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We have used density-functional theory and the spherically averaged pseudopotential (SAPS)
model to study the relative stabilities of large sodium clusters with different atomic arrangements.
Starting with perfect crystallinelike clusters with filled atomic shells, we find that small distortions of
the geometry strongly enhance their stability. However, in the size range studied in this paper (N <
340) the distorted-crystalline structures are not the absolute energy minima. These are, instead,
noncrystalline structures obtained by energy minimization without any structural constraints. In
particular, noncrystalline clusters with enough electrons to fill electronic shells are the most stable
ones. The crossover between magic numbers of electronic origin (clusters with filled electronic shells)
and magic numbers of atomic origin (crystalline structures with filled atomic shells) has not yet taken
place in the size range studied here and should occur for larger sizes.

I. INTRODUCTION

The electronic-shell model has proved very useful in
understanding the size variation of many properties
of metallic clusters.! In this model the valence elec-
trons move in a smooth spherically symmetric poten-
tial. The simplicity of the model makes it very attrac-
tive from a theoretical point of view. Calculations ini-
tially performed in the size range below 100 atoms!~®
have progressively been extended to clusters with a
few hundred”™® or even a few thousand atoms.!0712
Jellium,'%12 Wood-Saxon,!® and infinite square-well'3
effective one-electron potentials have been used in the
resolution of the Schrodinger equation. None of these
potentials accounts for the discrete nature of the ions
and consequently the one-electron eigenvalues and elec-
tronic distributions are independent of the detailed ge-
ometrical arrangement of the atoms. The supershell
structure observed in alkali-metal clusters'4'5 and the
transition from electronic magic numbers to geometrical
magic numbers (icosahedral or cuboctahedral) reported
for sodium clusters!® are two interesting topics in the
large size domain.

Evidently, the geometry has to be taken into account
explicitly to investigate this transition. A full-scale cal-
culation for large clusters including geometrical effects
is a very demanding task. Consequently, simpler ap-
proaches have been explored. First-order and second-
order perturbation theory have been used by Maiti and
Falicov!® and by Clemenger,!! respectively, to account
for the deviations of the ionic background potential from
the smooth potential of the jellium-type models. Maiti
and Falicov have concluded that geometrical effects over-
take electronic-shell effects when the number of atoms in
the cluster becomes larger than a critical value N, of
about 100. In other words, that the most stable clusters
are those that correspond to closed electronic shells for
N smaller than about 100, and to specially stable poly-
hedral clusters for N larger than about 100. This criti-
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cal number is too small compared with the value induced
from experiment (N, ~ 1500).16 The calculation of Maiti
and Falicov is similar, in essence, to the SAPS (spheri-
cally averaged pseudopotential) model that we have used
in several previous papers,>17 20 although it contains
some additional simplifying assumptions. In the present
work we use the SAPS model to analyze the question
if the critical number could be as small as predicted by
Maiti and Falicov. To this end we have studied the sta-
bilities of sodium clusters with up to 340 atoms for dif-
ferent geometric arrangements: those are the crystalline
body-centered-cubic and face-centered-cubic structures,
the multilayered icosahedra, and the geometries that re-
sult from the unconstrained relaxation of initial random
atomic arrangements. In Sec. II we present the calcula-
tional methods and compare the relative stabilities of the
different structures. In Sec. IIT we study the competition
between magic numbers of electronic and atomic origin.
Finally, the conclusions are presented in Sec. IV.

1I. STABILITY OF DIFFERENT GEOMETRICAL
STRUCTURES

A. SAPS model

In general, the ground-state electron density p(r) and
the energy of a cluster of N atoms placed at given po-
sitions {R;};=1,..,N are obtained by minimizing the en-
ergy functional E[p;{R;}] with respect to p(r). In the
spherically averaged pseudopotential (SAPS) model®1?
this is achieved in practice by self-consistently solv-
ing the Kohn-Sham equations of the density-functional
formalism?! under the assumption that the total three-
dimensional external pseudopotential due to the ionic
background

N

Vext(r) = > v(lr — Ry) (1)
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is replaced by its spherical average V2 (r) about the cen-
ter of mass of the cluster. Furthermore, if one is inter-
ested in the equilibrium geometry of the cluster, then the
total energy E[p; {R;}] must also be minimized with re-
spect to the set of ion positions {R;}. The total energy
at temperature 7' = 0 K can be written as a sum of sev-
eral terms (Hartree atomic units are used through the
paper unless explicitly stated)

Blo RY=Glol + 4 [ [ 2D et

+ [ Vi) ey e
+3 > U(R; —Ry/)). (2
J#3’

The first term, G[p], is the sum of the kinetic, exchange,
and correlation energies of the electrons, the second term
gives the classical electron-electron interaction, the third
term is the interaction of the electronic cloud with the
external SAPS pseudopotential, and the last term gives
the ion-ion interaction. In summary, the electronic cloud
only feels the spherical-average component of the exter-
nal ionic pseudopotential, but the geometrical structure
of the cluster is fully taken into account in the ion-ion
interaction term. Steepest-descent!” 20 and simulated
annealing techniques?? have been used to search for the
local and global energy minima.

B. Simplification of the SAPS model

Maiti and Falicov!® have performed calculations for
sodium clusters in a spirit similar to the SAPS model.
For some clusters the geometric structure was assumed
to be the same as in a crystal with body-centered-cubic
(bee) structure or face-centered-cubic (fcc) structure.
The study was restricted to clusters with a number of
atoms such that the cluster only contains closed coordi-
nation shells of atoms about the center. For bcc clusters
with an atom at the center, the shell closing numbers are
N =09, 15, 27, 51, 59, 65, 89, 113, 137, 169, 181, ... and
for fcc clusters with an atom at the center N = 13, 19, 43,
55, 79, 87, 135, 141, 177, 201, . These authors have
also studied fcc clusters centered on interstitial lattice
positions of high symmetry. In addition, they have con-
sidered a second set of clusters with a number of atoms
N = 8, 18, 20, 34, 40, 58, 68, 90, 92, 106, 132, 138, 168,
186, 196, 198, 232, ..., which are the well-known clusters
with closed electronic shells.! For those clusters the geo-
metrical structure was calculated by minimization of the
total energy E[p; {R;}] with respect to the ion positions.
In a plot of the total energy as a function of cluster size,
the “hulls” of minimum energy were drawn separately
for the two sets of clusters, that is, for the electronic-
and atomic-shell numbers. It was then observed that the
hull of electronic-shell numbers is below the other for N
smaller than about 100 and above it for N larger than
about 100. From this it was concluded that N, ~ 100
marks the crossover of cluster stability from electronic
magic numbers to atomic magic numbers.
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The crossover observed in the experiments of Martin
et al.16 is much larger (N, ~ 1500) and we suspect that
the underestimation of N, in the work of Maiti and Fal-
icov is due to an additional approximation in their cal-
culation, as compared to the original form of the SAPS
model:®17 the shortcoming is that the electron density is
not self-consistent with the ion background distribution.
The electron density was in each case that calculated
for a simple infinite spherical potential well of appropri-
ate size and containing the proper number of electrons.
The interaction of this electron density py with the ion
background pseudopotential (actually, with its spherical
average) was introduced perturbatlvely, that is, evalu-
ating [ V2 (r)p%(r)dr, where p°(r) is the density of the
square-well problem. In summary, the energy of the clus-
ter defined by the set of ionic positions {R;} was given

by [compare with Eq. (2)]
B Ry} = Gl + § [ [ EDLED g e

+ [V P ar
+1 ) U(R; - R;/|). (3)
J#3’

This simplification can affect the results since there is
evidence that some of the minima and shoulders of the
radial electron density are closely correlated with the
position of the atomic shells.?® This correlation is ab-
sent if one uses the density of the spherical-well prob-
lem, where the only modulations of the electron density
are due to electronic shells. We suspect that the lack of
self-consistency influences the conclusions concerning the
quantitative value of the crossover size from electronic-
shell to atomic-shell magic numbers. In fact, this short-
coming was also pointed out by Maiti and Falicov.!3

To check this point we have performed SAPS calcu-
lations for sodium clusters in which the self-consistency
between the SAPS pseudopotential and the electron den-
sity is preserved. To this end, we separate our study in
two parts. In the first step we concentrate on the study
of the preferred geometrical arrangement as a function
of cluster size, without the interference of electronic-shell
closing effects. For this purpose we use a simplification
of the density-functional formalism which permits faster
calculations. Then in a second step we discuss the addi-
tional stabilization effects due to electronic-shell closing.

C. Comparison of geometric structures

The search for the equilibrium geometry of each cluster
has been performed by first generating a set of random
initial geometries and then relaxing the ion positions by
the steepest-descent method for the total energy, that is,
by moving a little of each atom in the direction of the net
force acting on it. At each step in the relaxation process,
the electron density, energy, and forces are recalculated,
and the process is iterated until the forces on all atoms
vanish. We are well aware of the insurmountable difficul-
ties to find the absolute-energy minimum for a medium
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size or large cluster. This is because the number of rela-
tive energy minima in the energy hypersurface escalates
rapidly with the number of atoms in the cluster.?4 In fact,
the number of relative minima with energies very close
to that of the absolute minimum can be large, and one is
likely to be trapped in one of those relative minima. Of
course, the search for the lowest minimum is made more
efficient by increasing the number of trial initial config-
urations of the cluster. In our case we estimate that the
number of initial configurations was large enough to allow
us to reach a minimum close in energy to the absolute
minimum. Other efficient ways to optimize the struc-
ture is to use simulated annealing techniques,?? although
the computations become very tedious and the method
is not suitable for the broad study, involving many large
clusters, that we perform in this paper.

The growth pattern of alkaline-metal clusters for sizes
N < 100 has been discussed in previous papers,17:24:25
and we only recall here the most salient features. The
clusters are not small fragments of a crystal. The atoms
are arranged in spherical layers. There is a small disper-
sion in the radial coordinate of the atoms within each
layer, but the layers are well separated from each other.
Two examples of this layering are shown in Figs. 1(d)
and 2(d) for Nas; and Nass, respectively, which will be
fully discussed below. We should also mention that the
cluster strongly reconstructs as it grows. This pattern of
growth, which extends at least up to the largest clusters
studied in the present paper (N < 340), is very different
from that which would result from the successive filling of
coordination shells around an atom in a perfect crystal.

Even if our calculations clearly demonstrate that in
this size range the lowest-energy structures are not de-
rived from a piece of the crystalline bulk lattice (this is
fully discussed in the rest of the paper), it is nevertheless
interesting to know how different the energies of clus-
ters with crystallinelike structures are from those of the
lowest-energy (noncrystalline) structures. For this pur-
pose we have also performed calculations for some crys-
talline geometries (bcc and fec). In this case the cluster
is a spherical piece cut from the perfect lattice; that is,
we only have considered clusters with closed atomic coor-
dination shells around the center. The center is a lattice
site for the bcc clusters. For the fcc structure we have
taken two series of clusters. The cluster center is a lattice
site in the first series (I), and in the other (II) the cluster
center coincides with the center of the conventional cube.
Finally we have also studied icosahedral clusters; both
experiments'® and theoretical calculations?® suggest the
relevance of icosahedral structures in the size range of
interest here. The list of the crystalline and icosahedral
clusters studied is given in Table I.

Since in this section we are only interested in com-
paring the relative stabilities of clusters with different
geometrical structures and we want to deal with fairly
large sizes (N up to = 340), it is enough for our purposes
to introduce a convenient simplification in the density-
functional formalism. Instead of treating the electronic
kinetic energy exactly by the Kohn-Sham method,?” we
use an extended Thomas-Fermi method, including the
gradient correction to the kinetic energy, completely for-
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TABLE I. Number of atoms in the different crystalline
and icosahedral clusters studied.

Geometry Number of atoms

bce 9, 15,27,51,59,65,89,113,137, 169, 181, 307
fee(I)® 13, 19, 43, 55, 79, 87, 135, 141, 177, 201, 321
fec(IT)P 14, 38, 68, 92, 116, 164, 188, 236, 298, 322
Icosahedral 13, 55, 147, 309

2Centered on an atom.
bCentered on the center of the conventional cube.

mulated in terms of the electron density. Our kinetic-
energy functional is then

A Vpl|?
7o) = fn° [ par+ 3 [Flhar

where the first term is the Thomas-Fermi approxima-
tion?! and the second is the Weizsécker correction.?®
Choosing for A the value A = 0.5 gives results for the
total energies and the geometries of sodium clusters in
good agreement to those obtained from full Kohn-Sham
calculations.?®2° The exchange and correlation energies,
E, and E., have been expressed in the local-density ap-
proximation due to Dirac3? and Wigner,3! respectively,

Bl = -3 (;)1/3 [ oo, (5)

3 0.44p
Eelo = - / 7.8 + (dnp/3)-173

The sum of T'[p], E;[p], and E,[p] forms the part labeled
G[p] in Eq. (2). The rest of the energy terms are the same
ones appearing in that equation. The ion pseudopoten-
tial that we have used is the empty-core pseudopotential
due to Ashcroft,3? which is zero inside the core radius 7,
and purely Coulombic outside, and the ion-ion interac-
tion is given by the repulsion energy between pointlike
ions. The core radius r. = 1.74 a.u. is taken from previ-
ous papers.l?

In Fig. 1 we show histograms corresponding to the ra-
dial distribution of the ions in Nas; with bce structure
for several specific situations. Of course the radial distri-
butions are measured with reference to the cluster cen-
ter. Panel 1(a) corresponds to a perfect bce cluster with
interatomic distances equal to those in the bulk crys-
tal at low temperature (lattice constant a = 7.987 a.u.,
nearest-neighbor distance dnn, = 0.866a).33 If the lattice
constant a is optimized by minimization of the total en-
ergy we obtain the radial distribution of panel 1(b); in
this way we observe a slight contraction of the volume of
the cluster. Similar results are presented for fcc Nass in
Fig. 2. In this case panel 2(a) is such that the nearest-
neighbor distance has the same value as for the bulk bce
lattice. Optimization of the nearest-neighbor distance
leaves the cluster practically unchanged [see panel 2(b)].
The different behavior of bee and fce clusters can be un-
derstood from the fact that for equal nearest-neighbor
distances dnn(bcc) = dnn(fcc), the Wigner-Seitz sphere

dr . (6)
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radius of the fcc lattice [Rws(fcc) = 0.5526d,y] is al-
ready slightly smaller than the Wigner-Seitz radius of
the bce lattice [Rws(bec) = 0.5685d,,]. Panels 1(c) and
2(c) of these figures will be discused later. Finally, in
panels 1(d) and 2(d) we give the structures obtained by
a complete steepest-descent minimization of the energy
without any structural constraints, starting from a num-
ber of random initial configurations; in other words, these
are the lowest-energy equilibrium structures predicted by
the SAPS model. Compared to the crystalline clusters we
observe a decrease in the number of atomic layers, which
then become more populated. Also these shells have a
thickness between 0.5 a.u. and 1 a.u. Since the distribu-
tion of atoms in these clusters bears no relation to that
in the crystalline ones, we shall call them noncrystalline
clusters.

We have collected the energies for the series of bee and
fce (types I and II) clusters with optimized lattice con-
stants. The results are compared in Fig. 3 with the ener-
gies of the fully optimized noncrystalline clusters (lowest-
energy structures) of the same size. In other words, the
number of atoms in the noncrystalline clusters is also
taken from Table I. We observe that the clusters with
crystalline structures are less stable than the fully opti-
mized, or noncrystalline clusters, indicating that perfect
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crystalline structures are very unlikely in this size range.
This provides a first indication that the self-consistency
between ionic potential and electron density is important
in the analysis of structural effects.

There are, however, other structures which could be
competitive with the noncrystalline clusters, but unlikely
to be found from the steepest-descent calculations start-
ing with random geometries. Those new structures can
be obtained by the steepest-descent relaxation of the per-
fect crystalline clusters with optimized nearest-neighbor
distance. It is expected that the perfect crystalline clus-
ters are near a local energy minimum of the energy hyper-
surface corresponding to a distorted crystallinelike struc-
ture, and that by the steepest-descent relaxation the clus-
ter will easily fall into that minimum. The expectation
is in fact correct. We show the results in panel (c) of
Figs. 1 and 2 for Nas; and Nass, respectively. The num-
ber of atomic shells and their population are identical
to those in the perfect crystalline clusters of the same
size but there are small radial displacements (inwards or
outwards) of the shells. The displacements are in the
direction so as to concentrate the atoms into a smaller
number of more populated shells, although the extreme
situation of panel (d) of Figs. 1 and 2 has not yet been
achieved. Since the population of the different shells coin-
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Histograms showing the radial distribution of atoms (with respect to the cluster center) in Nasi: (a) perfect

bee structure with the bulk interatomic distance; (b) perfect bce structure with optimized nearest-neighbor distance; (c)
distorted-crystalline structure obtained by steepest-descent relaxation of case (b); (d) lowest-energy structure, obtained by
steepest-descent minimization of the energy starting from several random initial geometries (notice the different scale). The
electron density is also plotted in each case as a continuous curve.
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cides with the populations in the perfect crystalline clus-
ters and those shells are still clearly defined, we call those
structures distorted-crystalline structures.

If we repeat the comparison of Fig. 3, but now us-
ing the distorted-crystalline clusters instead of the per-
fect crystalline ones we arrive at Fig. 4. Evidently, the
distorted-crystalline structures become more and more
competitive with the noncrystalline ones as the clus-
ter size increases. In this plot there are a few cases
in which the distorted-crystalline structures are equally
stable and, for N > 130, even more stable than the non-
crystalline clusters of the same size. For instance, the dis-
torted fcc structures are degenerate with the disordered
structures for N = 59, 113, or 307, and the distorted-
crystalline clusters are more stable than the disordered
ones for N = 137 or 236. This simply means that the
steepest-descent method does not explore the full energy
hypersurface and that the cluster becomes trapped in
different local minima depending on the initial atomic
configuration. The very stable distorted-crystalline clus-
ters N= 137 or 236 cannot be obtained by the steepest-
descent method starting with a random initial arrange-
ment of the atoms; those can be obtained, instead, by the
relaxation of educated geometries (the perfect crystalline
clusters) rather similar to the final one. This observa-
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tion gives additional support to our strategy of investi-
gating the equilibrium structures by the steepest-descent
relaxation of “two” different types of initial geometries:
(a) random atomic arrangements, and (b) educated crys-
talline geometries. Just restricting our study to one of
the two sets would have the consequence of missing a lot
of interesting low-energy structures. The search for the
global minimum can be improved if we use the technique
of simulated annealing.?? In such a case the computa-
tions require a lot more time and a broad study as we
have performed in the present paper becomes impracti-
cal.

By comparing the energies of the distorted bcc and
distorted fcc clusters we find no evidence for the domi-
nance of one structure over the other. In the same figure
we have also plotted the results for the Mackay series of
icosahedral clusters (N = 13, 55, 147, 309, ...).34 In this
case we have also performed a steepest-descent relaxation
of the perfect structure, although we have found that the
distortions are very small. The icosahedral structures
are very competitive. This can also be seen in Fig. 5 for
Najg. In 5(a) we show an isomer practically degenerate
with the most stable structure. This isomer is a distorted
double icosahedron, more spherical than the perfect dou-
ble icosahedron, which is shown for comparison in 5(b).
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Histograms showing the radial distribution of atoms (with respect to the cluster center) in Nass: (a) perfect

fcc structure with a nearest-neighbor distance equal to that in the bulk bec crystal; (b) perfect fec structure with optimized
nearest-neighbor distance; (c) distorted-crystalline structure obtained by steepest-descent relaxation of case (b); (d) lowest-
energy structure, obtained by steepest-descent minimization of the energy starting from several random initial geometries
(notice the different scale). The electron density is also plotted in each case as a continuous curve.
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The increased sphericity is due to the SAPS approxima-
tion. The double icosahedron is the lowest energy struc-
ture of Lennard-Jones clusters with N = 19.3%

In summary the results of Fig. 4 indicate a strong com-
petition between icosahedral, distorted-crystalline (bcc
and fcc) and noncrystalline clusters, with a slight dom-
inance of the noncrystalline clusters, nonexempt of a
number of exceptions. The energy curve we could draw
joining the energy points of noncrystalline structures
would be smooth. This is not the case for the distorted-
crystalline structures. The latter would be even less
smooth if we had included bcc or fcc clusters with
open atomic shells. Actually there is a considerable
loss of stability for those open atomic-shell crystalline
structures.3-36

An analysis of the interatomic distances in the perfect
crystalline clusters is presented in Fig. 6. Here we have
plotted the optimized nearest-neighbor distance dy,, as a
function of cluster size. There is a tendency for d,, to
increase with N. In the bcc clusters d,, has reached a
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FIG. 5. (a) Distorted double icosahedron, which is the
most stable structure of Naigs. (b) Perfect double icosahe-
dron.

value d,, = 6.87 a.u. for N = 307. This is only a little bit
smaller than the experimental nearest-neighbor distance
in the bulk solid (dnn = 6.91 a.u.),3® which is indicated
by the horizontal line in the figure. The small difference
is due to the finite size. The large fcc clusters have dy,
= 7.16 a.u. The relation between the volume per atom
Q and dp, is = 0.7698d3, in the bcc lattice and Q =
0.7071d3,, in the fcc lattice. Then, the calculated volumes
per atom of large clusters are Q(bcc) = 249.6 a.u.® and
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Q(fce) = 259.7 a.u.3. These should be compared with the
experimental Q(bulk) = 254.5 a.u.3.

An interesting question the reader can ask is how large
the distortions are in the distorted-crystalline clusters.
The answer is provided in panels (a) and (b) of Fig. 7,
which correspond to bec and fee (I) clusters, respectively.
The magnitude plotted as a function of size is the ra-
tio r,/a, given separately for each atomic shell. a is
the optimized lattice constant of the perfect crystalline
cluster [for instance, clusters of Figs. 1(b) and 2(b)]
and r, (n=1,2,3,...) are the radii of the first, second,
third, ... coordination shells around the central atom
in’ the distorted-crystalline clusters [for instance, those
of Figs. 1(c) and 2(c)]. For perfect crystalline clusters
the distances r1, 72, ... exactly coincide with the first-
neighbors distance, second-neighbors distance, etc., and
the ratios r1/a, r2/a, ... are well-known universal num-
bers. The universal values are indicated by the arrows on
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FIG. 7. Ratio rn/a as a function of cluster size, plotted
separately for each atomic shell. a is the optimized lattice
constant of the perfect crystalline cluster and 7, (n =1,2,...)
are the radii of the first, second, ... coordination shells around
the central atom in the distorted-crystalline cluster. Panel (a)
is for bec clusters and panel (b) for fcc (I) clusters.

the right-hand side of the figures. We conclude that the
distortions are small (the values of ,,/a are close to the
ideal ones), and that these distortions quickly become
negligible as the cluster size increases. The distorted-
crystalline clusters with N larger than ~ 150 are practi-
cally undistorted.

III. INTRODUCTION OF ELECTRONIC-SHELL
EFFECTS

A. Kohn-Sham method

In Sec. II we have obtained information about the
competition between different ordered (crystalline or dis-
torted crystalline) and disordered atomic structures as
the cluster size grows. However, electronic-shell effects
were absent from the calculations and consequently we
cannot answer one of the main questions of interest,
namely the competition between electronic magic num-
bers and atomic magic numbers. For this purpose we
performed additional calculations using the Kohn-Sham
formulation of density-functional theory.21:27 In this case
the electron density is written as

occ

p(r) = Z [@s(r) 2, (7

where the U;(r) are one-electron orbitals, obtained by
solving Schrédinger-like equations

{=3V? + Ve (r)} i(r) = E;¥i(r), (8)

in which the effective potential
av p(r’
Vest (r) = Vaxi(r) + / ﬁdr "+ VEPA(R)  (9)

is the sum of the external SAPS potential, the Hartree
potential of the electronic cloud, and the exchange-
correlation potential (in the local-density approxima-
tion). The cluster energy is then obtained in a standard
way.21:27

B. Results

Using the Kohn-Sham formulation we have performed
again calculations for crystalline clusters, more precisely
for distorted-crystalline clusters. The geometries, that is,
the small distortions from the perfect crystalline struc-
tures, have been taken directly from our previous study in
Sec. II and the Kohn-Sham calculations have been per-
formed at those fixed distorted geometries since there
is evidence that the extended Thomas-Fermi method
and the full Kohn-Sham treatment of density-functional
theory lead to very similar geometries in the SAPS
approximation.?® The results have been plotted in Fig. 8
where the distorted bcc, fce, and icosahedral clusters
are identified by the circles. A comparison with the
distorted-crystalline clusters of Fig. 4 shows that the in-
troduction of full quantum effects contributes to increase
the stability of all the clusters, which now have more
negative energies.
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Figure 8 also shows the Kohn-Sham energies for the
set of noncrystalline clusters, using again the geometries
calculated in Sec. II. To this set, which originally was
extracted from the numbers given in Table I, we have
added several other clusters with a number of atoms cor-
responding precisely to the well-known electronic magic
numbers:! 8, 20, 40, 58, 92, 138, 168, 198, 232, 268,
338. Evidently, for those clusters the “noncrystalline” ge-
ometries were calculated by the extended Thomas-Fermi
method of Sec. II, in order to be consistent with the rest
of the data displayed in Fig. 8; we stress, however, that
the energy of those clusters was obtained after a Kohn-
Sham calculation on top of the fixed geometries. The
magic number nature of these clusters, originating from
their closed electronic shells, is clearly appreciated, for
instance, for N = 20, 58, 92, 138, and 232, which are
local minima of the energy versus size function for the
disordered clusters. The minima are not evident for the
other magic numbers due to the absence of calculations
for neighbor sizes.

Overall, we have to conclude that in the size range
studied in this paper (N < 340): (a) the disordered (or
noncrystalline) clusters are more stable than the (dis-
torted) crystalline ones. There are certainly cases when
the crystalline clusters are very competitive; see, for in-
stance, the competition between crystalline and noncrys-
talline clusters in the region N = 130-140. But even
in those extreme cases we only observe competition, but
never dominance of crystalline clusters. (b) As a con-
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sequence the magic clusters of electronic origin, stabi-
lized by the closing of electronic shells, are more stable
than crystalline clusters with closed atomic shells. (c)
The competition between crystalline clusters and shell-
closing electronic clusters increases with the number of
atoms and eventually the crystalline clusters will become
more stable,'® but the crossover appears to occur at a
critical size larger than the size predicted by Maiti and
Falicov.1® In fact, by performing calculations up to N
= 340 we have not yet found the crossover. Our result
is consistent with the experiments of Martin et al.1® for
sodium; these authors have observed evidence of crys-
talline clusters only beyond N ~ 1500.

IV. CONCLUSIONS

Using the density-functional formalism and the SAPS
model we have studied the relative stabilities of (a) per-
fect crystalline sodium clusters with closed atomic shells
and optimized lattice constant; (b) distorted-crystalline
clusters obtained by a steepest-descent relaxation of the
perfect ones; (c) noncrystalline clusters obtained by a full
steepest-descent minimization of the total energy starting
from random atomic arrangements. The size range stud-
ied includes clusters up to N = 340. Small distortions
from the perfect crystalline structure help to stabilize the
cluster and these distorted-crystalline structures compete
sometimes with the disordered structures although the
disordered clusters are overall the most stable ones. In
particular, noncrystalline clusters with closed electronic
shells (the well-known electronic magic numbers), are the
most stable between all the clusters studied in this paper.
From the known relation between thermodynamic stabil-
ity and abundance in a cluster beam we conclude that the
crossover between electronic magic numbers and atomic
magic numbers will only be observed for clusters larger
than those studied in this paper. Our conclusion is con-
sistent with the experiments of Martin and co-workers,16
who found evidence for crystalline clusters only for N >
1500.
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