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We derive a general crack-propagation law for slow brittle cracking, in two and three dimensions, us-

ing discrete symmetries, gauge invariance, and gradient expansions. Our derivation provides explicit
justification for the "principle of local symmetry, " which has been used extensively to describe two-
dimensional crack growth, but goes beyond that principle to describe three-dimensional crack phenome-
na as well. We also find that there are materials properties needed to describe the growth of general
cracks in three dimensions, besides the fracture toughness and elastic constants previously used to de-
scribe cracking.

I. INTRODUCTION

There are many aspects of the problem of crack growth
that have received a lot of attention recently. For in-
stance, there has been much interest in dynamic fracture'
and the accompanying crack bifurcation and other in-
stabilities. The transition between failure due to per-
colation of a network of many small cracks and failure
due to a single dominating crack has also been explored,
as well as the transition between brittle and ductile crack-
ing. Pattern formation in multiple cracking has also
been of interest. In light of all the interest in these rather
complex phenomena of fracture, it is somewhat surpris-
ing to find that little is known about the growth laws for
even slow-growing, single three-dimensional cracks,
though there has been some work done on calculating the
paths of cracks in two " and three' dimensions, and
many measurements and calculations of the crack growth
rate for simple two-dimensional geometries. '

The problem of finding a growth law for cracks would
seem to be of fundamental interest; so, in this paper, we
apply standard tools of theoretical physics —gradient ex-
pansions, symmetry, and gauge symmetry —to find the
most general possible growth law for a three-dimensional
crack growing slowly in a homogeneous, isotropic medi-
um. Since, with today s computers, it is possible to make
precise numerical computations of the elastic fields for
arbitrary three-dimensional geometries in a matter of
hours, we do not consider the related problem of finding
the stress state of the material containing the crack, but
consider it to be completely known.

We also compare the crack growth law we derive here
to previously derived and measured properties of cracks
in two and three dimensions. There is one parameter f in
our growth equation which is expected to be very large
for real materials. We will see that our growth equation
is simplified in the f~~ limit, so that it becomes
equivalent to previously known growth laws, under some

loading conditions, but that, under other conditions,
there is more interesting behavior which has yet to be ex-
plored fully (work in progress).

II. SIMPLIFICATIONS

We begin by simplifying the problem of crack propaga-
tion using length and time scale considerations. First, we
smooth our crack problem over the length scale l, which
characterizes the size of inhomogeneities and anisotropies
in the material containing the crack. Although for a
single-crystal sample, removing the anisotropy by
smoothing is impossible, so that l, is effectively larger
than the sample, for many situations of practical
relevance l, is much smaller than the size of the body.
For example, in a glass, l, is a few atomic sizes; in a poly-
crystal, it is the grain size; in concrete, it is the size of or
distance between the pebbles it contains. In those cases,
we can smooth the crack problem over l, without losing
much information, making the crack a smooth surface,
and the material containing the crack continuous, homo-
geneous, and isotropic. For this paper, we assume l, is
small.

A second length scale in crack propagation problems
arises because every material has some stress above which
it fails to have linear elastic properties (e.g. , it begins to
flow, plastically or viscously, it emits dislocations, its
bonds break, or it has a martensitic transformation). For
some materials, this stress is very low, and there is essen-
tially no linear elastic regime. For others, linear elasticity
is valid except very near the crack tip, where the stress is
much higher than in the bulk of the body. For these ma-
terials, there is a length scale l„~ which characterizes the
size of the nonlinear process zone around the crack tip;
l„~ can range from a few angstroms in glass to tens of cen-
timeters in concrete. In this paper, we consider only ma-
terials for which l„~ is small compared to the length of the
crack and the size of the body, so that the bulk of the ma-
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terial can be considered linear elastic. This work, then,
describes materials usually considered linear and brittle,
as well as materials exhibiting viscoelasticity, plasticity,
and martensitic transformation toughening, as long as the
length scale for these behaviors is sufficiently small. In
principle, the nonlinear properties of such materials
could be included to extend applicability to smaller
length scales.

A third length scale relevant to crack propagation is
associated with the degree of translational invariance
along the crack front. For many crack systems studied in
the past, every plane perpendicular to the crack front is
equivalent, which means that the problems are effectively
two dimensional. On the other hand, some practical
crack problems are not two dimensional, but instead have
crack-front curvature or stresses which vary along the
crack front. If this is the case, then there is a length
scale, which we call the dimensional crossover length l~„
above which the problem is effectively three dimensional;
lz, is either one of the geometric lengths associated with
the crack geometry (such as the radius of curvature of the
crack front), or is associated with the stress gradient:
lz, =o/Vo. . For this paper, we assume that lz, is large,
though not necessarily as large as the size of the body
containing the crack, and we expand in powers of quanti-
ties which are inversely proportional to l~, (i.e., gra-
dients).

A fourth type of length scale that enters the crack
problem is a crossover length I, where the linear elastic
solution for the displacement u near a crack,
u =Cr' f (B), where (r, B) are the polar coordinates cen-
tered at the crack tip, f is a known trigonometric func-
tion, and C is a constant, crosses over to behavior with a
different power law in r. (There is a corresponding cross-
over in the stress and strain; both stress and strain can be
found from the displacement. ) This arises because the
elastic equations around a crack allow many solutions of
the form u =Cbr fb(B). Asymptotic analysis shows that
the only allowed values of b are integers and half integers.
The integer b solutions turn out to be unimportant for
fracture because they have the same displacement on
both crack surfaces, and hence no crack opening. The
half integer b solutions do have crack openings, and
could all represent fractures; the usual practice, however,
is to use only the b =

—,
' solution. We can justify this prac-

tice using a length scale argument closer to the crack
tip than a length l,+, the b =

—,
' solution dominates over

larger b solutions; farther away from the crack tip than a
second length l, , the b =

—,
' solution dominates over

smaller b solutions. Normally, l, is only a few times
larger than the nonlinear process zone, ' and l,+ is only a
few times smaller than the crack length, ' ' so that,
given the above assumptions, we do expect the 6 =

—,
'

solution to dominate all other solutions. We assume that
is the case in this paper.

Finally, we also simplify the crack propagation prob-
lem by considering cracks that are growing slowly
enough that inertial and relativistic (close to the speed of
sound) effects are unimportant. Some of these effects
could be included in future work, but the present analysis

suffices for cracks that arrest after growing a certain dis-
tance, such as when a wedge is driven into a crack; cracks
that grow at a constant speed, such as under constant dis-
placement loading; and cracks that may eventually speed
up, but which are currently growing slowly, as in the
cases of fatigue cracks, subcritical cracking, and the first
stages of growth under constant force loading.

III. RELEVANT VARIABLES

The knowledge of length scales from the previous sec-
tion simplifies our problem to a nearly two-dimensional
smooth crack, in an isotropic, homogeneous, linear-
elastic, continuous bulk medium. Still, at first glance it
appears that there are many variables which could
inhuence the propagation of the crack; for example, the
load on the surface of the body, type of material, temper-
ature, ambient atmosphere, and the stress and fracture
history. However, we are concerned here with the propa-
gation of a crack given the elastic fields in the body, not
the precise conditions that produce those fields. Also,
many variables, such as stress history and temperature,
can be included implicitly in materials constants, which
we also assume are known. So, for this work, the
relevant variables are the elastic fields near the crack tip,
materials constants, and the current configuration of the
crack.

Now, in effectively two-dimensional problems satisfy-
ing the assumptions of the previous section, it is well
known that the elastic fields (e.g. , stress, strain, and dis-
placement) near the tip of the crack —which is the only
area we expect to inhuence crack growth —are deter-
mined by three stress-intensity factors (SIF's). For in-
stance, the displacement obeys'

u, (r, B)= gK &2rrr f, (B),

where (r, B) are the polar coordinates in the two-
dimensional plane, the K are the mode I, II, and III
SIF's, and the f, are known trigonometric functions.
[There are similar expressions for the stress and strain
fields;' each SIF corresponds to a physical mode of
crack opening (see Fig. I).] So, the relevant variables for
the elastic field near a two-dimensional crack, instead of
being a displacement vector at every point in the plane,
are reduced to just three numbers, the SIF's.

In three dimensions, we need more variables for the
elastic fields, since each plane in the material is different.
In situations where the variation from plane to plane in
the material is strong, that would involve solving the full
three-dimensional elasticity equations, but the variation
is weak under the assumptions of the previous section.
So, to good approximation, each plane satisfies two-
dimensional elasticity, and in each one we can character-
ize the elasticity by three SIF's. Therefore, for the elas-
ticity in three dimensions, we need three SIF's at each
point on the crack-front curve. As in the two-
dimensional case, this is a large reduction in variables
from a displacement vector at every point in the body.

Another variable that is relevant to crack growth is the
starting shape of the crack, which consists of two-
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An=

A

b,
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dimensional surfaces in three-dimensional problems, and
one-dimensional curves in two-dimensional problems;
however, the only part of the crack surface that
influences the growth of the crack, beyond affecting the
elastic fields, is the part near the crack front. The
geometry of this part of the crack, in three-dimensional
problems, is given by the crack-front curve, x(A, ), and the
direction of crack growth, n(A, ) [see Fig. 1(a)], where k is
an arbitrary parameter for the crack-front curve; these
suf5ce because n(A) and x(A. ) together determine the
plane of the crack near the crack front. (In two dimen-
sions, this reduces to a single crack tip point x and a sin-
gle growth direction vector n. ) In three dimensions,
there are three unit vectors associated with this descrip-
tion: t(A, )=Ox/Bs, the tangent to the crack front, with s
the arc length& n(A, ), which is by definition perpendicular
to t(A, ); and b(A, ):—t(A, ) Xn(A, ), the normal to the local
crack plane [see Fig. 1(a)j. In fact, any two of the three
unit vectors are enough to determine the crack geometry;
we use all three for convenience. Note that since the ma-
terial containing the crack is isotropic, the coordinate
system defined by these unit vectors is the only one physi-
cally relevant to crack growth, and all other quantities
(such as the SIF's) are understood to be defined in this
coordinate system.

IV. THE CRACK GROWTH LAW

Bx/Bt = 3n+Bt, (2)

for some A and B. Since t is determined by the crack-
front curve x, while n is not, if we want to know more
than the instantaneous change in x, we will also have to
know Bn/Bt. Since n is a unit vector, Bn/Bt cannot have
a component along n, so we can write that

Bn/Bt =Ct+Db, (3)

for some C and D. Equations (2) and (3) are now enough
to specify the complete time evolution of the crack, given
expressions for 2, B, C, and D.

There are several considerations we can use to find
these coefficients. First, gauge symmetry and the require-
ment that t, n, and b are mutually perpendicular (see Ap-
pendix A) reduce Eqs. (2) and (3) to

C)X =Un+ a„t,at
(4)

Now we are ready to derive a crack growth law in our
relevant variables: materials constants, the SIF's, and the
three unit vectors associated with the crack geometry.
That is, we are ready to derive an expression for the time
evolution of the crack-front curve x(A, ) as an expansion in
the gradient 8/Bs =(Bs/M, ) '8/BA, ; 8/Bs is small under
the assumptions above, and strictly zero in two dimen-
sions.

Under the assumption that the crack surface is smooth,
the time derivative of x must be in the plane of the crack,
so we can immediately write that

Bn
at

BU ()Il ()g+w, -t t+ E+m„-b b,
Bs ' Bs Bs

(c)

FIG. 1. (a) Vectors associated with a point on the crack
front: t is the tangent to the crack-front curve; n, perpendicular
to t and in the crack plane, is the direction of crack growth;
b=t Xn is the normal to the crack plane. (b) A crack loaded in
mode I, with E& &0. Arrows show direction of crack opening
displacement. (c) A crack loaded in mode II, with K» )0. (d)
A crack loaded in mode III, with K»& )0.

where E and U are physical functions, m„ is a nonphysical
function which characterizes the gauge, and all quantities
are implicit functions of A, and t. This means that the
growth of the crack is now determined by only two physi-
cal functions.

Consideration of the discrete symmetries of the crack
problem further constrains these two functions. We con-
sider symmetry operations, at some point A,o on the crack
front, which leave the unit vectors at Ao fixed and reAect
or rotate the material, preserving the physical properties
that t(ko) is the tangent to x, and that n(AO) is the direc-
tion of crack growth at A,o. (This type of transformation
is equivalent to leaving the material fixed and transform-
ing the coordinates, but we choose to leave the coordi-
nates fixed to avoid questions of the parity of the coordi-
nate system. ) There are two independent symmetry
operations, which we take to be (a) 180 rotation about
n(AO), and (b) reIIection in the n (Ao)-t (Ao) plane (see Fig.
2).

We need the transformation properties of E and U in
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Eq. (4), as well as the variables and derivatives at A, o, all
quantities either remain the same or change sign under
the two transformations. First, U, which is the rate of
crack growth, must remain unchanged under both trans-
formations, since a change of sign would change crack
growth into crack healing. In contrast, E must change
sign under both transformations, since it multiplies b in
Eq. (4), and while b, the local normal to the crack plane,
is invariant under the transformations, the physical nor-
mal to the crack plane changes sign under both.

Next, we need the transformation properties of the
SIF's. K, transforms like the stress component o.», K»
like o.„l„and Error like o.&„as can be seen from Fig. 1.
The stress o is a tensor that transforms with the material;
symmetry operation (a) takes material at (x„,x&,x, ), in
coordinates with origin at A,o, to (x„, xb, ——x, ); symme-
try operation (b) takes material at (x„,x&,x, ) to
(x„,—x&,x, ). Therefore, K, ~K, under both (a) and (b),
K„~—K» under both, and K»t~K„, under (a) and
—K&„under (b).

We also need the transformation properties of the SIF
gradients. Consider a case where one of the SIF's, before
transformation, is greater in absolute value for x, )0
than for x, &0, so that t)~K~/t)s )0. Then, under trans-
formation (a), the material at x, )0, which has the
greater ~K~, moves to x, & 0, so that t) ~K~ /t)s & 0 after the
transformation; transformation (b) leaves x, unchanged,
so that t)~K~/t)s remains )0. These results can be com-
bined with the transformation properties of the SIF's
themselves to give the transformation properties of the
gradients of the SIF's; the results are in Table I.

We also need the transformation properties of gra-
dients of the unit vectors. We are interested only in non-

TABLE I. Transformation properties of relevant variables,
their derivatives, and the two physical functions, under the two
symmetry operations (see text). Note that products of these
quantities transform as the product of the transformation prop-
erties; e.g. , (K»K»& ) is —under (a) and + under (b).

Quantity

KI

K))
ax,
Bs

Bs

9s
Ãn

c3s

Bn .b

—b
ds

(a) 180 n rotation (b) n —t reAection

vector quantities for use in v and E; to make the vector
gradients into pseudoscalar quantities, we use the com-
binations t)a/t)s b, where a and b stand for jn, b, t I. [We
use the term pseudoscalar because, while these are not
vector quantities, they do not necessarily transform as
scalars under operations (a) and (b), but may change sign.
The SIF's are also pseudoscalars. j Noting that

B(a.b) =0 Ba b+ Bb
as as

+
Os

(5)

A
n =

A

b

(b)

A

b )

A

A
n =

FICx. 2. Transformations (a) rotation about n and (b)
reAection in the n-t plane on (c) the untransformed crack.

for all a and b, since n, b, and t are mutually orthogonal
unit vectors, we can see that there are only three indepen-
dent combinations to consider, which we take to be
(t)n/t)s) t, (t)n/t)s) b, and (8t/Bs) b. From Fig. 3, we
can see that the transformation properties of these three
quantities are as shown in Table I.

The only relevant variables left to consider transforma-
tion properties of are the materials constants, but they
are by definition true scalars, and cannot change sign un-
der any transformation. Also, their gradients 8/Bs are
zero, as they are constant throughout the material.

With these symmetry properties, we can now derive a
law for crack growth. First, we examine the case of a
crack in two dimensions, where both 0/Bs and ur are
zero; the fact that 8/Bs =0 means that the only nonzero
scalar and pseudoscalar quantities are combinations of
the SIF's and materials constants. Under symmetry
operation (a), K, , Kttt, and the materials constants
remain the same, while K&& changes sign; under operation
(b), both K» and K», change sign, and everything else
remains the same (see Table I). Since the three SIF's
have difFerent transformation properties, and only K»
transforms like E, we see that the two-dimensional crack
growth law must have the form
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Bx/Bt =un,

Bn/Bt = —fK„b,
where both v and f are true scalars; i.e., functions of ma-
terials constants, K&, K», and K&,&. The minus sign
makes f & 0 correspond to the observed direction of
crack growth under mode-II loading; this is discussed in
the next section.

In three dimensions, the gradient 8/c)s is not strictly
zero, and there are therefore more scalar and pseudosca-
lar quantities to consider than in two dimensions (see

Table I). From the transformation properties of these
quantities we can see that the physical crack growth law,
to first order in 8/Bs, has the general three-dimensional
form

Bx =Un+mt,
at

Bn
at

SKI BK»+ —fKrr+grKrrr
&

+grrKrrKrrr
Bs a

~Krrr Bi an
+gi» +h~ -b+ h„,K»

Bs Qs Bs

+(h bKIIKIII+ rv) 'b b
9s

(b)

A

where the f, g, and h, are scalars, zeroth order in r)/Bs
(functions of materials constants, Kr, Krr, and Krrr ); and
u is a scalar, up to first order in r)/Bs [a function of ma-
terials constants, Kr, K rr, K rrr, (Krr Krrr BKr /Bs ),
(K„rBK»/Bs), (K»BK«r/Bs), [K»(Bt/Bs) b],
[(Bn/Bs) t], and [Kr»(Bn/Bs) b]J.

Equation (7) can easily be expanded to higher order in
8/Bs. Also, we note here that while the SIF's have been
used in this section as the variables describing the elastic
fields in the crack, Eq. (7) is actually applicable to other
solutions to the elasticity near a crack. That is because,
in an isotropic body, it turns out that the coefficients ap-
pearing in the other solutions have the same symmetry as
the SIF's. So, if it is ever determined that one of the oth-
er solutions is more important for a particular problem,
Eq. (7) can still be used, by substituting the proper
coefficients for the K .

V. THE UNDETERMINED FUNCTIONS
IN THE CRACK GROWTH LAWS

FIG. 3. Illustrations for the transformation properties of the
three unit vector combinations. (a) Top view of the surface of a
planar crack with a curved crack front, which makes
(Bn/Bs) -tl0, and (Bn/Bs) b = (Bt/cps) -b =0 (b is constant).
Under rotation of the material about n(ko), keeping the vectors
fixed [symmetry operation (a)], it can be seen that the value of
(Bn/Bs) t at A.o stays the same', under reAection of the material
in the n (Ao)-t(AD) plane, again keeping the vectors fixed [sym-
metry operation (b)], (Bn/Bs) t is also invariant. (b) A nonpla-
nar crack with (Bn/Bs). b@0, and Bn/Bs t=(8t/Bs). b=O (t is
constant). From this crack configuration, it can be seen that un-
der symmetry operation (a), (Bn/Bs). b is invariant, but it
changes sign under symmetry operation (b). (c) A nonplanar
crack with (St/Bsi. bWO, and (Bn/Bsi. t=(Bn/Bs) b=O (n is
constant). From this crack configuration, it can be seen that
(Bt/hs) b changes sign under symmetry operations (a) and (b).

Now, in Eqs. (6) and (7) we have general forms for the
crack growth law for two- and three-dimensional cracks.
These equations contain unspecified functions —v, f, g
and h; —which must be determined from considerations
other than the symmetry considerations we used to find
Eqs. (6) and (7). Probably the most important of these
functions is the crack growth rate v, a function of materi-
als constants K„K», and K,&&

in two dimensions. This
function has been measured for mode-I cracks' and gen-
erally has the form of the solid line in Fig. 4(a), with no
growth for K, below some value K,~, which depends on
the material, and a monotonically increasing growth rate
above K&c. This schematic form has also been found in a
theoretical calculation for a viscoelastic system. ' How-
ever, both in theory and in very clean experimental
systems, ' the growth rate has the form in Fig. 4(b),
with a negative value (crack healing) when Kr (Krc.
This means that the growth rate is a continuous function
which passes through zero at K&c, so that for SIF's near
K c (i e., for slow growth), we can expand u as



4836 JENNIFER A. HODGDON AND JAMES P. SETHNA 47

v (Ki ) =vo(Ki Kic )/Kic with vo a material-dependent
constant. For mode-II and -III cracks, as well as mixed-
mode cracks, since the elastic energy released per unit
area of crack surface (the "energy release rate") is pro-
portional to [K i +K ii +K iii /( 1 —v) ], where v is
Poisson's ratio, we expect that a growth-rate function
valid for all modes of cracking can be expanded as

v (Ki Kii Kiii)=vo
C

where

K = [Ki +Kit+Knit�/(1 —v)

Also, note that for fatigue cracking, where our growth
laws must still hold (on time scales long compared to the
load cycle), the growth rate generally does not go to zero
sharply at K~, but has the more gradual turn-on behav-
ior of the dotted line in Fig. 4(a).

Now, we saw in the previous section that the crack
growth rate in three dimensions can also depend on gra-
dient quantities, besides the SIF's; the dependence of the
crack growth rate on these quantities has not been mea-
sured, to our knowledge. However, there is no reason to
suppose that the dependence on these quantities has spe-
cial behavior (e.g. , zero crossing or very strong depen-
dence on SIF's) near Kc, the value of the SIF where the
crack growth rate becomes positive. So, for slow growth,
where K=K&, we expect that we can approximate the
dependence of the crack growth rate on the gradient
quantities by a constant, and absorb it into Uo.

Similarly, we expect that the seven functions f, g, and
h," in Eqs. (6) and (7), which are allowed by symmetry to
be functions of materials constants K, , K», and K,II, can
be approximated as constants when the growth rate is
small. This means that to find the material-specific form
of the crack growth law, for slow growth, it is a reason-
able approximation to measure only the linearized depen-
dence of the crack growth rate on K, and the constant
parts of f, g, and h, . So, with only a small number of
experimental data points, our general formulation can be
used to predict the growth of real cracks.

We can also use the above discussion of length scales to
make an order-of-magnitude estimate of some of these
constants. Under our assumptions, the only time scale in
crack growth comes from the crack growth rate, which
we write as U =Ra /Bt, where a is the length of the crack
along a trajectory which has constant A., in the reference
gauge (see Appendix A). If we divide the second part of
Eq. (7) by v, we have

l \
1 1

~ I I

(b)

FIG. 4. (a) Form of the crack growth rate U as a function of
stress intensity factor K in ordinary crack experiments, where
the growth rate is zero below a critical value Kc of the stress-
intensity factor, and then has a sharp turn-on. The dotted line
shows the behavior under fatigue, where the growth rate in-
creases more gradually. (b) Form of the crack growth rate in

very clean experiments, where crack healing can take place.

Bn 1 Bv tv8t+— -n t
Ba U 0s v Bs

f gi 1 gii ii giii iii tb ot nt Bn
II III g II III g g g »

~nb KIIK I» + an+ 1 b.
V a
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The left-hand side now has dimensions of inverse length,
as must each term on the right-hand side. This means, in
particular, that f /v contains an inverse length, and since
the only length scales in the problem are microscopic, un-
der our assumptions, f /u must be nearly infinite. (f /u
also contains an inverse SIF scale,' the natural scale for
SIF's is Kc. )

On the other hand, all other terms on the right-hand
side of Eq. (9) contain the gradient operator 8/Bs, which
has dimensions of inverse length, so their coefficients
g /u and h,~/u do not contain length scales. For that
reason, we do not expect these functions to be either very
large or very small, but instead to be of order 1 (with ap-
propriate factors of Kc ).

VI. PREDICTIONS OF THE TWO-DIMENSIONAL
CRACK GROWTH LAW

Let us now examine the two-dimensional crack growth
law, Eq. (6):

Bx/Bt =Un,

Bn/r)t = fK„b . — (10)

When EI~ =0 this equation says that the crack grows in
a straight line (since Bn/Bt =0), in agreement with the
"principle of local symmetry" generally used to predict
crack growth in two dimensions. However, the principle
of local symmetry also says that E» =0 is maintained at
all times by the propagating crack —in effect, that the
crack curves in such a way as to keep K» =0. Our law,
in contrast, says that it is only a nonzero K„which can
make the crack curve, but that (with f &0) the crack
curves in such a way as to make K„smaller (see Fig. 5).

Now, we can resolve the differences between the princi-
ple of local symmetry and our crack propagation law by
dividing by the crack growth rate u =Ra /r)t and by writ-
ing n and b in terms of the angle 0 that n makes with the
x axis. With these changes, Eq. (6) becomes

FICj'r. 5. Qualitative picture of crack growth in mode II,
where the crack curves so as to reduce the mode-II stress, leav-
ing only mode-I stress. (a) Our picture, where the crack curves
gradually to the direction where K&&=O, on a length scale of
2v l(fK, ) (b) The "principle . of local symmetry" picture, where
there is a sharp kink to the direction where E» =O. Note that
in the f~ oo limit, the two pictures agree.

r)x/Ba = cosOx+ sinOy,

BO/Ba = —
(f /u)K„.

to find that

EO(a) =AO(0)e (14)

Kn(x) =Kt(0) b O(x)/2, (12)

neglecting terms of order (x/a)', where a is the length
of the original long crack and K, (0) is the starting value
of K, (see Appendix B). Substituting Eq. (12) in Eq. (11),
we see that

fK, (0) 60,
2U

(13)

which we can immediately solve, taking f and u constant,

In principle, f, v, and K&& are functions of x and O. How-
ever, in the case of a small amount of growth at the end
of a long crack, we expect f and v to be nearly constant
as the crack grows, since the SIF's only change by a small
amount during the growth (see Appendix B). Also, when
0 differs from the angle that makes K«=0 by only a
small amount b, O(x), we can approximate K» as

That is, if we start a crack with a small deviation b, O(0)
from the direction predicted by the principle of local
symmetry, then our crack propagation law says that the
deviation decays with a characteristic distance of
2u /( fK, ), and since we saw in the previous section that
f /u is very large, this distance is very short. In the limit
that the distance is zero, or f /u ~ oo, our crack propaga-
tion law for two dimensions agrees with the principle of
local symmetry.

VII. CONCLUSIONS

We have seen that from symmetry principles we can
derive a crack growth law for both two- and three-
dimensional geometries. The laws we derived, Eqs. (6)
and (7), contain several functions, such as the crack
growth rate, which are not determined by symmetry
alone and must be measured in controlled cracking exper-
iments or atomic simulations; we expect that for slow
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crack growth, only one value for each of the functions
should suffice for predicting crack paths.

Our crack growth law agrees with the principle of local
symmetry in the limit (f~ ~) that the microscopic
length scales in the crack problem are truly zero, in two
dimensions. In three dimensions, it will require a more
careful asymptotic analysis to understand completely the
predictions of the crack growth law in this limit. Initial
simulation results indicate that for a crack that is slightly
perturbed from the two-dimensional plane, the principle
of local symmetry is enough to determine the growth un-
der mode-I loading. However, even using a large value of
f in our simulations does not prevent Ki& from becoming
large in the vicinity of sharp features which tend to occur
under mode-III loading, in violation of the principle of
local symmetry. So, the principle of local symmetry is
not enough to determine the growth of all cracks, even in
the f~ ~ limit, and our full growth equation —subject
to asymptotic analysis —provides an alternative.

By using symmetry principles, separation of length
scales, gauge invariance, and gradient expansions, then,
we have derived effective, macroscopic equations govern-
ing the growth of cracks in three dimensions. We have
course-grained the problem so that microscopic
details —such as atomic bond breaking, crystalline grain
morphology, deformation near the crack tip in response
to strain, and surface effects —are on such small length
scales that they cannot affect the macroscopic crack
growth. Understanding the microscopic origins of our
effective growth equations, and describing crack growth
on very small length scales, where our crack growth law
is not valid, will demand calculations that include these
microscopic details.
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APPENDIX A: GAUGE SYMMETRY AND CRACKS

There are many cases where the natural mathematical
description of a problem introduces fictitious degrees of
freedom with no physical relevance. The most well-
known example is in electromagnetism, where all physi-
cal quantities are unchanged when the gradient of an ar-
bitrary function y(r) is added to the vector potential A.

The transformation A~A+ V'y is an example of a
"gauge transformation"; the invariance of physical quan-
tities under such a transformation is called "gauge invari-
ance. " The strong and weak forces of particle physics
also have gauge transformations associated with them.
In general relativity, the choice of coordinate system for
space-time is arbitrary; this gauge invariance can be used
to derive momentum and energy conservation. Anoth-
er use of gauge symmetry is in site-disorder spin
glasses, where a gauge transformation is used to show
that the certain forms of disorder do not result in spin-
glass properties, but in ferromagnetic behavior.

The term "gauge" is particularly appropriate for the
gauge symmetry of our problem, where the parametri-
zation 1 of the crack-front curve x(A. , t) is arbitrary: how
one "gauges" (measures) the points along the curve can-
not affect the growth of the crack. There are two
different types of gauge symmetry for cracks. The first
type is the freedom to change the parametrization at any
one time, which we call the "one-time gauge symmetry. "
The second is the freedom to choose how the parametri-
zation at some time is related, through the growth equa-
tion, to the parametrization at a later time; we call this
the "time-dependent gauge symmetry. " Crack growth
laws must satisfy both gauge symmetries; that is, neither
the one-time nor the time-dependent gauge transforma-
tion can change the physical crack growth equation.

To satisfy the one-time gauge symmetry, the crack
growth equation must be invariant under any change in
the parameter A, . This means that the equation cannot
have any direct dependence on the value of A, at a point
on the crack-front curve, but instead must depend on
physical quantities, which are implicit functions of A..
Also, derivatives along the crack-front curve appearing in
the equation cannot be 0/Bk, but must instead be in
terms of the arc length s, because 0/0s is gauge invariant,
up to a choice of a minus sign; the equation must also be
invariant under reversal of this sign.

The time-dependent gauge symmetry is slightly more
complicated. Knowing Bx(A., t)lr)t tells us how a point
with parameter value A, evolves in time. This means that
the time evolution of the parametrization is implicit in
the crack growth equation, and time-dependent gauge
transformations change its appearance, unlike one-time
gauge transformations. This change happens in a well-
defined way: if we have the crack growth law of Eqs. (2)
and (3),

ax(X, r)
Bt

(A 1)

Ãn(p, t) ~ Bn(A, , t) gp
Bt BA, Bt

(A2)

Ail ( A' r ) ~+D b
at

where the right-hand sides are implicit functions of k and
t, when we introduce a time-dependent gauge transforma-
tion to a new parameter p(A, , t), then the crack growth
law becomes

Bx(p, t) Bx(A, , t) Bp
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"'"'"= ~"+(a+ )t,
at

Bn(P, , t) ~t+Db+ Bn

a a

(A3)

w characterizes the time dependence of the gauge trans-
formation.

There are three particular time-dependent gauges that
we have found to be of special use in our study of crack
growth. First, there is the "reference gauge, " where
B + w in Eq. (A3) is zero. In this case, curves of constant
parameter k„are the integral curves of n, and the form of
the growth equation is found to be

ax(X„,t)
=vn

at

Bn(A, „,t)
at

t+Eb .
as

(A4)

The (Bu/Bs)t term comes from the requirement that
n t=O be preserved at all times; the functions E and v are
free, as far as time-dependent gauge symmetry is con-
cerned.

Since we know the growth law more explicitly in this
gauge than in the generic gauge, it is a natural reference
gauge for discussing other time-dependent gauges. In
fact, comparing Eq. (A4) to Eqs. (Al) and (A3), we see
that the growth law in a general time-dependent gauge
can be written as

Bx(p, t) =vn+w„t,
at

(A5)
Bn(p, , t)

at
+ . + E+ .b b .Wn

a
.t t W~

Note that w„=(Bs/M, „)(Bp/Bt) is a nonphysical gauge
function characterizing the time dependence of the
chosen gauge; E and v, on the other hand, are physical
functions describing the crack growth.

Another particular time-dependent gauge of interest is
the "arc-length gauge, " where the parameter k is always
equal to the arc length s along the crack-front curve,
measured from some starting point (such as the edge of
the body). Since the arc length along the crack front is
s(k)= ji ~~Ox/BX~ ~dA, , if we are initially in the arc-

0

length gauge, then we find that we can remain in that
I

where the right-hand sides are now implicit functions of
p and t, except where indicated. Writing
8/M. =(Bs/BA, )(B/Bs) (with s the arc length), defining a
new function w = (r}s /M, )(dp/r)t), and using the
definition of t—:Bx/Bs, we can write Eq. (A2) as

gauge by choosing

w„(X, )= —f u, t dA, ' .
ko

(A6)

Although arc length is physically the most natural pa-
rametrization for a curve, the arc-length gauge is not usu-
ally very convenient, since w (A,, ) is a nonlocal
function —as the crack grows, if the arc length of a sec-
tion near some point A, , stretches (or shrinks), k, must
shift upwards (downwards) for all points with A,, ) A, i.

A third time-dependent gauge, the "z gauge, " is useful
for cracks that have crack fronts which are nearly aligned
along some axis, which we take to be the z axis. In this
case, it is natural to use a gauge where the parameter k,
of the crack front is the z coordinate of x(A, , t). To
achieve this, the z component of ax/at in the crack
growth equation must be zero, which makes

n, (A,, )
w„(A,, )= —u (A,, )

t, (k, )

(A7)

Similar ideas can be used to make special gauges for
cracks that are nearly circular, parametrizing with the
angle P from the x axis, for instance, and for other com-
mon crack geometries.

APPENDIX B: APPROXIMATION OF E„
IN TWO DIMENSIONS

In this appendix, we derive the approximate equation
(12),

Kii(x) =Ki(0) [b,9(x)/2], (B1)

which gives K&& after the crack has grown to x from the
end of a long crack of length a, in terms of the deviation
b.0(x) of 8 (the angle that n makes with the x axis) from
the angle that makes K„(x)=0. First, we can use the re-
sults of Cotterell and Rice" to find that as a function of
the x coordinate of x, measured from the end of the origi-
nal long crack,

K„(x)=K„(0)+—9(x)K,(0)
1

1/2
2 0(x')

o (x —x')'" (82)

where T is the nonsingular (constant) part of the tensile
stress at the end of the crack. Now, when the principle of
local symmetry is satisfied, 0(x) has the value which
makes K„(x)=0; we assume that 9 differs from this value
by a small amount 69(x). Furthermore, since T, the con-
stant tensile stress in the body, is the source for K, , we
can take T=b[Ki(0)/&a ], with the appropriate
geometric factor b. Then we find that

K„(x)=K, (0) 1 4b—1/2

f x Qg(x') x
o b 8(x) x —x'

] /2
dx
2x

(B3)

Now, if b, 8(x) is constant, then the integral on the right-hand side is equal to 1; small variations of b, 0(x) from the con-
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stant value leave the integral approximately l. Noting that the integral is multiplied by (x/a)'~, which is small by as-
sumption, we can therefore neglect it, and approximate K„as

Ktt(x) =Kt(0) [b,9(x)/2], (B4)

which is Eq. (Bl). We also note that under the approximations of this appendix, and with further results of Cotterell
and Rice, "K& is approximately constant.
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