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Kinetics of faceting of crystals in growth, etching, and equilibrium
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The faceting of crystals in equilibrium with the gas phase and also during crystal growth and etching

conditions is studied using the Monte Carlo method. The dynamics of the transformation of unstable

crystallographic orientations into hill and valley structures and the spatial patterns that develop are ex-

amined as functions of surface temperature, crystallographic orientation, and strength of interatomic po-

tential for two transport processes: adsorption-desorption and surface diffusion. The results are com-

pared with the continuum theory for facet formation. Thermodynamically unstable orientations break

into hill and valley structures, and faceting exhibits three time regimes: disordering, facet nucleatiori,

and coarsening of small facets to large facets. Faceting is accelerated as temperature increases, but

thermal roughening can occur at high temperatures. Surface diffusion is the dominant mechanism at

short times and small facets but adsorption-desorption becomes important at long times and large facets.
Growth and etching promote faceting for conditions close to equilibrium but induce kinetic roughening

for conditions far from equilibrium. Simultaneous irreversible growth and etching conditions with fast

surface diffusion result in enhanced faceting.

I. INTRODUCTION (G) w /w, =0

Faceting is the spontaneous transformation of a planar
single-crystal surface into hill and valley structures' as
illustrated in Fig. 1(a). It is generally believed that facet-
ing is driven by minimization of surface free energy, ' Ao'f o

ming A, y, ,
(01)

where y; is the surface tension of the ith crystallographic
orientation and 3, is its surface area. For faceting, the
surface tension of some of the new crystallographic orien-
tations must be less than that of the initial orientation to
compensate for the increased surface area.

Faceting can be classified into thermal faceting, where
the surface is altered at elevated temperatures in vacuum
or an inert atmosphere, and reaction faceting, where the
surface serves as a catalyst of a gaseous mixture (catalytic
faceting) or reacts with the surrounding atmosphere to
form a volatile compound (reactive etching). Thermal
faceting generally proceeds much slower than catalytic
faceting and is often observed only at higher tempera-
tures. On the other hand, catalytic faceting frequently
occurs with simultaneous removal of material (etching),
such as in NH3 oxidation on Pt surfaces where volatile
Pt02 is removed. '

Convicting viewpoints exist in the literature as to
whether surface energetics alone, Eq. (1), control the
faceting process or whether growth or etching of material
is the driving force for faceting. ' Etching experiments
have led to the conclusion that faceting might be caused
by the variation of etching rate with crystallographic
orientation. ' The fact that catalytic faceting occurs fas-
ter and at lower temperatures than thermal faceting
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FIG. 1. Panel (a) is a schematic illustration of the faceting
process. Panel (b) shows the conditions simulated. Panels
(c)—(e) show y plots, pedals P, and equilibrium shapes ES for a
square lattice in two dimensions for attractive first-nearest
neighbor, attractive first- and second-nearest neighbors, and at-
tractive first- and repulsive second-nearest neighbors.
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strongly suggests that irreversible conditions promote
faceting' but does not answer the question whether facet-
ing is driven by thermodynamic instability and/or ir-
reversible conditions.

The instability of surfaces is a challenging mathemati-
cal problem because of the nonlinear dynamics involved
and the rich variety of spatial patterns which develop on
surfaces, as observed with optical and electron micros-
copics. The causes which create faceting instability and
how facets grow with time are intriguing questions.
Faceting is also a technologically important phenomenon
because it occurs in many heterogeneous systems such as
in catalytic reactors during surface reaction, ' on elec-
trode surfaces during reaction in electrochemical cells,
and on semiconductor surfaces ' during growth or etch-
ing.

In catalytic reactions, faceting can change the proper-
ties of adsorbed species by up to several orders of magni-
tude' because the new planes formed exhibit different
surface structures from the initially fIat surface. This
change of properties with crystallographic orientation in-
duced by faceting can have a profound influence on the
dynamics of adsorbed overlayers and instabilities in
chemical reactors. As two examples, oscillations of reac-
tion rate in the CO oxidation on Pt (110) surfaces occur
which are related to microfaceting;" and in microelec-
tronics fabrication, faceting usually leads to nonplanar
films of degraded quality. Thus a broad spectrum of
technological applications in which faceting is involved
requires a better understanding of this phenomenon in or-
der to control instabilities in chemical reactors and to
grow films of better quality.

Modeling of faceting based on capillarity concepts'
fails to predict correctly the observed dynamics of facet
formation and cannot address how complex patterns de-
velop on surfaces. In addition, the role of nonequilibrium
growth and etching conditions on faceting has not been
examined. Thermal roughening (see Refs. 13 and 3) and
thermal fluctuations are also not included in continuum
macroscopic models, which are structurally incorrect.

The only rigorous approach to study these problems is
based on molecular-level calculations. Considerable pro-
gress has been made on the understanding of the equilib-
rium shape (ES) of crystals, mostly by the pioneering
work of Wortis and co-workers using statistical mechan-
ics and the mean-field approximation.

In this paper, the faceting of thermodynamically unsta-
ble orientations is examined at the molecular level using
the Monte Carlo (MC) method to address the above is-
sues. The organization of this paper is as follows: a brief
review on ES of crystals and on the limitations of macro-
scopic faceting models will be given first. We then de-
scribe the transition probabilities of elementary processes
and the MC method used. Surface structures and tem-
poral behavior of faceting are then determined as func-
tions of surface temperature and crystallographic orienta-
tion for two transport mechanisms: adsorption-
desorption and surface diffusion. Faceting is examined
under equilibrium, growth, and etching conditions,
shown in Fig. 1(b), to elucidate the effect of irreversible
conditions on faceting.

II. EQUILIBRIUM CRYSTAL SHAPE:
INTERATOMIC POTENTIAL AND FACETING

The surface free energy per unit area y&kl of solids de-
pends on the crystallographic orientation (hkl) and fre-
quently exhibits cusps in a polar plot where the derivative
of y with respect to the angle 0 from a vicinal plane is
discontinuous. Cusp points are a general property of any
first-order phase transition and result in flat regions in
the ES of crystals. ' The structure of solid surfaces has
been analyzed using geometrical thermodynamics. The
basic theorem was formulated by Wulff in 1901 and ex-
tended by Herring in 1951.' The ES of a crystal is that
which minimizes the surface free energy at constant
volume and is determined by the inner envelope of planes
which are drawn perpendicular to and at the ends of the

y~~t vectors.
Herring' showed that the stability of crystal surfaces

with respect to faceting can be studied using the Wulff
polar y plot. This analysis leads to the important
theorem that a flat surface will spontaneously facet if,
and only if, its orientation is not one of those present or
degeneratively present on the equilibrium form. An
orientation is called degeneratively present if its Wulff
plane touches but is not tangent to the equilibrium form
(e.g. , if the plane touches a corner or an edge of the ES).
Degenerate surfaces (not included in the initial theorem
by Herring) which are not present on the equilibrium
form will not spontaneously facet.

A surface of a given orientation can decrease its total
free energy by breaking up into other orientations if a
sphere through the origin of the y plot and tangent to the

y plot at the point corresponding to the orientation in

question does not lie entirely inside the y plot. This
theorem applies equally well to inward and outward
cusps. The outer envelope of such spheres is called a
pedal, Pzj, &. Mullins and Sekerka showed in 1962 that
when Ph&& and yh&t do not coincide for an orientation
(hkl), the surface free energy of this orientation can be
reduced upon faceting by an amount yI, &&

—PI, I,I. ' If
y&A. &

=PI,k&, this orientation is stable with respect to facet-
ing, i.e., faceted and nonfaceted surfaces have the same
free energy.

These ideas are illustrated for a square lattice in two
dimensions in Figs. 1(c)—1(e). Figure 1(c) shows the y
plot when attractive first-nearest-neighbor interactions of
strength w, (w& &0) are present. Only the (10) plane is

present [the (100) in three dimensions] on the ES in this
case, all other orientations being degeneratively present
(the pedal coincides with the ) plot). When both attrac-
tive first- and second-nearest-neighbor interactions exist,
the number of cusp points increases and both the (10) and
(11) planes are present on the ES [the (100), (110), and
(111) in three dimensions], as shown in Fig. 1(d), but un-
stable orientations are not present. As a consequence of
the pairwise additive attractive force approximation, all
orientations (hkl) of infinite extent are stable with respect
to faceting. ' When attractive first- and repulsive
second-nearest-neighbor interactions (w2 (0) are present,
then all orientations become unstable but the (10) [the
(100) in three dimensions], as shown in Fig. 1(e).
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The solution to Eq. (1) is not unique. If the edge free
energy is included in the minimization problem, the mac-
roscopic structure should contain only one facet in order
to reduce the excess amount of free energy of the edges.
However, this prediction appears to be in disagreement
with the quite regular distribution of facets observed ex-
perimentally. '

The ES of crystals is usually determined only at 0 K.
To the best of our knowledge, the first exact calculations
of ES at nonzero temperatures in two dimensions were
done by Rottman and Wortis' and Avron et al. ' Subse-
quently, Wortis and co-workers examined three-
dimensional thermal evolution of a simple cubic lattice
within the mean-field approximation with first- and
second-nearest-neighbor interactions. Jayaprakash and
Saam ' studied specific symmetry planes of face-
centered-cubic crystal using the solid-on-solid approxi-
mation where each atom is on top of another one. Phase
diagrams have been developed for first- and first- and
second-nearest-neighbor interactions and the shrinking of
facets with temperature has been examined. ' Con-
siderable effort has also been devoted to the understand-
ing of the factors which determine the sharpness at the
intersection of different surface regimes (phases) and to
their relation to phase transitions.

III. LIMITATIONS OF MACROSCOPIC
MODELS OF FACETING

Geometrical thermodynamics provide information
about the stability of surfaces. The Wulff plot is usually
drawn at 0 K, and it does not address the dynamics of
faceting and patterns which develop on surfaces at
different temperatures. Any unstable orientation will
break into other orientations given suN. cient time. The
time evolution of facets was described by Mullins in
1961 based on his thermal grooving model proposed in
1957.

Three processes were examined by Mullins for mass
transfer: adsorption-desorption, surface diffusion, and
volume diffusion. For each individual process, the facet
size L was determined as a function of time by solving the
corresponding one-dimensional partial (time-dependent)
differential equation. The differential equation formulat-
ed describes the transport of material caused by capillari-
ty forces. For each elementary transport process alone,
the facet size increases with time according to a power
1

23, 24

where the exponent 1/n and the proportionality constant
depend only on the transport mechanism. 1/n is —,

' for
adsorption-desorption, —,

' for volume diffusion, and —' for
surface diffusion.

Experimentally, facets seem to stop growing after some
time (or the rate of facet growth becomes very low) and
the measured exponent 1/n is lower than any of the
values mentioned above (I/n —

—,
' ). Thus it seems that

the macroscopic model does not correctly predict the dy-
namic evolution of faceting. In addition, Mullins s model
is strictly applicable to long-time dynamics and does not

treat the initial stages of facet creation and growth.
Spatial patterns observed experimentally consist of

more than one facet, and patterns are in many cases quite
regular, i.e., facets are almost equal in size. In the contin-
uum faceting model of Mullins, a single facet is modeled
(the dynamics of an already existing facet are analyzed),
and interactions between facets are not considered. Con-
sequently, the regularity of facet spatial distribution often
observed in experiments' and the factors besides time
which determine the density of hills and valleys are not
addressed by either the Mullins model or the y plot.

According to the continuum theory, the size of facets
grown by surface diffusion or adsorption-desorption in-
creases exponentially with temperature. There is no
upper bound of temperature above which no faceting
occurs. Thus thermal roughening' ' and thermal fluctua
tions, which can be of considerable importance in real
materials during crystal growth and catalytic reactions,
are not incorporated in this model. Thermal-roughening
transitions have clearly been demonstrated by recent ex-
periments on He (see references in Ref. 3).

In the analysis carried out by Mullins, small deviations
from low-index planes are assumed and the physical pa-
rameters are taken to be independent of crystallographic
orientation. Improvements have been suggested in which
the parameters can be orientation dependent. The
simultaneous role of surface diffusion and sublimation of
the crystal on the dynamics have also been analyzed
and a theory of faceting based on orientation-dependent
surface mass How caused by electrotransport or thermo-
transport has been proposed. However, the same con-
cepts regarding the limitations mentioned above apply to
all these modified models.

IV. RATES OF ELEMENTARY MICROSCOPIC
PROCESSES AND MONTE CARLO SIMULATIONS

Based on the analysis of y plots shown in Fig. 1, at-
tractive first-nearest-neighbor interactions (energy
w i )0) and repulsive second-nearest-neighbor interac-
tions (energy w2 (0) in a three-dimensional simple cubic
lattice are chosen. In this prototype model all orienta-
tions are thermodynamically unstable [except the (100)
plane and its equivalent planes], and metastable orienta-
tions do not exist. Hence, the dynamics of unstable sur-
faces and the corresponding spatial patterns which devel-
op upon faceting can be studied. This situation is analo-
gous to spinodal decomposition where the initially un-
stable orientation (phase) breaks into new orientations
(phases).

First- and second-nearest-neighbor interactions are
probably a fair representation of the attraction (between
electrons and metal ions) and the repulsion (between cat-
ions) in metals where many-body effects can also be of
considerable importance. The range of interactions in
metals is not very long, as predicted by the embedded
atom method, and thus first- and second-nearest-29

neighbor interactions can be a reasonable approximation.
Furthermore, y&&& computed with long-range potentials
is remarkably similar to that obtained by a lattice-gas
model where only first- and second-nearest-neighbor in-
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Sp
(4)

Here, k is the Boltzmann constant, T is the absolute tem-
perature, sp is the sticking coefficient, which is assumed
to be independent of surface sites, and m is the mass of an
atom.

Desorption of atoms depends on the local environment
of each atom. The desorption probability per unit time of
an atom with n, first- and n 2 second-nearest neighbors is

p„(n „n2 ) = vo

exp�(

Ed /k T)—
= vo exp[ (n, w—, + n2w2 ) /kT],

where vp is the preexponential factor and
Ed=(n, w, +n2w2) is the activation energy for desorp-
tion, which is site dependent.

For an ideal gas in contact with a solid the difference in
chemical potential Ap between the two phases is

Ap = k T ln(P /P, ), (6)

where P, is the equilibrium crystal vapor pressure. From
Eqs. (3) and (6), p, becomes

p, =k, P, exp(bp/kT)=p, , exp(Ap/kT),

where p, , —=k, P, .
Equilibrium prevails when the adsorption rate equals

the average desorption rate. The two rates are equal at
"kink" sites with exactly half the neighbors present.
Then pd(3, 6) =p, „i.e. ,

p, , =voexp[ —(3wi+6w2)/kT] .

Combining Eqs. (5) and (8), the desorption probability per
unit time can be written as

pd(n„n, ) =p, ,exp[[(3—n, )w, +(6—n, )w, ]/kT] .

(9)

Migration is usually modeled either by the Metropolis
walk or Kawasaki dynamics. We have used both al-
gorithms. However, these algorithms do not actually
give dynamic information because they only consider the

teractions are included. Thus, by using this prototype
model system, we attempt here to understand the qualita-
tive behavior of the faceting process rather than explain
in detail the change in structure of any particular materi-
al.

In this section, the transition probabilities p„pd, and

p for adsorption, desorption, and migration, respective-
ly, are developed and the MC simulations are then de-
scribed.

Adsorption from the gas phase is assumed to occur
randomly on surface sites (mass transfer resistance in the
gas phase is neglected). Based on kinetic theory, the ad-
sorption probability p, per unit time is '

p =k,p,
where P is the gas pressure and k, is the adsorption rate
constant given by

energy difference between the initial and final states and
not an activation barrier. Thus we also use the method of
Gilmer and Bennema. Atoms are allowed to jump to
nearest-neighbor positions only. The transition probabili-
ty for migration (surface diffusion) p is calculated based
on removal from one site and creation on an adjacent
site ' according to

p (n i, n2) =pd(n i, n, )(x, /ao) (10)

where x, /ap is the average distance traveled by an atom
on the surface before it desorbs,

x, /a o
= exp[ (E E—

d )—/2k T] .

Here, ap is the lattice constant and E and Ed are mac-
roscopic (phenomenological) activation energies for mi-
gration and desorption. Usually E & Ed, and thus Eq.
(10) indicates that the local energy barrier for diffusion is
lower than that of desorption, Eq. (9), by b,E =Ed E- —

We found that the qualitative behavior regarding pat-
tern formation and dynamics is independent of the
diffusion transition probability. Thus results using only
the transition probability given by Eq. (10) will be
presented in the following sections. Since details of the
activation barrier for migration are not known, in what
follows the mean diffusion distance x, /ap is treated as a
free parameter, as has been done previously.

A major problem in simulations at low temperatures is
the large difference between the maximum and minimum
probabilities. As an example, at kT/m, =0. 1, the ratio
of possible highest to lowest probabilities for desorption
is 7X10 . Use of a conventional sampling algorithm re-
sults in large rejection of test configurations (very slow
sampling of phase space). As an example we found, using
the Metropolis walk, that the fraction of successful at-
tempts is p,„„„,=0.05 at k T/m, =0.25 and

psuccess 10 at kT/w
&
=0.167 for 10 MC steps.

To overcome this difficulty, we have used an extension
of the n-fold method proposed by Bortz et al. for first-
and second-nearest-neighbor interactions in the canonical
and the grand canonical ensembles. According to this
method each trial is successful, and the time is updated
by a continuous amount determined from the average
lifetime of the surface configuration. In this algorithm
we account for the a priori probability of different events
before rather than after choosing a site on the surface.
Efficient simulations are achieved by classifying the
atoms in classes of the same transition probability. For
randomly adsorbed atoms the probability for adsorption
p, at each site is the same. However, for desorption the
atoms experience different local environment based on
their number of first- and second-nearest neighbors. Let
1V (n i, n ~ ) be the number of atoms having n, first- and n ~

second-nearest neighbors; these atoms belong to the same
class. In this way we define 45 possible classes for
desorption and similarly for migration. The probability
per unit time of choosing an event from a particular
desorption class is [N (n, , n 2 ) ] [pd (n, , nz ) ]. The total
probability per unit time is then
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X[(x,/ao) +1]) . (12)

p'"=p, , g ( exp(hp/k, T)
surface

+ expI[(3 —n&)w& +(6—n2)w2]/kT)

( hp =0). Individual runs consisted typically of
10 —(3 X 10 ) successful events which require 20 min to
100 h CPU time, respectively, on the Cray X-MP/464
supercomputer. Time-dependent curves shown in all fol-
lowing figures are the averages over 20 runs.

After selecting a class, a site belonging to this class is
randomly chosen and the event executed. The time is
then incremented by

b, t = —ln(g)/p"', (13)

where g is a random number (0(g(1). The dimension-
less time t* is defined as

= tp (14)

To speed up the algorithm, a list of atoms in each class
and their coordinations is saved in the memory so that
each time a successful event occurs at a site, the local en-
vironment of that site changes; the number of atoms in
the affected lists and their coordinations are also
changed, as well as the probabilities for choosing a class.

We have tested the above algorithm in growth on the
(100) surface when only first-nearest-neighbor interac-
tions exist. The calculated growth rates are in good
agreement with the results of Gilmer and Bennema
where a conventional sampling method was used.

Surfaces with orientations at many points on the stere-
ographic triangle have been simulated. However, since
surfaces along the [010] zone exhibit instability in only
one direction (x direction), straight facets develop at low
temperatures along the y direction [see inset of Fig. 2(a)].
Thus analysis of data is simplified in one dimension and
direct comparison with the one-dimensional mode1 of
Mullins ' can be achieved. Hence, we present here
only results from (hkO) orientations. Simulations have
been performed in three dimensions using the solid-on-
solid approximation. ' However, three-dimensional
calculations without the solid-on-solid approximation
were also carried out and will briefly be discussed in Sec.
VA.

Simulations were usually performed on 20X120 rec-
tangular lattices. Larger lattices up to 20 X 640 sites have
also been used to examine the inAuence of the simulation
box on the statistics. Periodic boundary conditions and
step periodic boundary conditions were applied along
the unstable x direction (long dimension) and stable y
direction (short dimension) of the lattice, respectively. In
this way the average crystallographic orientation of the
simulated surface is preserved. The use of rectangular
surfaces having a longer size in the x direction provided
better statistics for the distribution of facet size. In all
simulations performed the size of the simulation array
was quite larger than the average facet size observed.

Simulations were performed in the grand canonical en-
semble (system open to mass transfer), where adsorption
and desorption of atoms (with and without surface
ditfusion) were modeled under equilibrium (Ay=0) and
irreversible (bp&0) conditions and in the canonical en-
semble (system closed to mass transfer) where surface
diffusion was the only transport mechanism studied

F&CETING QF CRYSTALS IN EQUILIBRIUM
WITH THE GAS PHASE

In this section the results of the MC calculations are
presented for crystals in equilibrium with the gas phase
(4p =0). Results obtained for adsorption-desorption
alone will be presented first and the role of surface
diffusion on faceting will be discussed next. The inhuence
of surface temperature, crystallographic orientation, and
interatomic potential on surface morphology is then ex-
amined.

A. Faceting by adsorption-desorption alone

Figure 2(a) shows the initial (210) surface at t =0 and
snapshots of the surface heated at kT/m, =0.25 after
t *= 10 and t *=8.5 X 10 . Note that surface snapshots
in all figures are arbitrarily translated from each other.
The initial (210) orientation, which is not present on the
ES of the crystal, breaks into a hill and valley structure.
Microfacets of orientations equivalent to (100) (segments
of the equilibrium orientation) develop. At low tempera-
tures, the facets are straight along the y direction [see the
inset of Fig. 2(a)] because they are (100) surfaces which
belong to the ES. Upon breaking of an unstable orienta-

100 (')

80
z/a

60

40

xlo'

(c)
10-

L/a .

20
. 25

0.2

hp.-0
0 I I I I ~ ~ ~ I ~ ~ ~ I ~ I I I I ~ I I ~ ~ ~ I ~ ~ ~

0 20 40 60 80 100 120 140
x/a

12
. @10) MC data

10
L/a,

1.6

surface
I

disordering i

I

I

I IIII ~ I I ~ I IIII '

10'

nucleation ~

I

I I I I I IIII I I I I I IIII

10'
t*

104

0.65

- E,tw,

-0.55

-0.45

2
0

o
1Oo 1O' t' 1O

I I I I

lx10 , 2x10' 3xlo' 10 102 10
t'

FIG. 2. Faceting of the (210) surface. Panel (a) shows two-
dimensional snapshots of the three-dimensional surface for
times indicated. The facets are straight along the y direction
(perpendicular to the page) and thus only two-dimensional rep-
resentations are shown. Panel (b) shows MC data for the aver-
age facet size L/ao vs time along with power and semiloga-
rithmic law fits. The inset is a semilogarithmic plot of L/ao vs
t . Panel (c) shows a logarithmic plot of L/ao vs t. Panel (d)
shows the surface energy and roughness as functions of time.
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tion a distribution of microfacets is formed (not just a sin-
gle facet) in agreement with experimental observations. '

The average size of facets, L/ao (ao is the lattice con-
stant) along the x axis can be calculated from a snapshot,
as displayed in Fig. 2(a). At each position x, the surface
is scanned along the y direction and the average height
z(x) per y site is calculated. If the difference of z(x)
from the immediately lower integer number is less than
0.5, then the terrace at the x position is considered to
have some adsorbed atoms and the elevation at x is taken
equal to the lower integer number. If, on the other hand,
the difference is larger than 0.5, then the terrace at x is
considered to have some vacancies and the elevation at x
is taken as the lower integer number plus 1. Once this
procedure is completed for all x, the difference in eleva-
tion between successive rows of atoms is calculated. If
two rows of atoms at x and x +ao have the same eleva-
tion (they belong to the same terrace), the facet size is in-
creased by ao and the procedure is repeated. Otherwise,
a new terrace starts at x +ao, whose size is determined.
Note that the height of facets (z direction) is not an in-
dependent dimension because the crystallographic orien-
tation of the initial surface is preserved upon faceting.

If the above procedure is repeated during the simula-
tion, the average facet size can be determined as a func-
tion of time, as shown in Fig. 2(b) for a typical set of pa-
rameters. Figure 2(c), which shows a plot of log, o(L/ao)
vs log, o(t*), reveals that faceting is not described by a
single curve with a constant growth exponent 1/n. The
value of 1/n determined by fit of a power law to the data
of the entire run is 0.18, as compared to —,

' predicted by
the macroscopic model for adsorption-desorption.
These simulations indicate that a power law does not
properly describe the dynamics of faceting and by forcing
it there is not a universal value of 1/n as predicted by the
macroscopic faceting model. The exponent 1/n depends
on surface temperature, crystallographic orientation, in-
teratomic potential, degree of irreversibility, and the
operating mechanism, i.e., adsorption-desorption or sur-
face diffusion (see below). A logarithmic dependence of
facet size on time, i.e., L -log, o(t) does not fit the data
very well either, as shown in the inset of Fig. 2(b). An in-
crease of the simulation size did not result in an increase
of the faceting exponent. '

We also analyze the temporal evolution of surfaces
upon faceting by calculating the surface energy E, and
the roughness R„as shown in Fig. 2(d). Z, measures the
energy loss per projected (100) site caused by formation
of the surface, as compared to bulk cubic crystal, i.e., the
energy of the broken first- and second-nearest neighbors.
R, is defined as the number of broken first-nearest-
neighbor bonds per projected (100) site. As examples,
R, = 1.0 for the (100) surface and 1.5 for the (210) surface
RtOK.

Three time regimes can be distinguished in the faceting
of an initially perfect surface. In the first regime, disor-
dering occurs by the movement of atoms which try to
reduce the number of repulsive second-nearest neighbors.
In this regime, the surface energy and roughness increase
above the initial value of the perfect surface, as shown in
Fig. 2(d).

In the second regime, faceting starts and the average
facet size increases quite rapidly with time whereas the
surface energy and roughness drop rapidly. This regime
is characterized by nucleation of microfacets. Nucleation
starts at different times and positions, so there is lack of
spatial organization, which results in quite regular but
not periodic patterns. The lack of perfect periodicity of
facets is associated with a configurational entropy which
reduces the free energy of the system. The development
of only one facet is consistent with thermodynamics at 0
K where the entropic contribution to the free energy is
zero, but at high temperatures entropy plays a vital role in
pattern formation.

In the third regime the facets continue growing but
with a slower rate which seems to decrease as time
proceeds. The surface energy and roughness decrease
very slowly towards equilibrium. Once the surface has
broken into hill and valley structures, coarsening of mi-
crofacets into macrofacets occurs, where larger facets
grow at the expense of small ones. The thermodynamic
driving force for further atom transport is only the very
small energy required to form the edges and corners
where the facets join. As faceting proceeds, fewer
corners and edges exist and the driving force diminishes.
As the distance between facets increases, transfer of ma-
terial over longer distances is necessary so growth be-
comes slower. Thermal fiuctuations perturb the spatial
pattern and drive further faceting.

The formation of facets can be thought of as caused by
attractive interactions between steps. As time proceeds
the distance between steps increases and the attractive
force between steps is reduced. Consequently, the driving
force for faceting is lowered, and the rate of faceting de-
creases.

The behavior found here is analogous to the initial dis-
ordering followed by smoothing of Pt-Rh gauzes for
HCN formation, as observed with scanning tunneling mi-
croscopy. The temporal behavior in faceting is in
agreement with surface area (measured by Hz adsorption)
versus time data during faceting of Pt gauzes in oxidation
experiments. These data showed that the area increases
with time with an exponent 1/n which is smaller than
any of the values predicted by the macroscopic model.
Furthermore, the value of 1/n depended on the layer of
the gauze (the deeper the layer was the lower I/n, i.e. ,
faceting proceeded slower).

We have investigated the validity of the solid-on-solid
approximation by also performing three-dimensional cal-
culations where overhangs and vacancies are now al-
lowed in the model. The qualitative behavior of the
faceting transformation remains the same with that of the
solid-on-solid model concerning the dynamics and regu-
larity of surface patterns. However, some differences
were observed in the exact values of the number of de-
fects on surfaces, surface energy, and roughness. When
overhangs and vacancies are allowed, the roughness and
surface energy are slightly higher than the values predict-
ed by the solid-on-solid model, and bulk vacancies have
been observed in some cases. As an example, we found
that the values of R, and E, in the solid-on-solid model
are —5% and —10%%uo lower than the three-dimensional
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(without the solid-on-solid approximation) values at
t =600 with kT/w& =0.25 and M2/Lo& = 0.2.

B. Faceting by surface diffusion

In the preceding section, adsorption-desorption (grand
canonical ensemble) was assumed to be the only means of
material transport for growth of facets. In this section,
surface diffusion of crystal atoms is modeled in the
canonical ensemble (alone) and in the grand canonical en-
semble (with adsorption-desorption). The transition
probability for migration is described by Eq. (10).

Figure 3 shows the dynamics of faceting for surface
diffusion alone, adsorption-desorption alone, and also
with simultaneous adsorption-desorption and surface
diffusion. This allows the importance of each transport
mechanism to be elucidated. The qualitative behavior
upon faceting is similar for the three cases with respect to
dynamics and pattern formation.

However, some differences on the dynamics of faceting
for the two mechanisms are noticeable. The facets
formed after the same time and the exponent 1/n ob-
tained by fit of a power law to the data are smaller for
surface diffusion alone (x, /ao = 1 ) as compared to
adsorption-desorption alone. When desorption of atoms
from a site occurs, redeposition can take place through
the gas phase at any site on the crystal. On the other
hand, surface diffusion is restricted to adjacent site jumps,
i.e., material is transferred at shorter distances and thus
faceting proceeds slower when surface diffusion operates
if x, /ao =1.

However, if the activation energy for surface diffusion
is smaller than that of desorption, as is believed to be gen-
erally true, then x, /ao can be much larger than unity.
It turns out that the time for faceting by surface diffusion
alone is obtained by that shown in Fig. 3 divided by
(x, /ao), i.e., faceting caused by surface diffusion will
occur much faster than by adsorption-desorption mecha-
nism. When x, /ao &) 1, surface diffusion is the dominant
transport mechanism for faceting at short times.

C. ER'ect of temperature

Surface profiles obtained at different temperatures after
the same dimensionless time t*=10 are shown in Fig.
4(a). Faceting is observed at elevated temperatures, but,
as the temperature increases the number of defects in-
creases, as shown in the inset of Fig. 4(a), and at
sufficiently high temperatures the surface becomes
thermally rough. Thus, at high temperatures thermal
roughening prevails, and faceting is not observed.
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The above observations are confirmed from simulations
for the simultaneous operation of adsorption-desorption
and surface diffusion shown in Fig. 3. As the surface
diffusion increases faceting occurs faster at short times
(small facets) but adsorption-desorption becomes dom-
inant at long times (large facets) where material must be
moved over long distances. Since the qualitative behav-
ior is similar for both transport mechanisms, results in
Secs. VC —VE will be presented only for adsorption-
desorption.
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FIG. 3. Facet size vs time for adsorption-desorption alone,
migration alone, and simultaneous adsorption-
desorption —migration. Diffusion dominates at short times
(small facets) and adsorption-desorption at long times (large
facets).

FIG. 4. Effect of surface temperature on faceting. Panel (a)
shows snapshots at t*=1000 at temperatures indicated and
panel (b) shows the facet size vs time for different temperatures.
At low temperatures nucleation of microfacets occurs but coar-
sening does not.
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The roughness R, of the (010) plane versus surface
temperature is shown in the inset of Fig. 4(a) for
w2/wi = —0.2. The (010) plane is thermodynamically
stable for this model and thermal roughening takes place
at higher temperatures than those of other planes. As the
strength of second-nearest-neighbor interactions de-
creases, the (010) plane becomes more resistant in
roughening. For m2&m& = —0. 1, roughening occurs at
N 1 /k T—0.5, which is slightly lower than that of face-
centered-cubic crystals found by Jayaprak ash and
Saam. '

As the surface temperature decreases, diffusion or
adsorption-desorption (activated processes) become
slower and facets grow slower. At low temperatures
faceting is controlled by mass transfer limitations. When
the temperature is sufficiently low, faceting is not ob-
served in our simulations, as shown by the topmost
profile in Fig. 4(a). Note that this profile corresponds to
much longer real time than the profiles where faceting is
observed. Assuming vo = 10' s ', the bottom and top
profiles correspond to 2.2X10 and 0.6 s, respectively.
That is, faceting proceeds extremely slowly at low tem-
peratures to be observed in simulations or even in real ex-
periments.

Figure 4(b) shows the facet size versus time for
adsorption-desorption at different temperatures. Change
of temperature results in variation of the growth ex-
ponent 1/n. If the power law is forced to fit the data we
find 1/n =0. 18 at kT/w, =0.25, 1 jn =0. 15 at
kTIw i =0.20, and 1 In =0.13 at kT/w, =0. 133, that is,
as the temperature decreases the growth exponent drops.
At high temperatures, where transport processes are fast,
faceting occurs rapidly and the exponent is large. The
drop of 1/n when temperature decreases might be due to
the fact that at low T the fit is over longer real time (the
fits do not correspond to the same t).

The absence of large thermal Auctuations at low tem-
peratures prohibit coarsening of microfacets into
macrofacets, as shown in Fig. 4(b). This is why thermal
faceting is observed at relatively high temperatures and
after long heating times as compared to catalytic facet-
ing. Observation on vicinal Si (111) surfaces showed mi-
crofacets of certain size which did not grow with time.
Analogous behavior is indicated in Fig. 4(b), where at
sufficiently low temperature nucleation of microfacets
occurs but the small thermal fluctuations do not lead to
further faceting.

D. Effect of orientation on faceting
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of faceting rate on crystallographic orientation.
Figure 5(a) shows the facet size versus time for several

crystallographic orientations and Fig. 5(b) shows 1/n
versus misorientation from the (100) plane. Faceting
proceeds fast for the (110) orientation and very slowly for
orientations close to the (100) surface. For orientations
very close to the (100) surface such as the (40, 1,0), no
faceting is observed, although thermodynamically these
orientations are unstable. We found that faceting can
still be observed with adsorption-desorption but not with
surface diffusion alone for small misorientations from the
(100) plane. Furthermore, the smaller the misorientation
is, the higher the surface temperature below which no
faceting is observed.

The above observations imply that mass transfer limi-
tations over long distances become important for small
misorientations from low-index planes. For small
misorientations from the (100) plane, the steps are widely
separated and transport from one ledge to its neighbors
through the terrace can therefore require long times. As
the difference y&j, l

—P~j„decrease~, the energy ga~~ed by
faceting decreases and the faceting rate also drops. Orien-
tations for which the difference yj, k~ Pzkl is s—mall ("less
unstable" ) would stay smooth for a very long time,
whereas orientations for which the difference y&kI

—PI, k&

is large ("more unstable" ) will facet fast. Note that the
values of growth exponent 1/n predicted by the macro-
scopic faceting model are valid for very small misorienta-
tions from low-index planes, where the MC calculations
indicate that the growth exponents are much smaller
than —,

' or —,', i.e., the agreement between the two models
becomes worse for small misorientations.

Pt single-sphere surfaces examined with scanning elec-
tron microscopy after reaction showed that, at orienta-
tions close to the (100) poles, the Pt surfaces remain
smooth and faceting is not observed. ' Provided sufficient
time, unstable orientations will facet into hill and valley
structures, reducing the system free energy. Those orien-
tations which have a larger faceting rate will vanish first,
whereas those with a lower faceting rate will facet later.
If the difference in times scales for faceting is sufficiently
large, some areas can be faceted, whereas other areas can
appear to be smooth. Here, we examine the dependence
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FIG. 5. Panel (a) shows the facet size vs time for different
orientations and panel (b) shows 1/n vs misorientation from the
(100) surface. Small misorientations facet very slowly. Panel (c)
shows the facet size vs time for values of —u2/w, indicated and
panel (d) shows 1 ln vs —w2 /w
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~ Repulsive second-nearest-

neighbor interactions are essential for faceting.
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E. Role of second-nearest-neighbor interactions

If only first-nearest-neighbor interactions are con-
sidered (ttt, )0, wz =0), no faceting occurs for any orien-
tation, as indicated in the y plot shown in Fig. 1(c). The
existence of repulsive second-nearest-neighbor interac-
tions (w2 (0) is important for faceting to occur if only
first- and second-nearest neighbors are assumed. Then all
orientations are unstable except the (100) and no metasta-
bility exists.

The effect of strength of second-nearest neighbors on
the faceting kinetics is illustrated in Figs. 5(c) and 5(d).
The temporal evolution of faceting depends on the ratio
—wz /w &, especially for very weak second-nearest-
neighbor interactions. Faceting proceeds fast for strong
repulsive interactions but very slowly at small values of
—w2/w, . The dependence of stability and faceting rate
on —w2/~, indicates that the interaction potential func-
tion is an important factor in predicting the dynamics of
faceting. Even if pairwise additive interactions are as-
sumed of short range (up to second-nearest neighbors),
different materials would have different interaction ener-
gies and therefore faceting would also be material depen-
dent.

VI. FACETING WITH GROWTH

If bp) 0 in Eq. (7), the adsorption Aux is larger than
the desorption Aux, and the crystal grows from gas-phase
deposition. Growth of crystals has been studied using
mostly the solid-on-solid approximation on simple cubic
crystals with first-nearest-neighbor interactions. ' Re-
cent calculations showed that if the supersaturation is
large, crystals become rough (kinetic roughening). Ki-
netic roughening is frequently observed in growth of or-
ganic crystals, but it has received less attention than
thermal roughening. The effect of growth on crystal
shape and morphological instabilities such as dendritic
growth have recently been examined by MC simula-
tions. However, the inhuence of growth on faceting
transformation has not been studied and is considered
next.

Surface structures under growth conditions for several
values of b,p in the absence of surface diffusion are shown
in Fig. 6(a). At low supersaturation larger facets are
formed on the surface compared to equilibrium condi-
tions. During growth a large perturbation takes place at
the interface. Thermal desorption removes atoms from
all unfavorable sites, resulting in energetically favorable
structures, i.e., faceted surfaces. Thus growth promotes
faceting close to equilibrium.

As the supersaturation rises, defects are formed on the
surface, as shown in Fig. 7(a). In growth from the gas
phase, atoms stick at random positions on the crystal and
the roughness increases. At high supersaturations (high
growth rates) desorption is very slow in rearranging
atoms compared to deposition. Above a critical super-
saturation surfaces become rough rather than faceted and
this phenomenon is called growth-induced roughening or
kinetic roughening.

The behavior shown in Fig. 6(a) is in agreement with
the results of Nozieres and Gallet, who used a renor-

malization approach to examine the roughening transi-
tion. For a specified temperature, there is an applied
force on the crystal, which here corresponds to a driving
force Ap&0, above which the facet disappears. The
roughening transition is blurred under an applied force
and faceting appears at a lower temperature than the
thermal roughening temperature T~ of the facet. Above
this temperature the facet appears rough, as indicated in
Fig. 6(a).

Figure 8(a) shows the effect of faceting on the growth
rate. Close to equilibrium conditions where faceting
occurs, the growth rate decreases with time as facets be-
come larger. This is due to an increase of step separation,
i.e., the number of favorable sites of high coordination
number is reduced as time evolves. This behavior be-
comes less pronounced as the supersaturation rises be-
cause the surface becomes kinetically rough and the in-
corporation probability increases.

A. Eft'ect of temperature

We have examined the growth rate as a function of su-
persaturation and of surface temperature ' and have
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FIG. 6. Panel (a) shows the effect of supersaturation on sur-
face morphology in the absence of migration. Panel (b) shows
the effect of migration on surface structure under conditions
where kinetic roughening would be expected.
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determined the critical supersaturation versus surface
temperature. Our simulations indicate that at higher
temperatures the crystal becomes rough at lower super-
saturation, i.e., the critical supersaturation decreases with
temperature.

We have also examined surface structures at
suSciently low temperatures where mass transport limi-
tations become important. Under equilibrium conditions
no faceting was observed at low temperatures (e.g. , at
kTiwt =0.067). However, we have found that under
growth conditions (Ap) 0) facets are observed if the su-
persaturation is not sufFiciently large. Therefore, under
growth conditions energetically unstable interfaces can
facet at much lower temperatures or in shorter time than
under equilibrium conditions because large perturbations
(fluctuations) are introduced by adsorption of atoms.

B. E6'ect of orientation

We have determined the growth rate versus super-
saturation as the orientation of surface changes from the

(100) pole to the (110) pole of the crystallographic trian-
gle (along the I010] zone). ' The simulations indicate
that the critical supersaturation increases from the (110)
surface to the (100) surface. Orientations close to the
(110) surface become kinetically rough at lower super-
saturation whereas orientations close to the (100) stable
pole remain smooth up to high supersaturations.

The growth rate of the stable (100) surface is lower
than for any of the step surfaces, and a higher critical su-
persaturation is required for kinetic roughening. Hence,
under the same growth conditions, the (100) surface will
be more resistant in kinetic roughening than all other
orientations. Consequently, the simulations indicate that
thermodynamically more stable surfaces are also more
resistant under nonequilibrium conditions to kinetic
roughening and could be smooth planes at low tempera-
tures whereas other surfaces would become either faceted
or kinetically rough.

C. EfFect of surface diffusion on kinetic
roughening and faceting
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In catalytic etching, it is believed that surface diffusion
can be promoted by chemical reaction. Therefore in
many cases surface diffusion can be considered as a free
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FIG. 8. Panels (a) and (b) show the number of deposited and
etched layers as functions of time. Faceting reduces the growth
and etching rate of surfaces.
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parameter affected by the conditions of the experiment.
We found that, as surface diffusion increases, atoms have
sufficient time to move on the surface to favorable sites
where the chance for removal back to gas phase is re-
duced. The number of single atoms on terraces and the
surface roughness are reduced as shown in Fig. 7(b), and
thus the desorption mechanism slows down, resulting in
an enhanced growth rate.

The role of surface diffusion on surface morphology is
shown in Fig. 6(b). We have chosen conditions
(hplkT =1) where no faceting occurs in the absence of
surface diffusion, as shown in Fig. 6(a), and we have al-
lowed atoms to migrate. For sufficiently large values of
surface diffusion the surface becomes faceted. A transi-
tion from kinetically rough interfaces to faceted inter-
faces is found as surface diffusion increases. Surface
diffusion establishes local equilibrium at the interface,
and atoms have sufficient time to reach favorable sites be-
fore adsorption or desorption take place. Consequently,
faceting can be observed at conditions far from equilibri-
um (high supersaturation) if surface diffusion is
sufficiently fast. Surface diffusion increases the value of
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FICz. 9. Panel (a) shows the effect of undersaturation on sur-
face morphology in the absence of migration. Panel (b) shows
the effect of migration on surface structure under conditions
where kinetic roughening would be expected.

critical supersaturation above which kinetic roughening
of crystals occurs.

VII. FACETING WITH ETCHING

In this situation Ap (0 and the gas phase is under-
saturated with respect to the crystal. The surface mor-
phology of the (210) surface under etching conditions is
shown in Fig. 9(a) for various values of bplk—T in the
absence of surface diffusion. At conditions close to equi-
librium, surface structures indicate that faceting is pro-
moted, i.e., larger facets develop under etching rather
than under equilibrium conditions in the same time.
However, if the gas partial pressure is sufficiently small
(far for equilibrium), etching occurs rapidly, and the in-
terface becomes microscopically rough.

Calculation of etching rate versus undersaturation at
different surface temperatures indicates that as the tem-
perature increases the etching rate is enhanced because
desorption of atoms is an activated process. ' Decreasing
the gas pressure results in higher etching rates. An
asymptotic maximum etching rate is obtained when
Ap/kT~ —~. No further increase in etching rate can
be achieved at each temperature. We also found that
orientations close to the thermodynamically stable (100)
surfaces exhibit lower etching rates, with the (100) sur-
face being the most resistant in etching. On the other
hand, stepped surfaces exhibit larger etching rates than
the (100) surface.

The role of surface diffusion on faceting and roughen-
ing transition in etching (hp (0) is demonstrated in Figs.
7(b) and 9(b). We have chosen a value of undersaturation
where the interface does not exhibit distinct faceting
( —bplkT =1) in the absence of surface diffusion, as
shown in Fig. 9(a). As the surface diffusion rises, local
equilibrium is established at the interface, and faceting is
observed under conditions where a kinetically rough in-
terface would be expected and surface roughness de-
creases [Fig. 7(b) j. Increasing the surface diffusion
coefficient results in a kinetically rough-to-faceted surface
transition. Thus surface diffusion expands the window of
operation conditions under which regular faceting is ob-
served. The higher the surface diffusion the smaller the
critical pressure below which the surface is faceted.

We have found that at sufficiently low temperatures
(kTlw, ~0.067), where no faceting is observed under
equilibrium conditions, surfaces can become faceted un-
der etching conditions. That is, faceting can occur at
lower temperatures under etching than under equilibrium
conditions.

Figure 8(b) shows the effect of faceting on etching rate
under conditions close to equilibrium. Faceting results in
a slowing down of the etching rate. As time evolves, the
etching rate approaches the etching rate of the (100) sur-
face, which exhibits the lowest rate among all planes in
the [010] zone.

VIII. COMPARISON OF GROWTH
AND ETCHING MODES

The above analysis indicates that nonequilibrium con-
ditions promote faceting because faceting occurs either at
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lower temperatures than in equilibrium conditions or
during shorter time, i.e., larger facets form under growth
and etching conditions. On the other hand, kinetic
roughening occurs at far from equilibrium growth and
etching conditions, as shown in Figs. 6 and 9.

Deposition from the gas occurs at random positions,
and if the supersaturation is sufficiently high rough inter-
faces rather than facets form. However, desorption of
atoms is a local-environment-dependent process, as
shown by Eq. (5). Single atoms on terraces have larger
probability for desorption than atoms with more first-
nearest neighbors. It is therefore important to examine
more extensively the reversibility of the surface mode,
i.e., whether rates and structures obtained during etching
and deposition are alike. We have found that the growth
and etching rates are not equal for the same absolute
value of Ap for growth from the gas phase; etching
proceeds slower than growth at the same temperature.

To quantify the pictorial representation of promoted
faceting under nonequilibrium conditions, we plot in Fig.
10(a) the probability density function p(L/ao) versus

facet size L/ao calculated under equilibrium, growth,
and etching conditions. After the same time, the largest
facets developed in growth and etching are larger than
the largest facets developed in equilibrium conditions.
On the other hand, regions of the surface connecting
facets are more rough in irreversible conditions, i.e., the
probability density of small facets is larger in nonequi-
librium conditions than in equilibrium conditions, espe-
cially for growth. Surface profiles after long time shown
in Fig. 10(b) confirm that facets grow faster under ir-
reversible conditions than under equilibrium conditions.
That is, growth and etching promote faceting, especially
at long times.

Simulations show that faceting can occur under none-
quilibrium conditions at low temperatures where faceting
is not observed under equilibrium conditions. Compar-
ison of the time scales for faceting for both nonequilibri-
um modes reveals that faceting occurs much faster in
growth than in etching. For example, at kT/w& =0.08
the time required to attain I./ao = 5 is t *=0.2 for
growth (bp/kT =6) and t =1.4X 10 for etching
(bIJ/kT = —6) with iU2/iv, = —0.2, i.e., difference by a
factor of 10 . The large perturbation (fluctuations) intro-
duced by growth results in faster faceting compared to
etching conditions. In that context, growth is a more
efficient nonequilibrium mode for faceting than etching
(metal evaporation).

The surface becomes kinetically rough under etching
conditions if etching is very fast, but the surface is more
resistant to kinetic roughening in etching than in growth.
Figures 6(b), 7(b), and 9(b) indicate that a lower value of
x, /ao is required in etching than in growth for the transi-
tion from kinetically rough to faceted surfaces. Thus
growth and etching from the gas phase are not reversible
processes regarding surface morphology and especially in
kinetic roughening.

We have also investigated the surface morphology un-
der totally irreversible conditions at 1ow temperatures
where only desorption of material takes place without
deposition (Ap~ —~ ). It is found that at very low tem-
peratures etching proceeds very slowly but faceting is still
observed and thus, in contrast to growth, pure etching
(without adsorption) results at the same temperature in
faceted surfaces but not in kinetically rough surfaces, as
happens if Ap&&0. In other words, surfaces are more
resistant in kinetic roughening in etching than in deposi-
tion, and a larger parameter space is available for facet-
ing in the bifurcation diagram.

IX. CONCLUSIONS
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FIG. 10. Panel (a) shows the probability density of facet size
distribution at t*=1000. Longer facets develop under none-
quilibrium conditions. Panel (b) compares faceted surfaces un-
der equilibrium, growth, and etching conditions at long times.
Growth and etching promote faceting, especially at long times.

We have examined the faceting of unstable orientations
with the MC method using adsorption-desorption and/or
surface di6'usion under equilibrium, growth, and etching
conditions for simple cubic crystals. The main con-
clusions from these computer experiments can be summa-
rized as follows:

(1) Quite regular distributions of facets are formed on
surfaces, in agreement with experimental results.

(2) The facet size increases with time, indicating three
fairly distinct time regimes: (a) disordering of surface
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atoms where surface energy and surface roughening in-
crease, (b) microfacet nucleation where small facets form,
and (c) coarsening of microfacets into macrofacets by
thermal fluctuations.

(3) At low temperatures faceting is limited by the
transfer of material over long distances and faceting
proceeds very slowly. At high temperatures thermal
roughening rather than faceting occurs.

(4) Unstable interfaces which are very close to energeti-
cally stable interfaces either do not facet or facet very
slowly. The most unstable orientations in the Wulff dia-
gram facet first.

(5) Surface diffusion results in faceting in shorter times
for small facets than adsorption-desorption.

(6) Transfer of material over long distances becomes
important for small misorientations, at low temperatures,
and/or long times (large facets). Adsorption-desorption
alone is then more effective than migration in transport
of material.

(7) Slight deviations from equilibrium conditions
(hp&0) promote faceting and large deviations result in
kinetic roughening.

(8) Growth promotes faceting more effectively than
etching, especially at low temperatures.

(9) Simultaneous growth or etching and fast surface
diffusion lead to promoted faceting and transition from
rough to faceted surfaces. Surface diffusion results in
faceted interfaces for conditions even far from equilibri-
Um.

(10) The thermodynamically more unstable orienta-
tions become kinetically rough more easily in growth or
etching. Thermodynamically stable surfaces are also
more stable with respect to faceting or roughening and
are the ones that would be observed under equilibrium,
growth, or etching conditions.

The above model with first- and second-nearest-
neighbor interactions is a simple one for simple cubic
crystals. The simulations can be extended for metals by
using a more realistic potential, such as the embedded
atom, and for binary systems, such as alloys and com-
pound semiconductors. However, we anticipate that the
qualitative conclusions will not be altered appreciably.
Research on these topics is in progress. The above model
shows that the scaling law developed by Mullins, Eq. (2),
is not valid, and faceting does not have as prerequisite ir-
reversible conditions as previously has been suggested,
i.e., thermodynamics alone can explain faceting. Howev-
er, the thermodynamic instability can be enhanced under
irreversible growth and etching conditions with simul-
taneous fast surface diffusion.
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