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Dynamic-crystal-field effects on Mossbauer quadrupole splitting of Fe(II) in ferrous fiuosilicate
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The temperature dependence of Mossbauer quadrupole splitting of Fe(II) in ferrous Auosilicate cannot
be explained on the basis of a static crystal-field interaction. The present work considers the effect of a
dynamic crystal-field interaction and uses a complete set of orbital-spin-phonon basis states in order to
set up the Harniltonian matrix and compute relevant electronic observables. This formalism reproduces
the experimental data reasonably well over 4.2—300 K and elucidates how vibronic effects can be handled
in a simple manner.

I. INTRODUCTION

The temperature dependence of Mossbauer quadrupole
splitting of Fe(II) in fluosilicates, ' deoxyhemoglobin, car-
bonates, organometallic complexes, etc. , cannot be ex-
plained by the standard Ingalls approach based on a
static-crystal-field interaction, which is widely used to de-
scribe the magnetic properties of iron-bearing systems.
The concept of a dynamic-crystal-field (or orbit-lattice or
vibronic) interaction has been exploited reasonably well
to explain these results in carbonates, ' ferrous Auosili-
cate, and other systems. However, these initial calcula-
tions adopted a simplified model by ignoring the spin-
orbit coupling or by taking its diagonal component only
(that does not admix different spin states) which
effectively reduces the basis states to "orbital-phonon"
product states. Then a perturbation treatment was
adopted to take into account the effect of orbit-lattice in-
teraction that produces temperature-dependent admixing
between otherwise orbital eigenstates derived from the
static-crystal-field interaction of a given symmetry. A
more consistent and rigorous approach requires that one
must consider a complete set of orbital-spin-phonon basis
states, set up the Hamiltonian matrix, diagonalize it to
obtain eigenstates, compute expectation values of
electric-field gradients, and then use them to calculate
quadrupole splitting. Because the orbit-lattice interac-
tion contains phonon annihilation and creation operators,
phonon states like

~ nt, ), ~ nk —1 ), and
~ nk + 1 ) will be in-

volved where n& is the occupation number of phonons
(with wave vector k) given by Bose-Einstein distributions
at any temperature. Thus for a given orbital (4&) and spin
(M, ) state the complete set of orbital-spin-phonon basis
states can be expressed as ~@,M„nk ), ~4, M„nk —I ),
and ~N, M„nk+ 1 ). It is obvious that for the orbital trip-
let of a high-spin ferrous ion in octahedral or trigonal en-
vironment there will be 45 such basis states. The formal-
ism just mentioned has been used here to calculate the
temperature dependence of the quadrupole splitting of
Fe(II) in ferrous fluosilicate (FeSiF6, 6H20) where the
disagreement between observed data and static-crystal-
field calculation is very substantial (rather eye catching).
It represents a refinement over our earlier work.

Recently Ducouret-Cereze and Varret' have con-
sidered the effect of vibronic (or dynamic Jahn Teller)
coupling to explain beautifully the temperature depen-
dence of the quadrupole splitting of Fe(II) in K2ZnF& and
Ba2ZnF6. They have included all possible orbital (5) and
spin (5) states along with many phonon (10) states which
leads to a matrix of dimension 250. However, their ap-
proach is different (from what is being proposed in the
present work) in respect of calculating vibrational matrix
elements. They have used a group-theoretical (or symme-
try labeled) approach to calculate nonzero vibrational
matrix elements between static-crystal-field states. It
may be physically valid (despite mixing caused by low-
symmetry crystal-field and spin-orbit interactions) but the
procedure is complex because operator (for calculating
matrix elements over orbital and spin operators) and
group-theoretical methods are mixed together. Also it
appears that they have used 1,2,3,4,5, . . . , as the number
of phonons to describe the vibrational states of the lattice
whereas we believe that the number of phonons of a given
energy at any temperature should follow Bose-Einstein
distribution function. In another paper Varrett and
Ducouret-Cereze" have analyzed the vibrational effects
on magnetic properties of Fe(II) in K2ZnF4 which indi-
cates that the energy spacings due to spin Hamiltonians
are significantly changed and this in turn may get mani-
fested in the thermal variation of magnetization. It is
likely that the idea of orbit-lattice interaction will be ex-
ploited to a greater extent in the interpretation of
Mossbauer, EPR, and magnetization data of iron-bearing
systems and hence the matter being presented in this pa-
per may prove complementary and useful.

II. HAMILTONIAN FOR Fe{II)

The Hamiltonian which describes various electronic in-
teractions for a high-spin ferrous ion in a crystal is given
by

H =H„+H„+H), +H,),
where

H„=crystal field interaction,

47 1993 The American Physical Society



DYNAMIC-CRYSTAL-FIELD EFFECTS ON MOSSBAUER. . . 4887

H„=spin-orbit interaction,

H, „=quantized lattice vibration Hamiltonian,

H, i =orbit-lattice (or dynamic crystal field)

interaction .

For Fe(II) occupying a trigonally distorted octahedral
site in ferrous Auosilicate one uses

H =B4(04 20&20q)+B202+B202
where the terms represent octahedral, axial, and rhombic
field components, respectively, expressed in the standard
form using Stevens' equivalent operators (0„)and crys-
tal field parameters (B„). The dominant octahedral field

splits the D electronic state of a free Fe(II) ion into a
lower triplet (Ti ) and an upper doublet (E ) separated
by ~180 BP —10 cm ' which is very large. We there-
fore consider the lower triplet only for further calcula-
tions. The orbital eigenstates of this triplet are given
b 6, 12

which has already been considered to obtain the orbital
triplet. The matrix elements over angular momentum
and spin operators are easy to calculate and they are well
known. They can be nonzero between those basis states
only which have the same phonon occupation number.
The Hamiltonian H~, gives nonzero matrix elements for
diagonal terms only and they correspond to lattice vibra-
tional (phonon) energy. For example,

= g ficoi, ( ni, + —,
'

)
k

=iiia~, (n, + —,
' )+iricu2(n2+ —,

' )+

where n &, n 2, . . . , are the number of phonons of frequen-
cies co, , co2, . . . , respectively. Similarly nk may be re-
placed by nk —1 or nk+1 for the relevant terms.

The interaction H
~

can give off-diagonal nonzero ma-
trix elements between those basis sets which have identi-
cal spin but differ in orbital and phonon parts. For exam-
ple,

N, = —&2/3 Y2 —&1/3 Y2,

, =&2/3 Y2 —&I/3 Yi ',
No= Y2

&4 „M„ni,—11H,~IC'o M ni &=Q g V ~a+na
k

(Sa)

H, (
= g g (A'/Me@i, )'~ kV„(L)(ap*+ai, ), (6)

where M is the mass of the central (Fe) atom, cubi, is the
phonon frequency, k is the phonon wave vector, and
V„(L) is an expression similar to crystal-field interac-
tions with dynamic coupling parameters (C„). In long-
phonon wavelength approximations we assume that v is
co/k, where U is the velocity of acoustic phonons (i.e.,
sound) in the crystal.

Now we form 45 orbital-spin-phonon basis states as de-
scribed earlier and then operate them on Hamiltonian (1)
after dropping the dominant octahedral crystal-field term

and they constitute orbital basis states for other interac-
tions. The axial distortion splits the triplet into a singlet
(4o) and a doublet (@„@,) with energy difference
= ~9B2 ~. In FeSiF6, 6HzO the orbital singlet is lower in

energy. The rhombic distortion further splits the doublet
with energy difference=~SBP. The spin-orbit interac-
tion is given by

H„=PL S=AL,S, +(A/2)(L+S +L S+ ), (4)

where the spin-orbit coupling constant X- —100 cm
The Hamiltonian for quantized lattice vibrations is given
by

H„= g Aevi, (ai,*ai, + —,
' ),

k

where Acok is the phonon energy, nk is the occupation
number of phonons (of wave vector k) given by Bose-
Einstein distribution functions and (ai, , ai, ) are the pho-
non creation and annihilation operators. The orbit-
lattice (or dynamic-crystal-field) interaction, which cou-
ples the electronic and vibronic subsystems, is given by'

&4„M„ni, +1IH„I/0, M„n„&=Q g V coi, V n„+1,
k

(gb)

where

ni, = [exp(iria~i, /kT ) 1]—
Here V„(L) may contain in general all possible operators
like C404+ C404+ C202+ C202 that can give nonzero
matrix elements where C's are the various dynamic-
crystal-field coupling parameters. The matrix elements
over operators 0's can be easily obtained from standard
tables. ' ' It may be noted that operators with odd m
were not present in the static-crystal-field Hamiltonian.

III. RESULTS AND DISCUSSION

In order to calculate the matrix elements over vibronic
interaction one needs numerical values of phonon energy,
velocity of sound, and dynamic-crystal-field coupling pa-
rameters. The lattice vibrational spectrum of any crystal
may contain some discrete energy bands or it may follow
the Debye model where the phonon energy is distributed
over a range with a maximum cut-off. Calculated or
measured lattice vibrational energy spectra for FeSiF6 is
not available but its Debye temperature is estimated to be
about 180 K.' Using the Debye picture one obtains the
velocity of sound v=3.9 X 10 cm/s which is reasonable.
Phonons of energy 20, 40, 60, 80, 100, and 120 cm ' have
been used in the present calculation, i.e., the Debye-like
spectrum has been divided into six discrete phonon
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TABLE I, Temperature variation of quadrupole splitting
(QS). Theor-I: calculated without dynamic-crystal-field interac-
tion. Theor-II: calculated with dynamic-crystal-field interac-
tion. Experimental data taken from Ref. 1.

4.2
25
50
77

100
150
200
250
300

QS (mm/s)
(Expt)

—3.608
—3.622
—3.627
—3.624
—3.617
—3.586
—3.544
—3.485
—3.398

QS (mm/s)
(Theor-I)

—3.608
—3.626
—3.633
—3.636
—3.638
—3.639
—3.640
—3.640
—3.639

QS (mm/s)
(Theo r-II)

—3.608
—3.625
—3.627
—3.622
—3.614
—3.586
—3.543
—3.482
—3.400

states. Using shorter intervals does not change the basic
result except the fact that a lower value of dynamic cou-
pling parameters is needed to obtain a similar tempera-
ture dependence of quadrupole splitting. Similarly a
much larger value of dynamic coupling parameters is
needed if one uses phonons of one energy only. The
values of dynamic coupling parameters are not known
and their relative signs can also differ. Therefore, all
dynamic-field parameters have been replaced by a mean
value which in effect determines the strength of the
orbit-lattice coupling and it is taken as a variable. The
axial splitting has been taken as 1800 cm which is re-
quired to fit the temperature variation of quadrupole
splitting in lower temperature ranges (4.2 —25 K) where
lattice vibrational effects are insignificant. Its value was
earlier estimated to be —1500 cm ' from the analysis of
magnetic properties. ' The rhombic splitting has been
taken as zero but a small value —a few cm ' can also be
used with similar results. The calculation uses A, = —100
cm ', ( r ) = 3.563 a.u. eQ =0. 18 b, and mean-
dynamic-crystal-field parameter = 194 cm '. This value
for the mean-dynamic-crystal-field parameter is of the
same order of magnitude as the static ones which is
reasonable. Huang's model' suggests that the dynamic
parameters may be higher than the static ones by a factor
(n +1) and qualitatively it is in favor of the present data.
The value of (r ) has been simply adjusted to match
the observed and calculated quadrupole splittings at 4.2
K for a given value of nuclear quadrupole moment (eQ).
Calculated and observed data are given in Table I and
shown in Fig. l. At 4.2 K the value of quadrupole split-
ting with or without orbit-lattice interaction remains the
same as expected.

It may be noted that the electric field gradient (efg) at
the Fe(2+) nucleus in a crystal arises basically from its
3d valence electrons, polarization of 3p core electrons, '

and lattice charges. The first term is the most dominant.
The calculations based on the local density model by Ellis
et al. ' and computation of molecular wave functions for
FeC12 and FeBr2 using the Hartree-Fock method by Duff
et al. ' are quite instructive to visualize how different
electronic shells (2p, 3p, 3d) contribute to the efg and in
what proportion. However, the contributions from 3p

3.7

3.3
100 200 300 400

FIG. l. Quadrupole splitting of Fe(II) in FeSiF6, 6HzO. Ex-
perimental data (open squares) and calculated values (solid cir-
cles) using dynamic-crystal-field interaction are plotted. They
almost superimpose.

core electrons and lattice charges are temperature in-
dependent (unless there is a change in mean-bond
length —which is not the case here) and they act as con-
stant additives at all temperatures and hence cannot de-
cide the nature of the (QS —T) curve. The nature of the
(QS —T) curve is therefore basically determined by the
thermal variation of the efg due to 3d valence electrons
distributed over five crystal-field orbital states. Within
this framework the Sternheimer shielding factor and co-
valency factor (which effectively reduces the value of
( r ) 3d ) appear as constant multipliers to the expression
for efg and they determine the magnitude of QS but not
the nature of its temperature variation. Even the mea-
surement of QS at one temperature cannot indicate if vi-
brational interactions are important because there is no
way to know how much change in QS has been produced
by the vibrational effects. However, if the QS versus T
study is made, one can recognize the failure of the static-
crystal approach and then consider the dynamic-crystal
model.

The form of the orbit-lattice (or dynamic-crystal field)
interaction given in expression (6) is convenient to use
along with other interactions (expressed in terms of orbit-
al and spin operators) in order to set up the complete
Hamiltonian matrix. Often normal coordinate analysis
for a molecule is done to obtain vibronic wave functions
and allowed frequencies, but it is mostly used to under-
stand the symmetry property of the combined
electronic —vibronic wave function in order to explain
some electronic transitions which are normally not al-
lowed under Laporte selection rule but get permitted due
to vibrational admixture. ' This approach is suitable for
a qualitative understanding of the observed electronic
transitions (or bands) from transition metal ions in a crys-
tal but not appropriate for a quantitative analysis when
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one desires to set up a complete Hamiltonian matrix in
terms of orbital-spin-phonon basis states. It might be
relevant to note that the orbit-lattice interaction depends
upon relative displacement between the central Fe ion
and its ligands, and it simulates the modes of vibration
for an MX6 cluster. The process does not correspond to
a simple change in the mean-bond length rather it
represents a harmonic displacement of the central ion rel-
ative to its ligands. This produces lattice waves (phonon
spectrum) and modulation of 3d electronic charge cloud
due to change in the Fe-ligand distance at any time. '

The present work uses the Debye model of phonon spec-
trum. The consideration of local modes of vibration may
be more appropriate but it requires a detailed knowledge
of the same. However, the basic formalism will remain
unchanged except that one will have to include only
those phonon frequencies which are consistent with local
vibrational modes.

This calculation uses basically three variable
parameters —the trigonal field splitting, Debye tempera-
ture (the velocity of acoustic phonons is related to it), and
the mean-dynamic-field parameter —which decide the

nature of the (QS —T) curve. The crystal-field-energy
separation of 1000 to 2000 cm ' is too small to be mea-
sured directly through optical absorption spectroscopy
and these are usually estimated from the magnetic prop-
erty data. The earlier estimate of trigonal field splitting
from magnetic data is similar to the value and used here.
The Debye temperature is also a measured parameter.
Thus the mean-dynamic-field parameter, which couples
electronic and vibronic states, is the only variable param-
eter in a true sense and this makes the calculations more
realistic. There is no way to determine this parameter
directly.

The inclusion of orbit-lattice interaction reproduces
quite well the temperature dependence of quadrupole
splitting of Fe(II) in ferrous fiuosilicate over 4.2 —300 K
which is otherwise not possible on the basis of static-
crystal-field calculations (shown in Table I). Phonons of
low energy are found to be more effective in reducing the
value of quadrupole splitting. This is consistent with the
fact that at any temperature low-energy phonons are
more abundant to produce coupling between ground and
excited crystal-field orbitals.
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