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Magnetic structure near (310) tilt boundaries in iron
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The layer Korringa-Kohn-Rostoker method has been used to investigate the electronic and magnetic
structure of an isolated, symmetric 25 Fe (310) tilt boundary. The calculation shows an enhancement of
the local magnetic moment at the grain boundary, which decays away rapidly from the region of the in-
terface. The magnitude and form of the enhancement is similar to that found near iron surfaces from re-

cent tight-binding calculations.

The interplay between magnetism and structure is an
intriguing feature of iron and many studies have been de-
voted to studying various aspects of iron magnetism in
different structural settings. The variety of magnetic
structures shown by thin iron films grown on copper! sur-
faces attests to the richness of the magnetism-structure
relationship. Iron is also an important technological ma-
terial in its own right, and the quest for alloys of iron
with ever more demanding mechanical, electrical, and
magnetic properties remains a challenging area of
research. For example, a ductile iron aluminide has been
developed recently with properties that compete very
well with stainless steel and other iron alloys.>? This ma-
terial combines high strength with good ductility, and ap-
pears to be more resistant to sulfidation than other alloys.
At the same time, the cost of the material is relatively
low.

Despite the considerable effort that has been invested
in the study of magnetic surfaces and overlayers,! com-
paratively little is understood about the magnetic and
electronic properties of grain boundaries. Much of the
theoretical work on grain boundaries has involved using
atomistic simulations to characterize the structure of the
grain boundary and calculate the interface energy, or to
compare the structure with x-ray measurements® or
high-resolution electron micrographs.* Other approaches
have used topological structural-unit models to describe
the different types of structures that are possible at a
grain boundary.>® The embedded-atom method has been
used to model crack formation near Ni and Ni;Al grain
boundaries,” and the applicability of the method to
body-centered-cubic materials has been addressed recent-
ly.! However, the magnetism of iron is certainly an in-
hibiting factor to applying the embedded-atom method
because of the additional complications involved in deter-
mining the embedding function.

From the point of view of conventional ab initio elec-
tronic structure methods, grain boundaries present a for-
midable challenge because of the absence of translational
symmetry. The use of a periodic array of grain boun-
daries might be contemplated, though even treating the
simplest grain boundaries would require a large number
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of unique atoms because of the small interlayer spacing.
For the (310) grain boundary considered here, the inter-
layer spacing is a /V'10, where a is the lattice constant.
First-principles calculations have included tight-binding
cluster calculations, which suffer from the drawback of
including free interfaces, and so far fail to treat longer-
range effects of d electrons. In addition, the extension of
cluster methods to large systems is proving to be a for-
midable task particularly with regard to the embedding
to remove the free boundaries. Semiconductor grain
boundaries have been studied using tight-binding
methods,” and pseudopotential-simulated annealing tech-
niques.!°

In this paper we present results of a calculation on an
isolated 35 Fe (310) tilt boundary using the layer
Korringa-Kohn-Rostoker!! (LKKR) technique optimized
for closely spaced layers.!? In the LKKR method, the
central quantity is the Green’s function, G (r,r;E,o) at
energy E and spin o, which is calculated using multiple
scattering theory. Once the Green’s function has been
obtained, other properties such as the density of states,
charge density, and total energy may be derived. For ex-
ample, the local charge density is given by
p(r;E,o)= — 7 'ImG(r,r;E,o). The featureless struc-
ture of the Green’s function even for moderate imaginary
parts of the energy also has the added benefit of requiring
fewer sampling points than for corresponding calcula-
tions on the real axis. The LKKR technique has already
been applied to the calculation of stacking-fault energies
in close-packed metals'® and has also been used to study
an idealized tilt boundary in nickel.'*

The LKKR Green’s function is constructed by subdi-
viding the system into layers, which may either be
stacked periodically to recover three-dimensional transla-
tional symmetry, or embedded in a semi-infinite half-
space of layers; the atoms comprising each layer need not
be coplanar. The atomic potentials are constructed using
the “muffin-tin”> approximation. The scattering matrices
of each atom are calculated in an angular momentum
basis, from which the scattering matrices of each layer
are calculated and expressed in a plane-wave basis. The
layer-scattering matrices are used to construct the
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scattering matrices of a sequence of layers or to embed a
layer into an otherwise perfect solid by using layer com-
position and doubling algorithms.!""!> The stacking pro-
cess has a natural cutoff with distance due to attenuation
caused by the imaginary component in the energy, which
means that a half-space may be constructed using very
few iterations (typically less than 10) of” the layer-
doubling algorithm, corresponding to approximately
1000 layers.

The calculations of the iron grain boundary have been
performed using an extension of the LKKR method for
close-spaced layers (CSLKKR), which was chosen for its
superior performance when treating high-Miller-index
planes. If the interplanar spacing is small or the layer
unit cell is very large then the number of plane waves re-
quired by conventional LKKR increases rapidly. This
may be seen by looking at the form of the plane-wave
basis functions which couple two adjacent layers:
(r|K;f)=e'Kg " where K, =k+g+ ZV2E —|k+gl% g
is the two-dimensional reciprocal lattice vector, and k is
the two-dimensional crystalline momentum. As g(=|g|)
increases, _ this basis function reduces to
(r|K;t > =el(k+g).c“e glc", where the layers are separated
by a vector c=(cH,cz) and additional terms are attenuat-
ed by the increasing imaginary component of the momen-
tum. This truncation of the basis set is less effective as
the interlayer separation decreases for two reasons. First,
as |c| decreases the attenuation of each g component de-
creases, and so makes a greater contribution to the ex-
pansion. Second, a reduction in the interlayer separation
is usually accompanied by an increase in the layer unit
cell vectors (volume per atom being approximately con-
stant). Hence, the reciprocal lattice vectors g comprise a
more ‘“compact” set of vectors, with more vectors shorter
than a given length. Thus more vectors are needed, with
the number rapidly increasing as the number of vectors
of length g is proportional to g. This convergence prob-
lem is made more manageable in the CSLKKR technique
by treating scattering from adjacent layers using an angu-
lar momentum basis set and further layers using a plane-
wave basis.!? The balancing of basis-set sizes reduces the
size of the plane-wave basis quite considerably, allowing a
significant reduction in the amount of computation re-
quired.

The calculations were performed with a basis of 25
plane waves and a spherical-wave basis up to / =2. The
energy integral was performed using a triangular contour
in the complex plane along which 32 sampling points
were taken. The two-dimensional Brillouin-zone average
was performed by taking sixteen special k points using
Cunningham’s algorithm.!® The potentials for up to
eleven layers on each side of the interface were allowed to
relax self-consistently and the bulk potentials were calcu-
lated self-consistently using the same code and the same
parameters as used for the interface calculation. The von
Barth—Hedin form of the local-density functional!’ was
used.

The =5 tilt boundary in a body-centered-cubic (bcc)
structure is shown in Fig. 1. The structure has been re-
laxed to preserve nearest-neighbor distances by shifting
the layers adjacent to the interface away from each other.

There is little evidence of lateral reconstruction in a sur-
face determination for Fe (310) (Ref. 18) so we have as-
sumed that any lateral displacement of the layers around
the defect can be neglected.

The muffin-tin magnetic moment was calculated
around each of the relaxed potentials from the spin-
resolved muffin-tin charge densities and is displayed in
Fig. 2 along with the bulk values calculated for the mo-
ment. The enhancement of the magnetic moment is lim-
ited to the two layers adjacent to the interface, but there
remains a small fluctuation in the moment further away
from the defect which rapidly decays to the bulk value.
This behavior is similar to a related calculation of an Fe
33 tilt boundary.!® The enhancement is thought to be
due largely to the increased volume around the defect
layer along with reduced coordination of nearest and
second-nearest neighbors. The magnitude of the moment
enhancement and the profile of the relaxation away from
the grain boundary is qualitatively similar to those calcu-
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FIG. 1. The structure of an Fe (310) tilt boundary as used in
the calculation. The layers are numbered starting with layer O
at the interface. The shaded circles represent atoms further into
the page. Note the increased interplanar spacing around the in-
terface layer, which has been introduced to prevent overlap of
muffin tins. The shaded box indicates the conventional bce unit
cell, with the unit z axis and x axis labeled. Also shown is the
interface layer (0) and one of the nearest layers (1) in the (310)
direction.



RAPID COMMUNICATIONS

4812

lated for iron surfaces,?%?!

surface.

Before examining the details of the contributions to the
moments of each layer, we make some general observa-
tions concerning the basis functions of the irreducible
representations along the principal directions in k space
for the band structure of iron. In bulk crystalline iron,
the five d orbitals transform as a two-dimensional and as
a three-dimensional irreducible representation of the oc-
tahedral point group: €, =(dz;_,dxz_y2) and
ty,=(dy,,d,;,d,;). Of these, only the t,, levels contrib-
ute to broad A; bands along the nearest-neighbor direc-
tion, while both the e, and tre levels contribute to the
narrower A; bands. Only the d ; level contributes to the

broad A, and 2, bands along the (100) and (110) direc-
tions, respectively, while the dx27y2 level contributes to

the comparatively narrow A, and 2, bands. We therefore
expect that the d,, d,,, and d,, and d_, levels are the
most strongly perturbed by the presence of the grain
boundary, with the deyz levels showing a much weaker
susceptibility.

A symmetry-resolved breakdown of the contribution to
the muffin-tin magnetic moment of the d electrons is
shown in Fig. 3. The d orbitals have been expressed in
the coordinate system of the conventional bcc unit cell,
with the axes as shown in Fig. 1. The values shown for
layer 12 are taken from a separate calculation of the per-
fect crystalline system. The absence of degeneracy in the

as shown in Fig. 2 for a (100)
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FIG. 2. A layer-by-layer breakdown of the local magnetic
muffin-tin moment around the =5 tilt boundary. The potentials
of 10 layers each side of the boundary are allowed to relax, the
eleventh layer has a frozen bulk potential. Also shown for com-
parison is an 11-layer (100) surface calculation, which was ob-
tained using a tight-binding cluster calculation (Ref. 21).
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two sets of orbitals away from the interface is an artifact
of the calculation. If the plane-wave basis set was infinite
and the Brillouin-zone integration was continuous, then
degeneracy would be restored far from the grain bound-
ary. However, the error is not large enough to mask
gross trends in the behavior of the local moment. The
graph shows that, to a good approximation, bulklike be-
havior is obtained beyond layer 4. This indicates that a
majority of the enhanced moment is due to perturbations
in the nearest-neighbor environment.

The behavior of the magnetic moment of the dz2 orbit-

als may be readily explained. There is increased separa-
tion between dZZ orbitals in the z direction in the grain-

boundary layer and to a lesser extent for layers 2 and 3.
However, there is greater overlap between the orbitals in
layer 1, due to the symmetrical stacking of the fault,
which increases the overlap among neighboring orbitals.
This corresponds directly with the behavior of the mo-
ment.

The contribution to the moment from the dx 2, orbit-

al is comparatively unaffected, but exhibits the same gen-
eral trend as that of the dzz; on the other hand, the d,,
orbital contributes strongly to the moment enhancement.
These trends again may be explained from the directions
of the orbitals in relation to changes to nearest- and
second-nearest-neighbor environment. The lobes of the
dx2—y2 orbital point along the coordinate axes (toward

the second-nearest neighbors), so a majority of the lobes
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FIG. 3. A symmetry-resolved layer-by-layer breakdown of
the contribution of d electrons to the local muffin-tin moment.
The z axis is the normal to the plane of the defect (the (310)
direction) and the x axis is the long side of the unit cell shown in
Fig. 1.



47 MAGNETIC STRUCTURE NEAR (310) TILT BOUNDARIES IN IRON

of the orbital do not see any change in environment. The
d,, orbital is more susceptible both to the changes in
volume and in the nearest-neighbor coordination number
associated with the grain boundary, and is thus more
severely perturbed. The d,, and d,, are less strongly
affected, but still show a pronounced enhancement of the
magnetic moment.

The gross trends found for the magnetic perturbations
near Fe 33 tilt boundaries are qualitatively similar to
those found for the electronic perturbations near Ni X5
tilt boundaries reported earlier.!* The changes near the
boundary are driven by the changes in coordination num-
ber and coordination geometry, which inhibit bonding
among the directional d orbitals which, in turn, results in
narrower band widths. In the case of iron, the band nar-
rowing promotes a strong enhancement of the magnetic
moment. The “healing” of these electronic perturbations
is complete by the fifth layer, beyond which essentially
bulklike electronic structure is found.

The reduced bonding near the interface makes poly-
crystalline iron susceptible to nonmetallic impurities such
as S, which tend to segregate to the grain boundaries and
induce brittle fracture behavior. The calculations
presented here can provide a test bed for the introduction
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of segregated substitutional or interstitial impurities
which could provide information useful in the determina-
tion of the magnetic properties of variously processed
steels. However, properties such as the structure of the
grain boundary, which require the calculation of the total
energy are still beyond the currently available techniques.
However, integration schemes for arbitrarily shaped
Wigner-Seitz cells,?? leading to full potential versions of
LKKR theory will make such calculations possible Also,
once more realistic structural relaxations are known, then
these too may be fed into the calculation as an aid to dis-
covering the overall picture of structure-magnetism-
property relationships.
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