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We have investigated the structural and electronic properties of the III-V semiconductor InSb under
pressure by means of first-principles density-functional total-energy calculation using the all-electron full
potential linear augmented plane-wave method. We find that in the high-pressure region, the P-Sn struc-
ture is unstable and a body-centered orthorhombic structure (space group Imm2) is energetically more
favorable. Calculated structural parameters (a/b and a/c ratios, and atomic positions) are in good

agreement with a recent highly accurate x-ray-diffraction experiment using an image plate area detector.
Theoretical lattice constant and bulk modulus for the normal-pressure zincblende structure is also in

very good agreement with experiments. We present calculated structural properties as well as band
structures and charge densities for the various structures studied. We discuss the processes of the phase
transformation, and also the bonding and structural stabilities in terms of the calculated electronic prop-
erties.

I. INTRODUCTION

The III-V zincblende compounds are interesting ma-
terials with important applications in electronic devices.
Like group-IV semiconductors such as Si and Ge, these
compounds are semiconductors at the ambient pressure
but become metallic under pressure. It is known that Si
and Ge undergo a zincblende —P-Sn structural transfor-
mation under pressure. ' A similar phase transition
might be expected for the III-V zincblende compounds.
Therefore, when a high-pressure structure in InSb was
first observed, it was assumed to be the tetragonal P-Sn
structure (or the polar analogue of the P-Sn structure).
This appeared to be confirmed by subsequent x-ray exper-
iments. Furthermore, a similar behavior of the valence
electron densities near the transition pressure for Si and
InSb was observed in x-ray-diffraction measurements.
Nevertheless, recent experiments with refined techniques
have shown this simple picture to be incorrect. ' In fact
these materials exhibit rich crystal phases and behaviors
under pressure. For example, it has been found that al-
though GaP transforms to the P-Sn structure, GaAs
transforms from the zincblende to an orthorhombic
phase ' and A1P to an incompletely-determined face-
centered-cubic structure.

Clearly, a thorough understanding of the high-pressure
properties of the III-V zincblende compounds is needed.
While further accurate experimental work is necessary,
first-principles theoretical work is also essential in order
to gain insight at the microscopic level. In parallel with

the ongoing experimental program using the synchrotron
radiation source at Daresbury Laboratory, a theoretical
study based on first-principles density-functional theory
is currently being carried out. The highly accurate full
potential linear augmented plane-wave (FLAPW) method
is used. It has already been shown that the full potential
density-functional calculations are able to predict accu-
rate structural properties for solids ranging from semi-
conductors to metals. ' Therefore, first-principles calcu-
lations should also help to resolve many plausible high-
pressure structures suggested but not completely deter-
mined by previous experiments.

In this work, we focus on InSb. Because of its low-
transition pressure (around 10—20 kbar) InSb is perhaps
the most intensively studied compound. ' "'' Never-
theless, the high-pressure structures of InSb are still con-
troversial. For example, early x-ray-diffraction works in-
dicated that under pressure InSb first undergoes a transi-
tion from the zincblende to the /3-Sn structure. More re-
cent experiments suggested that InSb transforms to sim-
ple orthorhombic structures. " An ab initio study of InSb
using the pseudopotential method has also been carried
out. ' Several plausible high-pressure structures includ-
ing simple orthorhombic structures, cubic rocksalt, hex-
agonal types, and also P-Sn structure, were investigated,
and the P-Sn structure was found to be the stable high-
pressure structure. Interestingly, a recent highly accu-
rate powder x-ray-diffraction experiment using powerful
synchrotron radiation and a x-ray area detector (called an
image plate) revealed that the simple orthorhombic struc-
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ture proposed earlier" is in fact a body-centered ortho-
rhombic structure. In the present work, we perform
all-electron total-energy FLAPW calculation for an or-
thorhombic structure (space group Imm2) and the P-Sn
structure as well as the cubic zincblende structure. We
find that the P-Sn structure is unstable with respect to the
Imm 2 structure at high pressures.

The organization of the rest of the paper is as follows.
In Sec. II, we describe the details of our calculations. In
Sec. III, we report the calculated structural properties of
InSb and discuss the available experimental results. In
Sec. IV, we present the calculated electronic properties
and compare the results for the different structures in an
attempt to understand the structural properties of InSb in
terms of the underlying electronic structures. Finally, a
summary and conclusion are given in Sec. V.

II. COMPUTATIONAL DETAILS

We performed first-principles electronic structure and
total-energy calculations for InSb within the density-
functional theory' with the local-density approximation
(LDA). The Vosko-Wilk-Nusair form' of the LDA
exchange-correlation potential was used throughout.
This is believed to be the most accurate parameterized
LDA exchange-correlation potential. The Kohn-Sham
equations were solved with the full potential linear aug-
mented plane-wave (FLAPW) technique. Like the ab in
itio pseudopotential method, ' ' the FLAPW method is
a widely used electronic structure method and gives accu-
rate physical properties for a variety of solids. ' ' In
contrast to the pseudopotential, however, the FLAPW
method is an all-electron technique and can also deal
with systems containing rather localized valence elec-
trons, such as transition metals and their compounds. '

We refer to Ref. 9 and references therein for the details of
the FLAP W method.

In the present self-consistent calculations, the electrons
are separated into two groups, namely the "core" elec-
trons whose charge densities are confined within the
"muffin-tin" spheres and the "valence" (or band) elec-
trons. The core electron states are treated fully relativist-
ically by solving the Dirac equation for the spherical
component of the potential. The valence electrons are
treated scalar relativistically' (i.e., all the important rela-
tivistic effects (the mass-velocity correction and Darwin
terms) except the spin-orbit coupling, are included). In
contrast to previous pseudopotential calculations for III-
V semiconductors, ' the "shallow" core (or semicore)
states (i.e., In and Sb 4d states) were also considered as
bands through use of a second energy window. There is a
significant proportion of the In (Sb) 4d charge outside the
muffin-tin spheres at all volumes considered. For exam-
ple, the charge density spilling out for the In 4d is as
large as 0.4 electron. Furthermore, the energy levels of
the In 4d states are only about 5 —6 eV below the bottom
of the valence bands. Thus, it is not a priori justified to
treat the In (Sb) 4d electrons as core states.

The special k-point Brillouin-zone integration tech-

nique is used to evaluate new charge densities from the
calculated LAPW wave functions. The special k-point
sets for all the structures investigated are generated using
the Monhorst-Pack scheme. ' For the semicore bands,
four, four, and six special k points are used for the cubic
zincblende, P-Sn, and Imm2 structures, respectively. Be-
cause these bands are fully occupied, the number of k
points needed is small. We find that the total energy con-
verges to within 0.5 mRy with these sets of the special k
points. For the valence bands, ten special k points are
used for the cubic zincblende structure. Because this
structure is semiconducting (but see Sec. IV) and the
valence bands are full, this ten k-point set is again found
to be sufficient. The two high-pressure structures con-
sidered are metallic. Consequently, far more special k
points are required for the valence bands. We used 160
and 288 special k points for the P-Sn and Imm2 struc-
tures, respectively. Further increasing the number of spe-
cial k, points changes the calculated total energy by less
than 0.5 mRy. The muffin-tin sphere radii used in all our
calculations are 2.4 Bohr radius (a.u. ) for In and 2.45 a.u.
for Sb. Note that, since the FLAPW method is a full po-
tential method, the final results are not dependent on the
muffin-tin radii chosen. Inside the muffin-tin spheres, the
wave functions, charge densities, and potential are ex-
panded in terms of the spherical harmonics. The cutoff
angular momentum (L,„) is 12 for the wave functions,
and 6 for charge densities (potentials). The number of the
plane waves is determined by the K,„(largest wave vec-
tor). K,„=2.86 a.u. ' is used for the valence bands.
This gives rise to about 180 and 130 plane waves (PW's),
respectively, for the cubic and noncubic structures with
the minimum energy lattice constants. For the semicore
bands, it turned out that far more plane waves were need-
ed. We used K,„=4.29 a.u. . This is equivalent to
have about 650 and 450 PW's, respectively, for the cubic
and noncubic structures with the minimum energy lattice
constants. We found that the minimum energy difference
between the /3-Sn and Imm2 structures is small (see Sec.
III). To further ensure that the calculated structural en-
ergy differences are accurate, we performed a FLAPW
calculation treating the P-Sn structure as the Imm 2
structure and another one regarding the zincblende as the
P-Sn structure. In both cases, the inconsistency in the to-
tal energy is less than 0.2 mRy. In summary, with this
choice of the computational parameters, the calculated
total energies to be presented below, converge to within
1.0 mRy with respect to both the cutoff wave vector
(K,„)and the cutoff angular momentum (L,„),and the
calculated structural energy differences converge to
within 0.5 mRy.

III. STRUCTURAL PROPERTIES

Principal results of our total-energy calculations are
summarized in Fig. 1 where the total energy for each
structure considered is shown as a function of unit-cell
volume. Small circles and squares in Fig. 1 indicate the
calculated values. The three curves are the Murnaghan's
equation of state fitted to the calculated total energies
for each structure. The bulk modulii, equilibrium lattice
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FICx. 1. Calculated total energies (relative to
Eo = 24 7 12.74 Ry) as a function of unit cell volume for InSb
in the zincblende (open circles), P-Sn (solid circles), and Imm2
(open squares) structures. The curves are the fitted
Murnaghan's equations of state and slopes of the dashed lines
give transition pressures for zincblende to 13 Sn (14 k-bar) and
zincblende to Imm 2 (11 kbar) (see text).

constants, and other structural properties can then be ob-
tained from these fitted equations of state. As expected,
the ground-state structure is the cubic zincblende. The
calculated equilibrium lattice constant (a) is 6.42 A, in
excellent agreement with experiments (6.49 A) (Ref. 21)
(being about 1% too small). The calculated bulk modulus
(Bo) is 0.52 Mbar, which is 8% too large as compared
with the experimental value of 0.48 Mbar. These
values are also in good agreement with the previous pseu-
dopotential calculations (a is 6.36 A and Bo 0.47
Mbar). '

The P-Sn structure has the body-"entered tetragonal
symmetry (space group I4m2) (see Fig. 2). The atomic
positions in the unit cell are In(0, 0,0) and Sb(0,—,', u )

(u =—'). If one increases the c/a ratio to &2, one gets
the zincblende structure. Firstly, several total-energy cal-
culations were performed for different c/a ratios. The
minimum energy c/a ratio is about 0.561, being 4%
larger than the experimental value of 0.539." This
theoretical c/a ratio was then used in calculating the )33-

Sn total-energy-volume curve shown in Fig. 1. In the
Imm2 structure, there are also two atoms in the primi-
tive cell with In(0,0,0) and Sb(0, —,', u) (see Fig. 2). If u =

—,
'

and a =b, the Imm2 structure becomes the P-Sn struc-

u+1/2

b

FIG. 2. The high-pressure structure of InSb. The unit cell
used in the calculations is orthorhombic with space group
Imm2 and a basis of In(0,0,0) and Sb(0, ~, u). When a =b,
c/a ——', and u = —', this structure becomes the tetragonal P-Sn

structure.

ture. We started our calculations with the preliminary
experimental structure parameters (a =5.816 A,
b =5.362 A, c =3.161 A, and u =0.47) measured at
about 35 kbar. Firstly, the minimum energy volume is
determined. Secondly, we calculated the total energy as a
function of u with the volume fixed to the minimum ener-
gy value. We found that the minimum energy value of u
is 0.48, being almost equal to 0.47. We also found that
the energy curve is very Aat around u =0.48 with no en-
ergy change (less than 2 meV/unit cell) for u ranging
from 0.45 to 0.51. Thirdly, using a fixed volume and a
fixed u of 0.47, we calculated the total energy as a func-
tion of either the a/b ratio (with a fixed c) or the a/c ra-
tio (with a fixed a/b ratio). The final structure parame-
ters we obtained are a/b =1.095, c/a =0.546. These
calculated parameters are very close to the above experi-
mental values. With these lattice parameters (a/b and
c/a ratios) fixed, we finally recalculated the total energy
as a function of the unit-cell volume and the results are
shown in Fig. 1. Of course, the best way to obtain the
theoretical structural parameters is to adjust v(volume),
u, a/b, and c/a simultaneously, which we cannot do at
present. Alternatively, one can also obtain the accurate
structural parameters (u, a /b, and c/a) if one repeats the
process described above until self-consistency is achieved.
Since the final minimum energy volume (Fig. 1) is nearly
equal to the one obtained at the beginning of the process,
we believe that the structural parameters (u -0.48,
a/b —1.095, and c/a -0.546) given above are good esti-
mates.

Figure 1 indicates that in the high-pressure region, the
Imm2 structure is stable whereas the I3-Sn structure is
not. The minimum energy difference is small (about 2
mRy/unit cell or 27 meV/unit cell), but certainly larger
than our numerical uncertainties (see Sec. II). The
minimum energy difference between the Imm2 and zinc-
blende is about 8 mRy/unit cell. As mentioned before,
several plausible high-pressure structures have been stud-
ied by Zhang and Cohen using the ab initio pseudopoten-
tial method. ' These include almost all the possible
structures proposed by the previous experiments. ""
Unsurprisingly, the P-Sn structure was found to have the
lowest minimum energy in the high-pressure region.
Thus, InSb was predicted to transform from the zinc-
blende to the P-Sn structure. However, our present re-
sults show that the Imm2 structure will be the stable
high-pressure structure of InSb.

Interestingly, we find that the P-Sn structure is stable
against two following orthorhombic distortions. We per-
formed several total-energy calculations first for a set of
different (a, b) values with a fixed u of —' and then for a set
of different u values with a =b. In these calculations, the
volume is fixed to the minimum energy volume (Fig. 1).
The results show that the I3-Sn structure always has the
lowest total energy, i.e., it is stable against these two or-
thorhombic distortions individually. These results sug-
gest that the /3-Sn structure might be metastable, which
would explain why the i6l-Sn structure has been reported
in may previous experiments. "" Further total-energy
calculations were then carried out to estimate the possi-
ble energy barrier between the )33-Sn and Imm2 struc-



4844 G. Y. GUO, J. CRAIN, P. BLAHA, AND W. M. TEMMERMAN

25

~ 20.

15 ..

10.

0.2 0.3 0.4 0.5

FIG. 3. Calculated InSb total energies (relative to
E = —24712.73 Ry) as a function of u (the position parameter
of Sb, see Fig. 2) for various a/b ratios. Open circles, solid cir-
cles, open squares, solid squares, and triangles denote calculated
total energies, respectively, for a/b =1.0, 1.02, 1.04, 1.06, and
1.08. The c parameter (0.561) and the volume (336.1 au /cell)
are fixed. The total energies for a/b = 1.02, 1.04, 1.06, and 1.08
are shifted upwards by 5, 10, 15, and 20 mRy, respectively. The
curves are the guide to the eye only.

tures. However, we found that the P-Sn structure is un-

stable against the orthorhombic distortion, which in-
creases the a/b ratio and u parameter simultaneously. In
Fig. 3, we show the calculated total energies as a function
of u for various a /b ratios. We note that as the a /b ratio
is increased from 1.0, the minimum total energy de-
creases and the corresponding u deviates from —,'. Figure
3 shows that there is a path between the P-Sn and Imm2
structure along which the minimum total energy de-
creases monotonically. However, the minimum total en-
ergy decreases rather slowly before the a/b ratio reaches
1.06. For example, the minimum energy for a/b =1.02
(u about 0.3) is only 0.2 mRy lower than that of the P-Sn
structure. This perhaps explains why the Imm2 struc-
ture was not found in Ref. 13 even though the stability of
the P-Sn structure against orthorhombic distortions ap-
peared to have been investigated. ' It is well known that
the structure of a solid is determined by the free energy
F =E —TS, where E is the total energy, T the tempera-
ture, and S the entropy. Therefore, we speculate that at
some high temperatures the P-Sn structure could be sta-
bilized by either the temperature (if the P-Sn structure
has a lower entropy than the Imm2) or the site disorder,
which increases the entropy. So could be a range of the
body-centered orthorhombic structures along the
minimum energy path shown in Fig. 3. It would be in-
teresting to calculate the entropy of InSb, which is, how-
ever, beyond the scope of this paper.

The theoretical zincblende-Imm2 transformation pres-
sure can be obtained from Fig. 1 by drawing a straight
line that is tangent to both the zincblende and Irnm2
total-energy parabolas. The slope of this line (the abso-
lute value) is the transition pressure. The theoretical
zincblende-Imm2 transition pressure thus obtained, is
10.7 kbar. The corresponding transition energy and rela-
tive volume change is, respectively, 0.10 eV/unit cell and
23.5%. The zincblende —P-Sn transition pressure would
be 13.8 kbar, and the corresponding transition energy is

0.13 eV/unit cell and the relative volume change is
23.0%. Experimentally, the transition pressure from the
zincblende to the high-pressure structure at room tem-
perature was found to be 22.5 kbar (Ref. 23) and the rela-
tive volume change is 19%. Our theoretical
zincblende-Imm2 transition pressure is much lower (or
about 52% too small). The difference in the transition
pressure at room and zero temperature is not expected to
account for such a larger discrepancy. According to Fig.
1, to increase the theoretical transition pressure to 22.5
kbar, an upwards shift of the Imm2 energy-volume curve
of as large as 5.0 mRy and a rightwards shift of about 20
a.u. would be needed. (The rightwards shift is to bring
the theoretical relative volume change in accord with ex-
periments). A naive conclusion would then be that the
LDA severely underestimates the InSb structural energy
diA'erences between the zincblende and the high-pressure
structure. However, given that the calculated zincblende
lattice constant and bulk modulus are in good agreement
with experiments, we believe that the LDA is responsible
for only part of this large discrepancy. We note that the
measured zincblende —/3-Sn transition pressure depends
sensitively on the type of the applied pressure' and also
on the rate of pressurization. For example, the transition
pressure is about 32 kbar when pure hydrostatic pressure
is used, whereas one may obtain a transition pressure as
low as 18 kbar under uniaxial pressure. ' Since the /3-Sn
structure can be obtained from the zincblende by a simple
compression along one of the three (100) axes, uniaxial
pressure is perhaps preferred. Because the minimum en-
ergy difference between the Imm2 and the P-Sn structure
is small and also a more complicated nonhydrostatic
pressure would be needed to precipitate a low-pressure
zincblende-Imm 2 transition, we would argue that under
hydrostatic or uniaxial pressure and at room temperature
or above, InSb perhaps first transform to the P-Sn or
similar phase before subsequently transforming to the
Imm2 structure. We note that in an experimental study
of the infIuence of plastic shear deformation on the
pressure-induced phase transformation in InSb, a low
transition pressure (about 14 kbar) was found. This
low-pressure transition could be the direct transition
from the zincblende to the Imm 2. Unfortunately,
structural work was not carried out for this phase. It
would be interesting and useful to determine the struc-
ture of this plastic shear induced phase.

Finally, we note that the calculated transition pressure
(33 kbar) from the previous pseudopotential calcula-
tions' is much larger than the present result (about 14
kbar). This is somehow surprising, since, as mentioned
above, the calculated lattice constant and bulk modulus
in both cases are in good agreement. As already pointed
out in Sec. II, in this work the shallow core states-In (Sb)
4d's were treated as band electrons and were thus fully
relaxed. In contrast, in Ref. 13, these states were frozen
and their influences were represented by some fixed pseu-
dopotentials (i.e., structurally independent). Because
these states have significant charge densities outside the
muffin-tin spheres (see Sec. II and also Sec. IV), they are
significantly a6'ected by volume changes caused, e.g. , by
structural phase transformations, and thus their contri-
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IV. ELECTRONIC STRUCTURES

The InSb band structures for the zincblende, P-Sn, and
Imm2 structures are shown in Figs. 4(a), 4(b), and 4(c),
respectively. These band structures were obtained from
the self-consistent potentials using the structural parame-
ters close to the theoretical values. Only the valence and
conduction bands are plotted in Fig. 4. The InSb zinc-
blende band structure has been reported before ' but
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FIG. 4. Calculated InSb band structures for the zincblende
(a), P-Sn (b), and Imm2 (c) structures. The Fermi energies are
0.353, 0.599, and 0.596 Ry, respectively.

butions to the structural properties of InSb can not be
neglected. This outstanding discrepancy in the transition
pressure between Ref. 13 and this work might highlight
the importance of taking into consideration the effects of
the shallow In (Sb) 4d states.

the full potential one has not. Nonetheless, as in Ref. 25,
we also find that it turns out to be a semimetal with an
exactly vanishing energy gap at the I point (the center of
the Brillouin zone) [see Fig. 4(a)]. Including the spin-
orbit coupling would not make InSb a semiconductor,
as our subsequent fully relativistic band-structure calcu-
lation using the spherical component of the FLAPW po-
tential and the Korringa-Kohn-Rostoker program, has
also shown. Experimentally, InSb is found to have a nar-
row direct gap of 0.23 eV. It is well known that the
density-functional theory is a ground-state theory, and
thus, not surprisingly, for many solids especially semicon-
ductors and insulators, there are some significant
differences between the LDA conduction bands and the
electronic excitation energies. In some cases such as
Ge and also InSb considered here, the LDA band struc-
tures are semimetallic or metallic, while experimentally
these materials are semiconductors. In Ref. 26, the semi-
conducting gap was corrected empirically. In the present
work, our main interest is in the ground-state properties,
and we will not deal further with methods to correct the
LDA band structures. However, we do find that the
valence-band structure of InSb is in good agreement with
experiments. For example, the calculated valence-band
width is 10.9 eV compared with experimental valued of
11.2 eV [ultraviolet photoemission spectroscopy (UPS)]
and 11.7 eV (x-ray photoemission spectroscopy). The
valence-band energies (relative to the top of the valence
band) for L3, X3, and Xi [see Fig. 4(a)] are 1.0, 6.2, and
8.9 eV, respectively, in good agreement with experimen-
tal values of, e.g. , 1.1, 6.5, and 9.0 eV (UPS).

The band structures of InSb in the p-Sn and Imm2
structures are shown for the first time in Figs. 4(b) and
4(c). Both are metallic, in accord with experiments.
Generally speaking, they look rather similar. Some small
differences occur because the Imm 2 structure has a lower
symmetry (than the P-Sn structure), which lifts many de-
generacies existing in the P-Sn structure. It is not im-
mediately obvious that the Imm 2 structure is energetical-
ly more favorable than the p-Sn structure from view
point of the band structure. Figure 4 shows that the
structural phase transformation from the zincblende to
the high-pressure structures has pronounced effects on
the band structure of InSb. Apart from metallization,
various band widths and band gaps change significantly.
For instance, the valence band width for the p-Sn and
Imm2 structures are now about 12.2 eV compared with
10.9 eV for the zincblende. The band gap between the
first and second valence bands (see Fig. 4) reduces from
2.7 eV to about 0.7 eV. These profound pressure-induced
changes in the band structure of InSb may be probed by
measurements of electronic properties, such as electronic
transport, optical, and photoemission spectroscopies.

Calculated InSb valence charge densities and the
differences from the free atomic valence charge densities,
are shown as contour plots in Figs. 5, 6, and 7, respective-
ly for the zincblende, P-Sn, and Imm2 structures. The
covalent bonding is evident in all three cases. Figures
5(b), 6(b), and 7(b) clearly show a considerable charge
buildup in the vicinity of the In-Sb bond centers. It is
also clear, however, that the covalent bonding is stronger
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in the zincblende than in either the P-Sn or the Imm2
structure. Like the band structures, the bonding in the
the P-Sn and Imm2 structures appear to be similar.
Table I lists the total, valence, and semicore (4d) charges
inside the In and Sb muon-tin spheres. The charges in-
side the muffin-tin spheres in the the P-Sn and Imm2
structures are almost the same but differ from those in
the zincblende.

Traditionally, relative stabilities of crystal structures
are discussed in terms of the band (or bond) energy (the
eigenvalue sum of the occupied states) and the Madelung
energy (the electrostatic energy of a system of positive
and negative point-charge arrays). As mentioned above,
both the calculated band structures and charge-density
distributions (covalent bondings) are very similar. Thus,
they do not give any obvious clues as why the Imm2

zincblende

P-Sn

Imm 2

In
Sb
In
Sb
In
Sb

Total Valence

46.951
48.872
46.931
48.654
46.929
48.651

1.338
2.766
1.311
2.712
1.309
2.712

Sernicore
(4d)

9.624
9.962
9.628
9.944
9.627
9.942

EMad

—7.80

—12.20

—12.39

structure is more stable than the P-Sn structure. To pur-
sue this stability question further, we looked at the
Madelung energies. We found that the Imm2 structure
has a lower Madelung energy than the P-Sn structure.
The calculated Madelung constants (Mz~, M, z~ (as
defined in Ref. 31) are (

—4. 5849, —0.8019),
(
—4. 2800, —1.2346), and (

—4.4518, —1.2733), respec-
tively, for the zincblende, P-Sn, and Imm2 structures.

TABLE I. Calculated InSb total, valence, and semicore (4d)
charges inside the In and Sb muffin-tin spheres. Also included
are the corresponding Madelung energies (EM,d ) (in the unit of
Ry/unit cell) (see text).

r
I ~a

r
I

y W ~

FIG. 5. (110) valence charge densities for InSb in the zinc-
blende structure (a); the differences between the valence charge
densities and those obtained by a superposition of the free atom-
ic charge densities (b). The atom near the center is Sb and the
atoms on the edges are In. The contour step is 0.05 e/A' for (a)
and 0.01 e/A' for (b). In (b), the dashed curves denote negative
contour levels and the dashed-dot contour is set at 0.

FICs. 6. (010) valence charge densities for InSb in the P-Sn
structure (a); the differences between the valence charge densi-
ties and those obtained by a superposition of the free atomic
charge densities (b). The atom near the center is Sb and the
atoms on the edges are In. The contour step is 0.05 e/A for (a)
and 0.01 e/A for (b). In (b), the dashed curves denote negative
contour levels and the dashed-dot contour is set at 0.
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They are in the units of the leading lattice constant (a).
If the charges inside the mufBn-tin spheres in all the cases
are assumed to be the same as those in the zincblende
structure (Table I), we obtain Madelung energies (EM,~)
(defined as the electrostatic energy of a system of ions em-
bedded in a neutralizing uniform background charge den-
sity ') of —7.80, —11.71, and —11.88 Ry/unit cell for
the zincblende, p-tin and Imm2 structures, respectively.
If the actual calculated charges inside the mumn-tin
spheres are used (Table I), Madelung energies obtained
are —7.80, —12.20, and —12.39 Ry/unit cell. These
simple calculations suggest that the Imm2 structure is
energetically more favorable than the p-Sn structure

FIG. 7. (100) valence charge densities for InSb in the Imm2
structure (a); the differences between the valence charge densi-
ties and those obtained by a superposition of the free atomic
charge densities (b). The atom near the center is Sb and the
atoms on the edges are In. The contour step is 0.05 e/A' for (a)
and 0.01 e/A for (b). In (b), the dashed curves denote negative
contour levels and the dashed-dot contour is set at 0.

mainly because it has a lower Madelung energy. Interest-
ingly, the zincblende structure has a much higher
Madelung energy. It is generally believed that the high
Madelung energy of the zincblende structure is overcom-
pensated by the low band energy due to the large
tetrahedral covalent bonding gap that occurs throughout
the Brillouin zone. As the zincblende structure is
compressed, the covalency becomes less strong, and even-
tually the zincblende structure becomes unstable.

In the modern density-functional theory, ' the total en-
ergy of a solid is the sum of three terms, i.e., the kinetic
energy (Ek;„), the Coulombic energy (E, ) and the
exchange-correlation energy (E„,). Table II lists the cal-
culated total energies and their decompositions. Indeed,
the Coulombic energy is lower in the Imm2 structure
than in the P-Sn structure. The difFerence in the Coulom-
bic energy is largely compensated by the higher kinetic
energy in the Imm 2 structure. It is perhaps surprising to
see that the zincblende has the lowest Coulombic energy,
since it has a highest Madelung energy (see the previous
paragraph). In the highly directionally bonded zincblende
structure, the electron density tends to be con6ned in the
vicinity of the bond centers where the electrostatic poten-
tial is lowest, to minimize the Coulombic energy. The
penalty for this con6nement, according to the uncertainty
principle of quantum mechanics, is a higher kinetic ener-
gy, as our results show (Table II). In the zincblende, the
Madelung energy based on the simple point-charge mod-
el ' does not reAect the Coulombic energy of the system.

To make connections with the tradition simple
analysis, one may further decompose the kinetic term as
the valence eigenvalue sum (Eb,„z ) and the so-called dou-
ble counting toms, and also single out the general poten-
tial Madelung energy (E M,~) from the Coulombic
term. In Table II, we also included the valence-band en-
ergies (Eb,„z) and the general-potential Madelung ener-
gies (EsM,& ). Again, the (general-potential) Madelung en-
ergy is lower in the Imm2 structure than in the p-Sn
structure, and is the highest in the the zincblende struc-
ture (see Table II). As expected, the zincblende has the
lowest band energy and the p-Sn structure has a slightly
higher band energy than the Imm2 structure. Neverthe-
less, the band energies in Table II should not be taken
literally, since they were obtained from the different self-
consistent potentials, which are difBcult to line up with
respect to a common level (say the zero potential). Final-
ly, it should be pointed out that the quantities listed in
Table II are not those evaluated at the theoretical
minimum energy structures. The minimum total energies
are —24 712.7339, —24 712.7243, and —24 712.7263

TABLE II. Calculated InSb total energy and its decompositions [the kinetic term (Ek;„), the
Coulombic term (E, ), and the exchange-correlation energy (E„,) term] (see text) for the zincblende, p-
Sn, and Imm2 structures. Also listed are the valence-band energies (Eb,„d) and the generalized
Madelung energies (E,M,d ). All quantities are in units of Ry/unit cell.

zincblende
P-Sn
Imm 2

Etot

—24 712.733
—24 712.724
—24 712.726

26 017.009
26 016.847
26 016.916

E,
—50 089.596
—50 089.410
—50 089.471

E„,
—640.171
—640.161
—640.171

Eband

0.243
1.883
1.868

EgMad

—49.070
—55.933
—55.965
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Ry/unit cell for the zincblende, the P-Sn, and the Imm2
structures, respectively.

V. CONCLUSIONS

In order to investigate the high-pressure structural and
electronic properties of InSb, we have performed first-
principles local density-functional electronic structure
and total-energy calculations for the cubic zincblende,
tetragonal P-Sn, and orthorhombic Imm 2 structure using
the all-electron full potential LAPW method. The re-
sults show that under ambient conditions, InSb will exist
in the zincblende structure. The calculated lattice con-
stant (a) and bulk modulus (Bo) are in good agreement
with experiments. The most important finding of this
work is that in the high-pressure region, the /3-Sn struc-
ture is unstable with respect to a body-centered ortho-
rhombic (Imm2) structure. The calculated zincblende-
Imm2 transition pressure is 10.7 kbar, being much lower
than the measured value of 22.5 kbar. The calculated
transition pressure from the zincblende to the P-Sn struc-
ture is 13.8 kbar. We, however, argued that when pure
hydrostatic or uniaxial pressures are applied, InSb first
transforms from the zincblende structure to the P-Sn or
similar structure before settling down to the Imm 2 struc-
ture at some higher pressures. A complicated nonhydro-
static pressure would be needed to precipitate a low-
pressure zincblende-Imm2 transition and we suggest that

structural determinations be carried out for the shear de-
formation induced high-pressure phase found at about 14
kbar. 24

We have also presented the calculated InSb electronic
properties. Both the high-pressure structures considered
are metallic and they have similar band structures and
covalent bonding. The covalent bonding is evident in the
calculated valence charge-density distributions for all
three structures studied, but is strongest in the zincblende
structure. A simple analysis of the Madelung energies
based on the calculated charges inside the In and Sb
muon-tin spheres, suggests that the Imm2 structure is
energetically more favorable than the P-Sn structure be-
cause it has a lower Madelung energy.

While the calculated InSb lattice and bulk modulus for
the zincblende structure are in agreement with the previ-
ous pseudopotential calculations, ' the calculated
zincblende —/3-Sn transition pressure is nearly 60% small-
er than the value obtained in Ref. 13. This large
discrepancy in the calculated transition pressure, we ar-
gued, is due to the relaxing of the In and Sb shallow core
states (4d's) in this work.
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