABLE I. Table of values of C=—Py /pv obtained for
different values of K using the standard TLS calculation de-

scribed by Golding et al. (Ref. 9) and Black (Ref. 18). The un-

certainties in the values of C are a few percent.

C X10'

tern (resonant plus relaxational) whereas the high-
intensity curve is expected to correspond to relaxational
attenuation only. Figure 2 shows the division into reso-
nant and relaxational parts for K =0.02 and 0.2. In Fig.
3, we compare the theoretical prediction for the total
linear attenuation for E =0.02, 0.1, and 0.2 with the
low-power attenuation measurements. (K was chosen to
be between 0.02 and 0.2 on the basis of the velocity fits. )

It is clear that neither the temperature dependence of the
linear response nor the saturation behavior are well de-
scribed by any of the theoretical curves. Thus, we have
two main questions —why the saturable attenuation is
smaller than the resonant contribution predicted by the
TLS theory, and why the unsaturable attenuation is
larger.

By this we mean that theory predicts that there
should be a saturable attenuation of magnitude
~C(co/U)tanh(PA'co/2). The smallest value of C con-
sistent with the velocity measurements occurs for small
K; when one uses this value of C to calculate the resonant
attenuation (which is independent of K), one obtains the
result shown in Fig. 2(a). It is clear that the saturable at-
tenuation measured experimentally is much smaller than
the theoretical prediction. Increasing K only exacerbates
this problem because it increases C. In addition, the tem-
perature dependence of the saturable attenuation is not
well described by the tanh(PA'co/2) function predicted by
Eq. (2.4); the attenuation appears to be all unsaturable for
T )0.08 K, whereas tanh(fico/2) =0.28 at 0.08 K.

If we argue that C is indeed fixed by the low-
temperature velocity and for some reason the resonant at-
tenuation is not completely saturated, we can then adjust
the zero of attenuation so that the low-temperature part
fits the data, as is done in Fig. 2(a). However, if we do
this, no matter what K we choose, the temperature
dependence of the calculated total attenuation is qualita-
tively inconsistent with experiment because the theory
predicts a relaxational contribution that is too small.

The problem can be illustrated simply by noting that
the expression for the attenuation (2.6) using the expres-
sion (2.7) for T, ' is bounded above by

r T

~ —C — d (PE )sech
co 2 U 0 2

25

20 K = 0.02
~ data

resonant
relax ational

total

10

O
OO

0 'q
0 0

0 &) 0

0
10 10

T (K)

35

30 — K = 0.2

25 0 O~

e
d

~ data
resonant
relaxational
total

20

15

'0
XO

OO Oooo

10

saturable attenuation

10

0
0

J J -L L

10

1 I I I I I

00

co/g (E)
r +a) /g (E)
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(2.8)
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This bound holds also in the presence of a parallel relaxa-
tion of the TLS by phonons. Since the resonant attenua-
tion as T~O tends to AC(co/U ), this theory predicts that
the relaxational attenuational should be substantially
smaller than the resonant attenuation. The data are
grossly inconsistent with this.

The comparison of standard TLS predictions for the
attenuation with experiment is shown in Figs. 2 and 3.
The data shown are taken at different power levels; the
low-intensity curve rejects the linear response of the sys-

FIG. 2. Fit of standard TLS theory to data of Ref. 9: at-
tenuation cx vs temperature T. Parameters for the theoretical
curves are obtained from the velocity fit. The two sets of data
at low temperature correspond to low- and high-intensity
sound; the difference is the saturable attenuation. Both resonant
and relaxational attenuation are shown; resonant attenuation
should be compared to the experimentally measured saturable
attenuation. The experimental attenuation zero is unknown and
has been adjusted so that the low-temperature attenuation
agrees with theory. (a) K =0.02, (b) K =0.2. TLS theory clear-
ly fails to explain the data.
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%co=g"(co) =tanh ' S (co) . (2.10)
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1 f~, cx(co)
~U 0 2 2

(2.11)
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different from that obtained in Sec. II A. Thus, we will
find it useful to divide the TLS into "coherent" and "in-
coherent" depending on whether Kkz T & Ah„or
Kk~ T & AA„, respectively.

Leggett et a/. ' review how one uses the functional in-
tegral technique to integrate out the bath and reduce the
problem to that of the time evolution of the two-state sys-
tem where transitions have an effective nonlocal (in time)
interaction between them. They calculate the Laplace
transform P, (A. ) of the time evolution P, (t) of a TLS with
asymmetry e started at time t =0 with cr, (t =0)=1,
which is related to S(co) by '

0.5 1.0

S(co)= [P,(l, =ice)+e~'P, (A, =ice)] .e~'+ 1
(2.12)

FIG. 5. Structure factor S(co) vs frequency ~ of a single TLS
in the incoherent regime; parameter values are T=0.042 K,
%=0.2, a=0. 5 K, and A'5„=0.01 K. The reference frequency

coo corresponds to a temperature of 1 K. The structure factor
consists of a Lorentzian central peak and a smeared power-law

edge at frequencyy co=@/A. The inset shows the Lorentzian
central peak on an expanded scale. Note the width of the cen-

tral peak and of the feature at co —e/fi are substantially
different.

ground needed to conduct a detailed comparison between
the theory and the experimental data over a broad tem-
perature range.

C. Dissipative tunneling

One obtains the expression of Golding et al. for the
relaxation rate (2.7) of a TLS by assuming that the cou-
pling to the conduction electrons can be accounted for
using lowest-order time-dependent perturbation theory.
However, Kondo' has shown that the fourth-order term
in this perturbation expansion depends logarithmically
on the ratio of the electron bandwidth to the thermal en-
ergy. Therefore, the assumption that the fermionic bath
is a weak perturbation is generally not valid at low tem-
peratures.

The problem of the dynamics of a two-level system
coupled to an ohmic heat bath has received substantial
attention in the literature, and the basic phenomenology
is well understood. If one performs a renormalization-
group transformation successively integrating out fer-
mionic degrees of freedom of high energy, then one can
state the results for the TLS dynamics in terms of a re-
normalized tunneling matrix element A„where
b,„=b,o(b,o/D) ~'' ' and D is the ultraviolet cutoff.
We shall only discuss K & —,', which is the regime relevant
to these experiments. When k~T is less than AA„/K,
then the standard result, Eq. (2.7), is qualitatively
correct. On the other hand, when k~T&A'b„/K, then
the interaction between the electron bath and the TLS is
effectively very strong, so that the proper procedure is to
diagonalize the terms involving o, in (2.1) and (2.2) and
then to include the effects of the tunneling matrix element
50 perturbatively. One finds an S(co) that is qualitatively

g, +h, +(h, g~
—g)hq)/co

P,(l, =ice) =
g, +(co+gp)

where
2K —1

1 2' 1

4 /3A' I (2K)
2

(2.13)

X I K+i (Ace —e)
2m'

cosh —(irido —e )
2

+(e~ —e) ', (2.14a)

g ( toe)= 2[& —K) &

4 /3'

2K —1

cot(irK)
I (2K)

2

X ~ I K+i (A'co —e)
277

sin h —( A'co —e )
2

+(e~ —e) ', (2.14b)

The functional integral that yields the time evolution of
the TLS is not solvable in general, so we use the nonin-
teracting blip approximation of Leggett et al. , which can
be viewed as a self-consistent Born approximation. As
Leggett et al. discuss, this approximation is well con-
trolled in an extreme incoherent regime AA, «k&T and
for a symmetric TLS at T=0 in small-K limit. We want
to apply the theory for the entire distribution of the TLS,
so this approximation must be viewed as uncontrolled.
However, we do expect these calculations to yield accu-
rately the qualitative behavior of the TLS. The limita-
tions of the noninteracting blip approximation are most
serious for the coherent TLS and are discussed further in
Sec. II C. Expressions for the linear response valid for an
asymmetric TLS at low temperatures in the small-K limit
have also been obtained, ' which we discuss in Sec.
IIC2. However, there are no calculations of the struc-
ture factor that are expected to be quantitatively accurate
in the regime of moderate K and intermediate tempera-
ture.

Within the noninteracting blip approximation one ob-
tains an expression for P, (A, =ice) [which is related to the
structure factor S(cu) by Eq. (2.12)]:



4928 S. N. COPPERSMITH AND BRAGE GOLDING 47

( ~ )
—g2(1 —K)

4 pfi

X — I- I~+i
2~

1

I (2K)
2

X sinh —()rico —e) —(e~ —e. )
.

, (2.14c)
2

At zero temperature the structure factor consists solely
of power-law edges with threshold A~=a. The absence
of response for frequencies less than this value is reason-
able because one needs to conserve energy when inducing
transitions from a lower-energy to a higher-energy state.
At nonzero temperature the edge broadens and, in addi-
tion, a Lorentzian central peak emerges.

By using (2.12)—(2.14), we have calculated the in-
coherent contribution to the quantity

(~ ) ~2(1 —K) 1 2&
4 /3A'

i 2K —
1

tan( irE)
I (2K) f de f tanh S, ~ (co)

K//3A' d kq pfgrgI

r
(2.17)

X — I K +i (fi(o —e)2'
2

X cosh —()h'cv —e )
—(e~ —e ) . (2.14d)

2

Here, I (z) is the complex y function.
In practice, we will only use this expression in situa-

tions where either only the lowest-order terms in 6, need
be considered or else @=0; in these situations P reduces
to

&rel pede sech
V 0 2

for several values of K and co/2~=0. 96 GHz. We have
verified that the integral of the full structure factor over
the TLS distribution function is the same as the one over
just the central peak to within a few percent. Therefore,
it is simpler to consider the central peak only and calcu-
late this contribution to the attenuation using the analog
of (2.6) [where the absence of a factor of (e/E) can be at-
tributed to the destruction of the energy eigenstates]:

g, (e, rv)+ h ) (e, co)
P(A=i rv) =,

g, (e, cv)+ ((v+g~ )
(2.15)

K /PA' d 6„PcoT)

(~T) ) +1 (2.18a)

Physical quantities are determined by the integral of the
response over the distribution function of asymmetries
and tunneling matrix elements. Whether one uses A„or
A0 only affects a constant which can be absorbed into P;
We use 6, since it is the observable low-energy quantity.
The attenuation is given by

6V relax p~de sech
2 0 2

f K/px db,„pX
o b, „(coT) ) +1 (2.18b)

C pfico d ~r=—tanh f d ef 'S ( e(v, b,„),
U 2 0 0

using the dissipative tunneling result for the relaxation
rate T, '.

(2.16)

and the velocity change is given by the Kramers-Kronig
transform of the attenuation, Eq. (2.11). In the next sub-
section we describe the results of the noninteracting blip
approximation for the regimes of incoherent tunneling.

T 1 = 1 g2(1 K) 277
1 p r

cosh(/3e/2) . Pe
1 (2K) 2'

2

(2. 19)

1. Incoherent regime

We first discuss the regime of incoherent tunneling,
AA, &Kkz T. When this condition is satisfied, the energy
eigenstates of the TLS are completely destroyed and one
should view the system as incoherently tunneling between
position eigenstates.

In this regime the structure factor has the form shown
in Fig. 5; in addition to a Lorentzian central peak there is
a feature at frequency e/A, which rejects the possibility
that transitions from the lower-energy well to the
higher-energy one can be induced. The central peak is
calculated by Grabert and Weiss and Fisher and Dor-
sey; the edge is calculated for 6, (&co by Chakravarty
and Kivelson. Both contributions are contained in Eqs.
(2.14), which are equivalent to the results of Dattagupta
et aI."

This result for the relaxation rate differs qualitatively
from the standard result Eq. (2.7); as Fig. 6 demonstrates,
for temperatures T obeying Kk~ T )e, T, ' increases as
the temperature is decreased as T

1

' ~ T ' ' '. The
temperature where the relaxation rate is largest occurs at
Kk~ T-0.2e.

At high temperatures arguments similar to those used
to derive Eq. (2.9) can be used to show that this contribu-
tion to the attenuation saturates at a value
irC(rv/v)/[2(1 —K)]. We expect the incoherent contri-
bution to the velocity to be also dominated by the central
peak, whose contribution is calculated using (2.18). We
have verified that the contribution from the edge is negli-
gible when piriiv (( 1; when /3A'co )) 1 we expect the
coherently tunneling TLS to dominate the acoustic prop-
erties. Thus, the effects of the edge on both the attenua-
tion and velocity can be ignored at all temperatures.
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FIG. 6. Scaled relaxation rate T, '/6, '' ' of a single TLS
in the incoherent regime as a function of temperature T for
@=0.4 K, and E =0.01, 0.05, and 0.2. The reference frequency
coo corresponds to a temperature of 1 K. For T~0.2e/Kk~,
T l

' increases as the temperature is decreased as
TI ' ~ T " ', this result differs qualitatively from the stan-
dard TLS theory prediction.

2. Coherent regime

a r a I
S(cp) = — +

2 (II—rp)'+r' 2 (n+rp)'+r'

We now consider the attenuation induced by the TLS's
which satisfy the condition Ah„)Kk&T. Although to a
large extent standard TLS theory can be applied in this
regime, the attenuation from the coherent TLS is
different from that calculated by Golding et al. and
Black. ' The main differences arise from contributions to
the nonsaturable attenuation that arise from formally res-
onant processes. There are two main reasons for this.
The first is a contribution that arises even in the small-E
limit because the width of the resonance is proportional
to its frequency; the second is that when K becomes
greater than 0.1 or so the structure factor becomes ex-
tremely temperature dependent; the resonant finite-
frequency peaks become indistinct at quite low tempera-
tures.

(a) Small K. We first discuss the limit of small K,
where Gorlich et aI. and Weiss and Wollensak have
calculated the structure factor of a TLS of energy split-
ting E. Within a Lorentzian approximation for the line
shapes, the structure factor has the form

low temperatures; when E ~Kk~T, this solution must
break down because it predicts that 0 becomes negative.

In the limit E « k~ T, this structure factor corre-
sponds exactly to that expected within the "old" TLS
theory described in Sec. IIA. When k&T~E, there are
nontrivial corrections to the "resonant" part of S(ro), but
there are two reasons why these changes do not affect the
attenuation significantly. The main difference between
Eq. (2.20) and the theory described in Sec. II A lies in the
difference between 0 and E, which affects the "matrix
element" a. However, a is unity when @=0at all temper-
atures, and the symmetric TLS's dominate the resonant
attenuation. In addition, the contribution of the TLS to
the attenuation when E ~k~T is small because of the
tanh(PA'co/2) factor. Thus, we expect standard TLS
theory to be adequate to calculate the attenuation contri-
bution for the TLS with 6„)Kkz T.

Since the relaxational part is suppressed by a factor of
sech (Pfico/2)„at the lowest temperatures only the reso-
nant attenuation is observed (e.g. , only the finite-
frequency peaks in the structure factor need be con-
sidered). However, here we show that even in the limit
T~0 there is a substantial unsaturable attenuation,
which arises because the width of the resonance peak is
proportional to the resonance frequency.

First consider the case T=0. The averaged structure
factor S(co) is obtained by averaging S(cp) for the single
TLS over the distributions for b, „and e Equatio. n (2.20)
yields the scattering rate of a TLS of energy E of rqE/A,
where r =(A'b, „/E) and rl=vrK/2. The contribution to
S(co) from the resonance at co=E!R is thus found to be

+ )=f '
"&/z

p 2(1 r)'/—
r gE/A

(E/fi co) +(rrlE/A)—
(2.21)

The integral over the energy E diverges logarithmically
as the upper cutoff E „tends to infinity. In the Appen-
dix we show that this divergence does not depend on the
assumption of a Lorentzian line shape. However, it is
crucial that the width of the line be proportional to its
peak frequency; the relevant integral IdE I E /[(E
—Ep ) +E ] I diverges only for x = 1.

To proceed further, it is simplest to rewrite Eq. (2.21)
as the sum of two terms S+„„and S+,„, , where

e /0+
cosh (%PA/2) rp +I „

(2.20) I' dr rigor

P 2(1 r)1/2 1+ 2 2

where a =1—e /0, I „=~KB(A~/E)coth(pE/2),
I =I „/2+K'(e/E) /(f34), and

=e + b,„[1 —2 Re[/(1+iPE/2nA')] +In(2'/Pfih„)],
X dE

(E/A ~) +(rqE/A')

(2.22)

with g the digamma function. This form is valid only at and
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P dr fiqr I+~» d /dE[(E/fi —co) +(rrIE/A) ]
o 4(1 —r)'/ (1+g r ' o (E/fi co)—+(rrlE/fi)

(2.23)

The first term, S+„„corresponds to the usual resonant
contribution to the attenuation, for qr «1 the limits of
integration over E can be set to + ~, yielding

dr P
o 2(l —r)' 1+g r

(2.24)

Xln +1+r g
%co

(2.25)

where we have assumed E,„/Ace &) 1. The resonance at
co= —E/A contributes an equal amount to the anoma-
lous piece; it does not affect the resonant piece.

If one chooses E „=300 K, for sound of frequency
0.96 GHz, in the limit of small K, S,„, /S„, —5. 85 K.
The K dependence that arises from the integration over r
is small; for K =0. 1 one finds S,„, /S„„=0.58 and for
K =0.3, S,„, /S„„=1.7. However, as we discuss in the
next section, when K becomes large the Lorentzian ap-
proximation for the line shape breaks down and this cal-
culation can be viewed only as a rough estimate.

Since the TLS that contribute to the anomalous at-
tenuation are all far from resonance, the anomalous con-
tribution should be nonsaturable. The temperature
dependence is roughly the same a ~ tanh(/3irico/2)
displayed by the resonant attenuation; the contribution of
the TLS with E & k~ T is suppressed because the
coth(/3E/2) factor in the scattering rate causes the width
of the peak to be no longer proportional to E, but in this
regime the tanh(PA'co/2) factor is already suppressing the
attenuation. The relaxational attenuation from the
coherently tunneling TLS is seen from Eq. (2.20) to be
well described by the theory of Sec. II A when K is small.

(b) Large K. When K is large, the structure factor is
no longer well described by Eq. (2.20). When e=0 the
noninteracting blip approximation (NIBA) appears to
give a reasonable description; in addition to working for
small K, it is exact for K =

—,'. ' However, when e&0 and
kz T & E, for some frequencies the noninteracting blip ap-
proximation yields a negative structure factor, which is
clearly an unphysical result. This problem has been
pointed out by Weiss and Wollensak and Gorlich
et al. , who have derived forms for the structure factor
which do not have this unphysical feature. However,
their calculations are not expected to be quantitatively
accurate in the regime of intermediate K.

Although there is no quantitatively accurate calcula-
tion of the structure factor for intermediate K, qualitative
insight can be obtained by investigating the properties of
the NIBA. It is reasonable to do this because the main

The second term S+,„, , which comes from the TLS far
from resonance, is

dr P firlr
J o 2( 1 )1/2 1 + 2 2
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FIG. 7. Structure factor S(co) calculated using NIBA as a
function of frequency co at five diFerent temperatures T for pa-
rameter values @=0and b „/2m =0.96 GHZ. The reference fre-
quency coo corresponds to a temperature of 1 K. (a) K =0.2, (b)
K =0.05. For large K one finds that small changes in tempera-
ture lead to large qualitative changes in the structure factor.
This efFect is significantly less marked when K is small.

qualitative changes occur in the resonant attenuation,
which is dominated by the TLS's which have e-O.

The structure factor S(co) for a symmetric TLS within
the NIBA has been calculated by Grabert et al. We
have calculated the evolution of the structure factor S(co)
within the NIBA as the temperature is increased for a
symmetric TLS with 6„/2~=0. 96 GHz. Figure 7 shows
S(cu) obtained within NIBA at five different tempera-
tures, for K=0.2 and 0.05 ~ Recall that in the limit of
small K, there is no central peak in the structure factor
for a TLS with e=O at any temperature. However, for
K=0.2 [Fig. (7a)] the resonant line shape of the struc-
ture factor washes out rapidly as the temperature is
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raised. If we denote the peak value of $(co) as S,„, we
find that the ratio S(co=0)/S,„ increases from -0. 18
at T=0.01 K to -0.94 at T=0.063 K. These changes
are not simply a change in the linewidth because $(~) is
hardly affected as the temperature is raised from 0.01 to
0.063 K for co ) 1.5b,„. Figure 7(b) shows the evolution of
S(co) when @=0.05; it demonstrates that this effect is
substantial only when K is reasonably large.

We expect that the disappearance of the finite-
frequency resonance in the structure factor corresponds
to the disappearance of saturable attenuation. Therefore,
we expect the saturable attenuation to decrease much
more quickly than usual TLS theory predicts as the tem-
perature is raised. Unfortunately, the saturation behav-
ior is not simply related to the linear response, so detailed
comparison to the experimentally observed saturation be-
havior is not possible.

In addition to the attenuation from the TLS with
A„-co, the TLS's far from resonance will contribute to
the "anomalous" attenuation, which is also unsaturable.
This contribution is discussed in the preceding subsec-
tion. However, when K is large, that calculation yields
only an estimate for the structure factor; first, the ap-
proximation that the structure factor is a sum of
Lorentzians becomes worse, and second, K dependence
arises from the fact that extending the limits of integra-
tion to + ~ becomes a worse approximation as K in-
creases.

III. COMPARISON TO EXPERIMENT

In this section we compare the theory to experimental
measurements of the acoustic properties of
Pdp 775Sip, 65Cup p6. The method used here is comPletely
analogous to that described in Sec. IIA; we first fit the
velocity curves to obtain values of C for various K, and
then use these values to calculate the attenuation.

Comparison between theory and experiment is compli-
cated by the fact that theoretically we would like to cal-
culate the attenuation by integrating the structure factor
over the TLS distribution function. However, use of the
rather complicated functional forms for S(co) discussed
in the previous sections is computationally prohibitive
because detailed fitting requires calculation of the veloci-
ty shift, which involves a triple integral (over b, „, e, and
frequency co'); in any case we do not expect any structure
factors obtained to date to be quantitatively accurate in
the regime of intermediate temperature and K. There-
fore, we employ approximations that enable us to calcu-
late both the velocity and attenuation with no more than
double integrals; these approximations are all well con-
trolled in the small-K limit.

Three contributions to the attenuation need to be cal-
culated. They can be viewed as (1) the "resonant" contri-
bution (attenuation from finite-frequency peaks in the
structure factors of the coherently tunneling TLS), (2) a
relaxational contribution from the coherently tunneling
TLS, and (3) a relaxational contribution from the in-
coherently tunneling TLS.

We first discuss the "resonant" contribution (which we
again stress is partly unsaturable). To estimate this con-

tribution, we use the fact that the resonant attenuation is
dominated by the symmetric (e =0) TLS and estimate

Q) max Ph'coa„,=C — dE tanh $(E, r = l, co),
U K/P 2

I r
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FIG. 8. Scaled resonant attenuation a„„/(C~/U),
estimated as described in the test, vs temperature T for
co/2~=0. 96 GHz and several values of K. For small K increas-
ing K changes a„„only slightly; when K is large a„„.increases
substantially when K is increased.

where the structure factor is calculated using NIBA and
we have used E,„=200 K. This procedure is exact as
K~0 and automatically includes the anomalous piece of
Sec. IIC2. It does not include any relaxational com-
ponent because only symmetric TLS's are considered.

Figure 8 shows a„„/(Cco/U) obtained in this fashion as
a function of temperature for co/2~=0. 96 GHz and
several different values of K. If C is kept fixed,
a„„(T=0.01 K) changes by less than 10%%uo as IC is in-
creased up to 0.15, but then increases rapidly as K is in-
creased further.

The relaxational attenuation is calculated in two parts,
depending on the relative sizes of AA, and Kk~T. The
coherent relaxational attenuation comes from the asym-
metric TLS's which satisfy Ah, & Kkz T. The NIBA
yields a negative S (co ) in this parameter regime and
hence cannot be used to calculate this contribution. We
calculate this piece using (2.6), but restricting the integral
over the distribution function to the coherently tunneling
TLS with AA„) Kkz T. We believe this is reasonable for
the reasons outlined in Sec. IIC2. The contribution of
the incoherently tunneling TLS is calculated using (2.18)
and (2.19), restricting the integral to the incoherent re-
gime Ah„(Kk&T. The expressions for the relaxation
rates in the two regimes match smoothly in the K~O
limit.

The total attenuation is obtained by adding together
these three contributions. Figure 9 shows a/(Cco/v) for
different values of K; as K is increased both the low-
temperature and high-temperature asymptotes increase.
The increase of the high-temperature asymptote is ex-
pected because a/(Ccu/U) tends to n. /[2(1 —K) j at high
temperatures. The shape of the attenuation versus tem-
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FIG. 9. Scaled total attenuation o. /C(co/v) vs temperature T
for diff'erent values of K; in contrast to the results of the theory
in Sec. II A, there is a minimum in the attenuation as a function
of temperature up to K of -0.25.

perature curve remains roughly the same for K between
0.02 and 0.25; above 0.25 the minimum in the attenuation
washes out, and for K=0.35 the total attenuation looks
very similar to the resonant part only (e.g. , K =0), but
with a temperature-independent offset.

A. Velocity

where To is a reference temperature. This temperature
dependence is different than for phonon relaxation; for
phonons, the high-temperature limit of ~/2 occurs for
frequency ~ T, leading to a slope of
C ( 1 —3/2) = —C /2.

When K is larger, o. /co is no longer independent of fre-
quency for pAco)) 1; for K =0.35, o.„„/co drops by about
a factor of 2 between co=1 and 100 K. Therefore, one no
longer expects Av /v to depend linearly on log T.

The experiment reported in Ref. 9 measures attenua-
tion and velocity over a broad range of temperatures, in-
cluding the crossover region where asymptotic forms are
inadequate and numerical fitting is necessary. Therefore,
we have calculated the velocity shift numerically. Once
again we calculate separately the contributions of the
symmetric coherently tunneling TLS, the asymmetric
coherent TLS, and the incoherently tunneling TLS. Since
Fig. 8 demonstrates that the total resonant attenuation is
only weakly K dependent for K & -0.15, we have ap-

The velocity shift is obtained by a Kramers-Kronig
transform of the attenuation. Analytic information is
available about the dependence of the velocity on the
temperature for small K in the limit of high temperatures
(pA'co «1). In this regime b, v/v is proportional to ln(T)
because the response function a(co)/co is independent of
frequency for both regimes pirited))1 and plies«1. The
coefficient of the logarithm is the difference in a/+co for
pfico)) 1 and pkco « 1. Thus, at high enough tempera-
tures, for small K

b, v /U =C I 1 —1/(2 —2K) ]in( T /To ),

B. Total attenuation

When K=0.02 the theory described above yields at-
tenuation that is indistinguishable from that predicted by
standard TLS theory. Substantial differences in the fits
occur only when K becomes large. The velocity fits ap-
pear to imply that K cannot exceed 0.2; we display results
for K =0.15. Figure 12 shows the comparison of the pre-
dictions of the two theories with K =0.15 for the total at-
tenuation as a function of temperature. Accounting for

TABLE II. Table of values of C obtained for different values
of K using the dissipative tunneling theory described in the text,
with uncertainties of a few percent.

0.02
0.03
0.04
0.06
0.08
0.10
0.12
0.14
0.15
0.16
0.18

3.69
3.61
3.60
3.81
4.40
4.55
4.70
4.84
4.88
5.04
5.25

proximated the resonant contribution using the usual
form Eq. (2.5). For larger K the velocity can be ob-
tained by numerically performing a Kramers-Kronig
transform on the attenuation. The two parts of the relax-
ational contribution are calculated with the same approx-
imations used for the attenuation.

First we look at the velocity and find, for different
values of K, the values of C that fit the velocity curves.
We find that satisfactory fits can be obtained for K in the
range 0.02—0.15; the corresponding values of C are
shown in Table II. For K's in this range the quality of
the fit of the velocity is very similar to that of the "old"
theory, shown in Sec. II A. Figure 10 shows the compar-
ison of the two calculations for K =0.15.

There are several reasons why we believe K cannot be
too large. First, the qualitative discrepancy between
theory and experiment for the attenuation becomes worse
as K is increased above 0.25. Second, when K exceeds
0.20, the relaxational velocity curve develops a marked
kink below 1 K as the slope crosses over to its asymptotic
high-temperature value; this kink leads to marked
disagreement between theory and experiment for very
large K. Figure 11 shows the comparison between the
measured velocity shift and theory for K =0.22; there is
qualitative disagreement between the theoretical curve
and the data for T (0.02 K as well a.s for T ~ 0.5 K. In
this curve we have used Eq. (2.5) to calculate the resonant
velocity shift; accounting more accurately for the reso-
nant contribution will not help this situation because the
resonant contribution varies smoothly with temperature
and does not affect the presence of the kink. We now
proceed to examine the attenuation data using the values
of C obtained from the velocity fits in the regime
K (0.15.
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FIG. 10. Relative velocity shift Au/U vs temperature T for
"old" and "new" calculations, for K=0. 15. These fits are used
to extract values of C for the attenuation fits shown below.

incoherent tunneling increases the relaxational attenua-
tion relative to the resonant; qualitatively, the shape of
curve is improved because the attenuation has a
minimum as a function of temperature. The relaxational
attenuation is larger than in standard TLS theory for two
reasons. The first is that at high temperature a/(Cco/U)
tends to ~/2(1 —K) rather than 7r. The second is that be-
cause the relaxation rate has a more complicated temper-
ature dependence than previously thought, it is possible
for both the coherent and incoherent TLS's to contribute
substantially to the relaxational attenuation at intermedi-
ate temperature. The three separate contributions to the
attenuation are shown in Fig. 13 for K =0.15; it is clear
that crossover between incoherent and coherent tunnel-
ing increases the amount of relaxational attenuation.

Although the trend of the changes that appear in the
attenuation when dissipative tunneling is taken into ac-

FIG. 12. Comparison of the total linear attenuation o. as a
function of temperature T for K =0.15 for the two calculations
described in Sec. II, where the parameter C is determined by
fitting the velocity (Fig. 11). Accounting for dissipative tunnel-
ing increases the amount of high-temperature (T~0.02 K) at-
tenuation relative to the amount at low temperatures (T &0.05
K) and improves the agreement between TLS theory and the
measurements. We have assumed that the attenuation zero in
the data is not known and have adjusted it arbitrarily.

count is in the right direction, agreement between theory
and experiment is still far from perfect. We do not ex-
pect our calculation to be perfectly quantitative, but it is
of concern that the calculated relaxational attenuation is
so much smaller than in the experiment. However, there
is one major improvement in the comparison between
theory and experiment: we no longer worry about the
fact that in order to have the attenuation be consistent
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FIG. 11. Relative velocity shift Av/U vs temperature T calcu-
lated using dissipative tunneling theory with K =0.02. There is

a kink in the curve that does not occur in the experimental data
for Pdo»~Si0165Cuo o6, thus, we believe this value of K is too
large to fit these data.

FIG. 13. Normalized attenuation a/(Cco/U) vs temperature
T for K=0. 15 predicted by dissipative tunneling theory. The
three contributions of the resonant attenuation, the relaxational
contribution of a coherently tunneling TLS with Ah, &Kk~T,
and the relaxational contribution of the TLS in the incoherent
regime (fih„&Kk&T), are shown separately. The combination
of incoherent and coherent relaxational attenuation causes the
relaxational attenuation to be larger than in the old calculation.
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with the Kramers-Kronig transform of the velocity we
need a substantial unsaturable attenuation even at the
lowest temperatures, because the theory predicts there
should be one.

There is no hope of fitting the attenuation above 1 K
because the relaxational attenuation is bounded above at
n/2(1 —K) at high temperatures. Therefore, if this
theory applies, some other attenuation mechanism must
be contributing above 0.5 K. '

C. Saturable attenuation

In this paper we have discussed three sources of un-
saturable attenuation in metallic glasses: usual relaxa-
tional attenuation, "anomalous" resonant attenuation,
and attenuation that arises because of the sensitivity of
the structure factor to increases in the temperature when
K is large. The first and third mechanisms both lead to
an unsaturable attenuation that decreases as the tempera-
ture is decreased, whereas the second leads to attenuation
that increases as the temperature is lowered. The com-
bination of these three mechanisms could thus be con-
sistent with the data of Ref. 9, which display an unsatur-
able attenuation that is roughly temperature independent
between 0.01 and 0.1 K. However, we cannot make
quantitative comparison of the theory to the temperature
dependence of the unsaturable attenuation because we
have only calculated the linear response.

In the limit of low temperature Plies «1, the anoma-
lous piece dominates the unsaturable attenuation. Exper-
imentally, the unsaturable attenuation appears to be
about half the total attenuation at the lowest temperature
(though this estimate relies on the Kramers-Kronig trans-
form of the velocity, and therefore assumes the applica-
bility of TLS theory with the standard distribution func-
tion). From Sec. II C2, we estimate that the anomalous
and saturable pieces are equal at K -0.15.

IV. DISCUSSION

In this paper we have shown that strong coupling of
the TLS to conduction electrons leads to qualitative
changes in their linear response that aFect strongly the
acoustic properties of metallic glasses. The measured
low-temperature acoustic properties of
Pdp 775Sip &65Cup p6 are consistent with hyPothesis that
TLS's coupled to conduction electrons are present.

The main qualitative improvement in the agreement of
theory and experiment is that we now understand why
the unsaturable attenuation in metallic glass is much
smaller than previously expected; it is because metallic
glasses display substantial unsaturable attenuation at all
temperatures. We have shown that symmetric TLS's
(which previously were thought to contribute only to
saturable attenuation) contribute to the unsaturable at-
tenuation. Quantitatively, we have demonstrated that, at
high temperatures, accounting for dissipative tunneling
processes yields a substantially diff'erent relaxation rate
for a TLS; incorporating this feature improves the agree-
ment between theory and experiment.

The agreement between theory and experiment is still
not perfect. Further work is needed in order to decide

whether the discrepancies arise because of the approxi-
mations used in the calculations presented here (though
for the reasons outlined in the previous sections we do
not expect this), whether the TLS's are not described by
the standard distribution function Eq. (2.3), or whether
there is an additional (non-TLS) attenuation mechanism
contributing above 0.1 K. The saturation behavior at
low temperature leads us to believe that K-0.2 in this
material. This value is consistent with that obtained for a
single TLS with a very small A„measured in a polycrys-
talline bismuth film. " However, we note that there is no
reason to expect K to be the same for all TLS's in a given
sample, let alone in diFerent materials.

The main prediction of this paper is that metallic
glasses should display substantial unsaturable attenuation
at all temperatures. This prediction can be tested directly
by measuring the absolute attenuation. This is generally
difficult to measure at GHz frequencies because of sub-
stantial corrections to plane-wave propagation in small
samples. The simplest method conceptually to do this is
to measure the attenuation in a superconducting metallic
glass both with and without a magnetic field in the re-
gime Plica « 1. The unsaturable attenuation should
occur in the presence of a field greater than 0,2 but not
in the superconducting state. It is also possible to ex-
tract the absolute attenuation in normal metals by com-
paring samples of different lengths.

The presence of a distribution of TLS's in glasses
makes drawing firm conclusions difficult, first because
there is no fundamental basis for the distribution func-
tion, and second because the integration over the distri-
bution of e and A„causes diFerences in the predictions of
theory presented here and the one presented in Ref. 9 to
be quantitative rather than qualitative. Therefore, direct
measurements of relaxation rates" provide much more
compelling evidence that the dissipative tunneling pro-
cesses discussed in this paper are experimentally relevant.

We are left with many questions. The most obvious is
whether the discrepancy between theory and experiment
for T )0. 1 K arises from the failure of the TLS theory as
presented in this paper, from the nature of the approxi-
mations used to calculate the acoustic properties, or from
the presence some other relaxation process. An obvious
way to check the third possibility is to measure the at-
tenuation and velocity in other metallic glasses. A close-
ly related question is whether the TLS distribution func-
tion has the form Eq. (2.3), or if some sort of generaliza-
tion (such as that used in Ref. 9) is needed for metallic
glasses. An answer to this question would help us under-
stand whether there is fundamental significance to the
form of the TLS distribution function.
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APPENDIX

In this appendix we show that the existence of non-
saturable resonant attenuation does not depend on the as-
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sumption of a Lorentzian line shape; the logarithmic
dependence of the averaged structure factor S(ca) on the
upper cuto6'0 „occurs for a large class of structure fac-
tors which have the property that the width of the reso-
nance line is proportional to the resonant frequency.

If the linewidth is proportional to the resonant fre-
quency Q, then the structure factor S(ca) can be written

S(ca)= F (A 1)

We require that f o™dca$(ra) be constant (independent of
0); this condition implies that the exponent 5 is unity.

Thus, on general grounds one can write
S(ca)=(1/ca)uF(u), where u =ca/6 and f o"du F(u)
=const. The Lorentzian line shape of Eq. (2.20) is de-
scribed by this form, with

F(u)=re[(u —1) +(rg) ]

It is straightforward to show that the 0 integral of the
maxstructure factor f o
'"dOS(ca, Q) can be written

f,",&n (du/u)F(u). This integral diverges logarithmic-
mdx
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