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Collective electron excitations on a two-dimensional lattice
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The frequency and wave-vector-dependent dielectric function c(q, co) of a two-dimensional electron
system on a square lattice is calculated within the random-phase approximation. Effects of the periodic
potential on the electronic structure and dielectric properties are taken into account within the frame-
work of the tight-binding model. Both the dispersion relation of long-wavelength plasmons and the
energy-loss function Im[1/e(q, co) ] are numerically obtained for different values of the electronic concen-
tration n, . For low values of n„results are well described by the efFective-mass approximation. As n,
increases, the Fermi level moves to regions in k space where the band structure strongly deviates from
that of free electrons, and the appearance of structures in the energy-loss spectrum can be observed. Re-
garding plasmon excitations it is found that for all values of n, the long-wavelength behavior of the plas-
ma frequency co~(q) can be described by a two-dimensional free-electron model provided a renormalized
value of the electronic effective mass is introduced.

Artificial semiconductor structures such as superlat-
tices, quantum wells (single and multiple), quantum-well
wires, and quantum dots have been intensively studied in
the last two decades. Progress in this area has been possi-
ble because of the development of sophisticated tech-
niques of material growth and characterization. The re-
markable feature of those systems is the possibility of
effectively confining electrons and holes to space regions
of reduced dimensionality, which gives rise to a number
of very interesting physical phenomena. '

The electronic structure of a system is largely deter-
mined by space dimensionality. As a consequence, the
electronic properties of low-dimensional systems can be
quite distinct of those of ordinary three-dimensional ma-
terials. One example is the dielectric response function of
the system, in terms of which a number of problems such
as the response to externally applied electric fields and
the spectrum of plasmon excitations can be discussed.
Regarding the latter, the dispersion relation of long-
wavelength plasmon modes of an interacting free-electron
gas in three dimensions exhibits a gap, whereas that for
interacting free electrons confined to two dimensions
behaves as the square root of the wave vector q (Ref. 2).

Recently, considerable interest has been concentrated
in the study of spatially modulated two-dimensional (2D)
electron gas. Such a system can be found in microstruc-
tured field-effect devices fabricated using high-resolution
lithography. The gate potential modulates the 2D elec-
tronic density along one direction in the plane, giving rise
to a lateral confinement of the gas. Depending on the in-
tensity of the gate voltage, a crossover from a 2D system
to a regular arrangement of quantum wires can be ob-
served. Another interesting case is that of a two-
dimensional arrangement of quantum dots. In such a
heterostructure, electrons are strongly confined to the
quasizero dimension. Nevertheless, transport through
the discrete spectrum of states has been observed, indicat-
ing the existence of resonant tunneling between
quantum-dot quasibound states.

Spatial modulation of the electronic density strongly
affects the excitation spectra of 2D systems. In the past
few years a number of papers has appeared in the litera-
ture dealing with the problem of plasmon excitations in
such systems. For the case of a planar array of quantum
wires, the plasmon dispersion relation has been calculated
considering electron tunneling between the wires and also
in the limit of strong electron confinement. As regards
quantum-dot arrays, Que and Kirczenow9 have con-
sidered the extreme case in which electrons are entirely
confined within the dots, whereas Huang and co-
workers' '" have discussed the cases in which electrons
can tunnel between dots along only one direction and in
two perpendicular directions in the plane.

A convenient framework for studying the electronic
properties of modulated 2D systems is provided by the
tight-binding model for electrons in a two-dimensional
lattice. The limit of a regular array of isolated quantum
dots is readily obtained by setting the hopping between
the lattice points equal to zero. On the other hand, as the
tight-binding bands are broadened, i.e., as the hopping
parameters increase, the case of uniform 2D gas is ap-
proached. By using different values for the hopping pa-
rameters along perpendicular directions, the situation
corresponding to a regular array of quantum wires can
also be reproduced.

In the present work, we are concerned with the calcu-
lation of the dielectric response function of an electronic
system on a 2D lattice described by the tight-binding
model. We consider only intraband electron excitations
and restrict our discussion to the one-band model. For
simplicity, we assume a square lattice and keep hoppings
only between nearest-neighbor sites. Our purpose is to
investigate the dispersion relation of long-wavelength
plasmons and the energy-loss function in the region of in-
dependent electron-hole pair excitation s for different
values of the 2D electronic density n, .

The response of a system to an external potential
y, „,(q, co) is given by the dielectric response function
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a —
1[E q, co)], which is related to the polarizability tensor

II(q, co) by the equation

e(q, ai) =1—U(q)m(q, co) .

Here q is a vector in the x-y plane, v(q) =2ire /Eoq is the
2D Fourier transform of the interacting potential, and Fp

is the background dielectric constant. Within the
random-phase approximation (RPA), ' ' the polarizabil-
ity can be calculated in terms of the one-electron wave
unctions and energies. On calculating n(q, co), we follow

Ehrenreich and Cohen' and neglect local-field correc-
tions and hence umklapp processes. Such a procedure is
va id in the present case, in which we are considering in-
traband electron excitations only and restricting our cal-
culation to the long-wavelength regime q~O (Ref. 8).
Thus we get

e~k+q+k2~'
k +k+

(2)
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where E is the single-particle energy,
co+ =co+i ( =0+ ), fk is the Fermi distribution, and k
runs over the 2D Brillouin zone (BZ). Here we consider
the system in its ground state (T=0) Th de ispersion re-
lation Ek for a square lattice is given by

Ek=E, —2t[cos(k, a)+ cos(k a)],
where E
k and k are

, corresponds to an s-type atomic-orb't 1i a energy,
an are the components of the 2D wave vect k

is th
vec or, a

integral.
o-cen er oppingis e attice parameter, and t is the two- t h

The difficulty in evaluating the sum over k in Eq. (2)
resides in the fact that for small q values the region in k
space contributing to the sum becomes very small due to
the Fermi factors in the numerator. Therefore a very fine
mesh in the BZ is necessary in order to achieve conver-
gence. In addition, for a finite q the integrand does not
have the symmetry of the BZ, so that sum cannot be re-
stricted to the irreduceable wedge of the zone. In this pa-
per, the summation over the wave vector k was er-
formed u

'
using Cunninghan's special points. In our cal-

cu ations we have generated up to 10 points in the BZ.
owever, depending on the value of q, only a few

t ousand of them contribute to the sum.
Our results are presented for q along the x direction.

Im 1/E(
e ave calculated the energy-1 f

m[ E q, m)] as a function of co for different q 1

8 det
en q va ues.

(,co) lane
y e ermining the position of the poles f 1/ h

q, co p ane, we were able to obtain the plasmon disper-
sion relation co (q).

Figure 1 shows the plasmon dispersion relation as a
function of the wave vector q=(q, O)(2ir/q) for different
va ues of the number of electrons per site n, . Each value
o n, corresponds to distinct positions of the Fermi ener-

gy within the band. All results are presented in reduced
atomic units (a.u. *

)), which correspond to a length unit of
an effective Bohr radius a* =A /(co m e & and an energy
unit of an effective Rydberg Ry* = e /(2E a *). Th 1

of the ho
oa~ . evaue

4 —f2 2
o t e hopping parameter t was chosen so th t

/V Ek calculated at k =0 is equal to the GaAs

FIG. 1. The lasp smon dispersion relation as a function of the
wave vector = ( 0 fq= q, ', or three electronic surface densities,
namely n,. =0.49, 0.067, and 0.004.

a(n, )= (4)

We observe that for values n, && 1 the relation between o.'

and n, is well described by Eq. (4). However, as n in-
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FIG. 2. Th e coefticient a, in effective atomic units, as a func-
tion of the electronic d ensity n,. for two-dimensional systems de-
scribed by the tight-binding (solid line) and free-electron-gas
(dashed line) models.

a in e ong-wavelengthbulk eff'ective mass. We find that in th 1 — 1

, w ere o; is a prefactorimit all curves behave as o,q' wh
depending on n, . Such behavior is characteristic of a
two-dimensional free-electron gas, the case in which the
dependence of o; on n, is given by
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FIG. 6. The energy-loss function Im(1/c(q, co) vs co in the en-

ergy range of independent quasiparticle excitations, for
q=(3X10 ', 0)(2~/a) and electron concentrations n, =0.004,
0.067, and 0.49.

periodic potential on the plasmon excitations. Figure 4
shows the curve of m '/m * as a function of n, in the re-
gion 0 n, «0.5. As we can see, the change in m * as the
electronic density increases may be quite significant.

It is also interesting to study the energy-loss spectrum
in the energy range of independent quasiparticle excita-
tions. We investigate the dependence in energy of
1m[1/E(q, co)] for fixed values of n, and q. In Figs. 5(a)
and 5(b), we present results for values of n, corresponding
to the cases of the nearly empty band (n, =0.067) and
the nearly half-filled band (n, =0.49), respectively. In
each case three values of the q vector are considered, all
in the long-wavelength limit. The curves for n, =0.067
are smooth and have the behavior expected for a free-

electron gas. However, as the electronic density increases
the energy-loss spectra exhibit structures that are signa-
tures of the departure from the parabolic dispersion rela-
tion due to the presence of the periodic potential. The
change in the spectrum for a fixed q value with increasing
n, can be clearly seen in Fig. 6. Besides the broadening
of the spectrum due to the increase of the effective Fermi
wave vector, we can notice the appearance of a steplike
structure in the lower-frequency region as n, approaches
the value 0.5 (the half-filled band).

Summing up, we have calculated the frequency- and
wave-vector-dependent dielectric function of a two-
dimensional electron system on a square lattice, taking
into account the lattice periodic potential within the
framework of a tight-binding model. Only intraband
electron excitations are considered and calculations are
restricted to the long-wavelength regime. We have found
that significant deviation in the dielectric response of the
system from that of free electrons may occur depending
on the electronic density. For values of n, such that the
Fermi level lays near the bottom of the band, the
response of the system is well described by a two-
dimensional free-electron model. However, as the elec-
tronic density increases, the Fermi surface becomes an-
isotropic and the response of the system is markedly al-
tered by the periodic potential, even in the small-q re-
gime. These conclusions, although derived on the basis
of a simple model, will certainly remain true in the long-
wavelength regime when more complex situations (e.g. ,
band degenerancy) are considered. In view of the poten-
tial device applications of two-dimensional structures and
the interest in a proper understanding of their dielectric
properties, we believe the present work represents a
relevant contribution toward the understanding of the
main features of the dielectric response of such systems.
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