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Self-consistent calculation of the intrinsic bistability in double-barrier heterostructures
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The intrinsic bistability of double-barrier heterostructures has been analyzed by using the nonequi-
librium Keldysh formalism. In this approach, the induced electron charge in the well is calculated as a

function of the applied bias and the electrostatic potential induced in the heterostructure.

Self-

consistency is achieved by relating this induced potential to the electron charge. Detailed results for
different AlAs/GaAs/AlAs double barriers have been analyzed and show good agreement with the ex-
perimental results. A bistability behavior is found for high dopings.

I. INTRODUCTION

Resonant tunneling in multiple-barrier heterostruc-
tures has been extensively studied in the last decade due
to its very interesting applications. Great improvements
in the fabrication of very small and versatile devices pro-
moted experimental and theoretical studies of the trans-
port properties on these systems. 2

The double-barrier heterostructure has been reported
to present specific nonlinear phenomena which are main-
ly reflected in the observation of bistability in the I-V
characteristic curve in the region in which the device ex-
hibits negative differential resistance properties.>* More
recently these properties have been studied under the
effect of magnetic fields showing that the bistability could
be transformed into a multistable and highly amplified
phenomenon.’

Two possible causes that could originate the hysteresis
appearing in the I-V curve have been discussed in the
literature. One is the spontaneous oscillations of an
external electric circuit with negative differential resis-
tance.® The second, which is the object of this paper, is
an effect produced by the rapid leakage of electronic
charge accumulated at the well between the barriers
when the applied potential is taking the system out of res-
onance.

This nonlinear effect should be incorporated into the
equation of motion for the carriers assuming that the po-
tential profile depends self-consistently upon the distribu-
tion of charge.” As is well known in the realm of non-
linear optical phenomena the multistable behavior and ir-
reversible properties are a consequence of this nonlinear
self-consistent dependence.®

Bistability in double-barrier heterostructures has been
studied theoretically in the past few years by several au-
thors using different techniques.”!® In the simplest ap-
proach, the bistability has been analyzed making a crude
estimation of the space-charge buildup inside the well. In
a more sophisticated treatment, a simultaneous solution
of the Schrodinger and the Poisson equations has been
calculated to determine the potential created by the dis-
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tribution of charges. There is, however, no systematic
analysis of these nonlinear problems in nanostructures as
a function of the relevant parameters that determine the
physical properties of the system.

Let us mention that the effect of the relaxation suffered
by the electrons through the emission of phonons might
be an important effect, because it certainly changes the
whole distribution of charges in the system and as a
consequence the bistability properties. Moreover, the in-
terference of two or more resonant peaks that eventually
changes the whole behavior of the bistability has been
overlooked from the theoretical and also the experimen-
tal point of view.

II. MODEL

In this paper we analyze the transport properties of a
three-dimensional double-barrier heterostructure joining
two reservoirs. The nonlinear effects mentioned above
are studied by introducing a full self-consistency between
the potential acting on the carriers and the charge in-
duced along the sample, although the electron-phonon re-
laxation mechanism has been neglected. We follow the
thermodynamical nonequilibrium formalism derived by
Keldysh!! and developed later by Caroli et al.'? This for-
malism has several advantages since the calculation of
the current even in the presence of many-body effects can
be obtained from one-particle Green functions that pro-
vide all the tools for obtaining in a self-consistent way the
potential profile created by an external bias. The method
yields all the information associated with the nonequili-
brium independent-particle situation, which is the case
we have analyzed in this paper. It is worth mentioning
that many-body effects can be calculated in principle to
all orders in perturbation theory, a case in which most of
the other formalisms fail to give a rigorous and reliable
answer. The model analyzed in this paper!® consists of an
infinite three-dimensional cubic system with » sites in the
direction of the applied field (which has been taken to be
the z axis) intercalated between two Bethe lattices that
play the role of two reservoirs having chemical potentials
pp and pg. We describe this model by a first-neighbor
tight-binding Hamiltonian:
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where we have used the translation symmetry of the sys-
tem in the direction perpendicular to the applied field to
Fourier transform the Hamiltonian in k; E; (k)
represents the diagonal level of the single orbital at each
site along the z direction. The site dependence of the di-
agonal element incorporates the potential profile due to
the distribution of charge within the system and the mod-
eling of the barriers and the well of the heterostructure:

E (k,)=E;+2t(cosk,a+cosk,a) . (2)

1

The matrix elements #; ; correspond to the hopping be-
tween the nearest- nelghbor atoms, ¢, and ¢, ,, being
the parameters linking the system to the Bethe lattices; in
our calculation ¢; ;=t. Hp,;, represents the Hamiltonian
of a z-fold coordinated Bethe lattice.

The model is not completely determined without estab-
lishing the relation via the Coulomb interaction, between
the potential induced in the system and the electron
charge at each site. A linear equation has been chosen to
relate these potentials to the induced charges at each site,
on;:

8V, =X a; ;0n; , (3a)
J

where E; of Eq. (2) is given by
E,=E/Y+8V, . (3b)

E/? is assumed to depend upon i in order to take into ac-
count the existence of barriers and wells in the system.
Here 8V, represents the electrostatic potential induced by
the charges 6n; and is measured with respect to the case
of zero bias, @; ; being given by the Coulomb interaction
where the relation between the charge and the potential
is screened by the semiconductor dielectric constant. For
simplicity the coefficients a;; are defined by assuming
that the charge 8n; at the i site is a planar charge extend-
ing uniformly in the direction perpendicular to the
current flow.

The conductance properties of the heterostructure for
a given bias are obtained by using the Keldysh!' formal-
ism. We calculate the retarded and the advanced Green
functions GX(w @A(m), and the nonequilibrium ones,

6 ' (w)and G ), defined by
G,»,J;—(k”,a) — {2,k )2 f(k e (4a)
@;jﬂk”,w = +i(e( kyye;( il)>w’ (4b)
where { ), represents the Fourier transform of the mean

values taken on the nonequilibrium state of the system.
While the imaginary part of the retarded Green function
will give the density of states of the system, the spectral
weight of G,ﬁ “(w) will allow us to know how that density
of states is really occupied by the electrons which due to
the applied bias are out of thermodynamical equilibrium.

.
Following Caroli et al.,'? the electrical current induced

in the system is given by

1—‘“t2 f dw[Gl 1 kuaw)goo (ky,@)
ky
—G{1+(k||y0))g({07(ku,a))] , (5)

where the Green functions §(k“,w) correspond to the
solution of the problem when we take in the Hamiltonian
of Eq. (1) ¢y =t, ,+,=0. In this particular case the sys-
tem is in equilibrium, the current is zero, and the Green
functions can be obtained using standard techniques.

The dressed Green functions G( kH,w) can be calculat-
ed using the Dyson equations:

GR(k|,0)=gR(k|,0)+GR(k),0) TG (k0 , (6a)
Gt (k)

=[T+G%k,,0)T1g" (k) T+TG k), 0)],

(6b)

where the matrix T is taken to be the hopping elements
between sites 0 and 1 and sites » and n +1. In other
words, T=0 represents the case with the linear chain un-
coupled to the Bethe lattices. It is worth mentioning that
as the system is taken from equilibrium by a one-body
perturbation the self-energy can be represented by a diag-
onal matrix.

From this formalism the accumulated charge 6n; can
be obtained from the equation

n,= 2771 sz do G (kj,0)—n®, (7

It
where n/? is the background charge. Typically we take
n,(O) umform in the injector and the collector up to the

barriers of the heterostructure.

The solution of the problem implies the self-consistent
calculation of Egs. (6) and (7). The procedure determines
the local density of states of the system at any site, the lo-
cal nonequilibrium electronic occupation of the available
states of the system, the potential profile seen by the car-
riers, and from Eq. (5) the electrical current as a function
of the applied voltage.

III. RESULTS

In order to establish in a systematic way which are the
relevant parameters that determine the bistability proper-
ties, we have calculated from Eq. (5) the I-V characteris-
tic of double-barrier heterostructures for different
geometries and different semiconductor dopings. In our
calculations the collector and the injector are assumed to
have the same doping, extending uniformly up to its cor-
responding barrier. In Hamiltonian (1), the levels of the
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general i sites for the Bethe lattices, the well, the injector,
and the collector have been taken to be the same, E,. In
the two barriers we take E; =E;+Q, () being a constant.
Moreover t has been chosen to give for the semiconduc-
tor band structure an effective mass m*=0.067, the
GaAs case.

Figure 1 shows the I-V characteristic for a 48- A well
width between two 30-A-thick barriers. The two
barriers’s height, 2, has been taken to be 300 meV.
Different I-V curves correspond to different dopings in
the emitter and collector regions n,;=1.61X10'%,
3.46X 10", and 5.74x10'"® cm™3; the Fermi energy for
these electron densities are 75, 125, and 175 meV. The
results of Fig. 1 show the bistability region appearing
around V' =160 mV; notice that the bistable widths, 7.5,
17.5, and 2.5 mV, increase initially almost linearly with
E,, showing a saturation effect for high dopings. We
should stress that in the results of Fig. 1, the bistability
domain is strongly affected by the second well level for
ny;=5.74X 10" cm 3. In general for high dopings there
is a strong interaction between the two well levels; this in-
teraction modifies the bistability curves. This point will
be discussed further below.

Figure 2 shows the I-V characteristics for a double bar-
rier with a 36- A well width between an injector barrier of
18 A and a collector barrier of 21 A. In this case the bar-
rier height Q0 has been taken to be 500 meV. Different
curves correspond to the same dopings of Fig. 1, with
ny;=1.61Xx10" and 5.74X10"® cm ™3 The aim of the
figure is to show how the asymmetric barrier enhances
the bistability; the widths corresponding to the previous
dopings are 15, 30, and 45 mV, values that represent a
linear dependence with E,.

A more important bistability enhancement is shown in
Flg 3 where we show the results for a double barrier hav-
ing a 36- A well width between an injector barrier of 18 A
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FIG 1. I-V characteristics for a double-barrier heterostruc-

ture having barrier helght Q=300 meV and the following
w1dths injector barrier, 30 A well, 48 A collector barrier, 30
A; (@) ny;=1.61x10" cmﬂ, ) ny=3.46X10" cm™3 (c)
ny;=5.74X10"% cm 3.
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FIG. 2. As Fig. 1 for barrier height =500 meV and the fol-
lowings widths: injector barrier, 18 A; well, 36 A; collector bar-
rier, 21 A; (a) n;=1.61X10'® cm™3; (b) n,=3.46X 10 cm ™%
(c) ny=>5.74x10" cm .

and a collector barrier of 30 A (the barrier height Q is
500 meV). Compared with the case of Fig. 2, we have
only increased the width of the collector barrier thick-
ness. Our results show a dramatic increase of the bista-
bility region due to the increase of the double-barrier
asymmetry.!* The bistability widths for n, =1.61X 108,
3.46X10'%, and 5.74X10'® cm ™3 are 65, 105, and 125
mV, respectively. We also find for n; =5.74 X 10'® cm 3
that the current shows an important increase for voltages
larger than 400 mV. This is again due to the effect of the
second well level.

In order to analyze how the interaction between the
first and second levels of the well can modify the shape of
I-V curves around the bistability domain, we have shown
in Fig. 4 some results for the same double-barrier dis-
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FIG. 3. As Fig. 1 for barrier helght Q=500 meV and the fol-
lowings wxdths injector barrier, 18 A well, 36 A collector bar-

rier, 30 A; (@) ny=1.61X10"® cm ™3 (b) ny,=3.46X10'® cm ™3
(¢) ny=5.74X10"¥ cm 3.
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FIG. 4. I-V characteristics for the same double-barrier het-
erostructure of Fig. 2: (a) n;=3.46X10"® cm™3 (b)
ny;=1.45x10" cm ™3 (c) ny, =1.45X 10" cm 3 calculated using
a linear potential profile along the heterostructure.

cussed in Fig. 2. These I-V curves correspond to
ny;=3.46X10" and 1.45X 10" cm 3. The first case has
also been drawn in Fig. 2, and is shown here for the sake
of comparison. This case displays the typical I-V bista-
bility curve, the same type of curve appearing in all the
low-doping cases. The results for n;=1.45X 10" c¢cm 3
show a bistability region presenting a feature due to the
interaction between the two levels of the well. The
difference between these two curves can be understood in
the following way: in the usual bistability curves, the
solution having smaller current has also smaller accumu-
lation of charge, because things are only controlled by a
single level that is either partially occupied or empty, de-
pending on its position with respect to the Fermi energy.
In the second case, when two levels of the well affect the
bistability region, the charge in the first level decreases
when it falls off from resonance. The second peak, how-
ever, has also lowered its position due to the reduction of
the charge of the first level entering into the resonant re-
gion and increasing its charge. Then, in the jump 4 —B
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of Fig. 4, the system increases its current due to the reso-
nance matching between the second level and the Fermi
energy (similar things happen for the jump C— D).

The results of Fig. 4, showing the strong interference

between the two well levels, have been obtained for a very
large doping: n;=1.45X10" cm™3. We should com-
ment that similar results could be obtained for smaller
dopings if the well width is much larger. Thus, a factor
of 2 in the well thickness would reduce the well levels by
a factor of 4. The bistability features could be obtained
with smaller Fermi energies (reduced by a factor of 4)
which represents a doping reduction of a factor of 8.
This suggests that the I-V curves shown in Fig. 4 for the
bistability region could be reached for well thicknesses of
80 A; with collector and injector dopings of 2X10'®
cm”°.
Finally, coming back to the results of Figs. 1-3, it is
worth mentioning that our results for the normal bistabil-
ity widths are in reasonable agreement with the experi-
mental evidence.* Typically, for symmetric double bar-
riers and emitter and collector dopings smaller than 10'®
cm 3, the bistability widths are smaller than 5-10 mV.
These widths can be increased dramatically, however, by
using asymmetric barriers; this yields bistability widths of
30 or 40 mV for 5X10'7 cm ~? dopings.

In conclusion, we have presented detailed results for
the bistability behavior of symmetric and asymmetric
double barriers. Our results show how the bistability
width depends on the geometry of the double barrier and
the collector and emitter dopings. More importantly, we
have shown how two different levels of the quantum well
can interfere yielding a behavior of the I-V curve in the
bistable region. This effect appears for relatively high
emitter and collector dopings, with the Fermi energy lev-
el of the system located between the two quantum-well
levels.
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