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While most transport measurements on multilayered structures have been done for currents in the
plane of the layers, there is an emerging interest in the geometry where the currents are perpendicular
to the plane of the layers. We discuss the field and current patterns in these two cases. For the
latter, the elastic mean free path is not a relevant length scale; rather, it is the spin-Hip mean free
path that is important. In the case of currents perpendicular to the plane of the layers, one must
distinguish between models which allow spin mixing of the currents and those in which the currents
from the spin-up and spin-down electrons do not mix.

I. INTRODUCTION
j(k, z) = dz' cr(k; z, z') E(k, z') .

II. TWO-POINT CONDUCTIVITY

The current at a point r is related to the electric field
at r' through the two-point conductivity

j(r) = d r' r(cr, r') E(r'),

where E(r') is the actual electric field in the solid and
cr(r, r') is the microscopic conductivity given by Kubo's

linear-response formalism. We designate the layers to lie
in the x-y plane and the growth direction to be the z axis.
Due to the homogeneity in the plane of the layers, the
conductivity can be written as

cr (r, r') = cr(p —p', z, z'), (2)

where p= (x, y). By taking the Fourier transform with
respect to (p —p'), we find that Eq. (1) is written as

Until now almost all transport measurements on metal-
lic multilayers have been done with currents in the plane
of the layers (CIP). Due to layering the current varies
from one layer to another, as well as within each layer,
even though a uniform electric field is applied parallel to
the layers, e.g. , Fig. 1 of Ref. 1. Recently there have been
some novel measurements on Co/Ag and Co/Cu (Ref.
2) for currents perpendicular to the plane of the layers
(CPP). For this geometry the current is uniform through-
out, and even though a uniform electric field is applied
to the layers, the actual field in the solid varies from one
layer to another.

In this paper we will show (i) that for layered struc-
tures, while for CIP a one-point conductivity o(z) suf-
fices, for CPP the two-point function cr(z, z') is neces-
sary, (ii) how the electric field varies from one layer to
the next in the CPP geometry, and (iii) that the CPP
geometry is sensitive to spin-dependent bulk scattering;
in this geometry one can more readily distinguish it from
interfacial scattering. ~

As we are interested in cases where the fields are uniform
over the layers, we take k = 0 and suppress this index,
namely,

j(z) = dz' o (z, z') E(z') .

cr~~(z) = dz' cr(z, z'), (6)

while the measured current per unit area, or average cur-
rent density (j) = I/A, is

1
(j) = — dz j(z) = crcip E,L

where o.gyp is the global or measured CIP conductivity

1
&crp =—I dz dz' o'(z, z'),

and L is the length of the sample in the z direction.
For CPP the equation of continuity for the current

gives, under steady-state conditions, i.e. , for Bg/Bt = 0,

V' j(r) = 0, (9)

or j, = const. In this geometry it is better to express the
field in terms of the current density,

E(z) = dz' p(z, z') j(z') = j dz'p(z, z'), (10)

and the voltage drop per unit length of the sample or
average electric field (E) = V/L is

1
(E) = — dzE(z) = pc»a (»)

For fields parallel to the plane of the layers (CIP), the
electric field E(z) is a constant, and the current density

j(z) = o.~~(z) E, ,

is proportional to the one-point conductivity
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where pcpp is the global or measured CPP resistivity

1
pcv~ =—

L
dz dz' p(z, z') . (12)

Therefore, while in CIP one measures the overall conduc-
tivity, in CPP it is the resistivity that is measured.

The Kubo formula yields cr(z, z'), and in order to find
the resistivity, Eq. (12), one must either solve the integral
equation

IV. INDEPENDENT CURRENTS

In this paper we limit ourselves to multilayers with
collinear magnetization configurations, e.g. , ferromag-
netic and antiferromagnetic configurations; this means
that we can choose the quantization axis for the elec-
tron's spin along the direction parallel or antiparallel to
the magnetization vectors, and that we only have two
spin currents jT and j~. Then, if there is no spin mixing,o" (z, z') is diagonal with respect to the spin indices

dz" o (z, z") p(z", z') = 6(z —z'), (13) o" (z, z') = b„o'(z, z') . (21)

that is, invert the matrix

p(z, z') = o '(z, z') P [o(z, z')] (14)

which is unwieldy, or use a variational method to deter-
mine pc, pp from a knowledge of cr(z, z').

From the above analysis, we can see that we must intro-
duce the condition of no-spin mixing as a constraint, e.g. ,

by using the method of Lagrange multipliers. We do this
by introducing efFective internal electric fields p'(z) that
make the total Gelds spin dependent,

III. TViJO-CURRENT MODEL E'(z) = K,„,+ p'(z) . (22)
So far we have not discussed how to incorporate spin-

dependent scattering into the formalism of Sec. II, Prom
the Kubo formula it follows that the total current can be
regarded as coming from two spin currents, that is,

When we allow this possibility, the current density for
each direction of conduction electron spin is

j=)
s=T 1

where

(15)
j' = dz' o'(z, z') E'(z'), (23)

and p'(z) is determined by the condition that j'(z) is a
constant, i.e. ,

and

j' = dz' cr'(z, z') E(z')

CT Z)Z = 0 Z)Z
s'=T l

(16)

(17)

or

V j'(r) = 0,

dz' cr'(z, z') E'(z') = 0 .

(24)

(25)

V'j (r) = I (r) (18)

may be nonzero, provided that I'~ + I'" = 0.
If the internal electric field were adjusted so that one

current is divergenceless, then, in general, the other cur-
rent would have a Gnite divergence. That is, if

In Eq. (17), cr" (z, z') is that part of the conductivity
proportional to the current-current correlation function
[j',j' ], according to Kubo's formalism.

While, under steady-state conditions (Bg/Ot = 0),
Eq. (9) applies to the total current density, for each in-
dividual current

E (z) = & dz' p'(z, z'), (26)

and the voltage drop per unit length of the sample is

(E) = j' pci i (27)

The conductivity o'(z, z') is found by using the Kubo for-
mula for a current j', Eq. (23), in reacting to an electric
field E'(z), Eq. (22). Knowing o'(z, z'), we can thereby
find E'(z) and p'(z); we will call this CPP(1).s As we
will show, it leads to results that differ from CPP(2).

For CPP(1), j'(z) is a constant; it is useful to invert
Eq. (23) and write it as

V j"(r) = — dz'cr~(z, z') E(z') = 0,
Z

then, in general, 4

V j~(r) = — dz'o~(z, z') E(z') g 0.
BZ

(») where

1
Pcvv =—

L

(20) and

dz dz' p'(z, z') (28)

It follows that there is a nrixing of the two currents, be-
cause the divergence of j~(r) implies an infiow or outfiow
of charge from one current channel to the other; this
implies spin flip. We conclude that the same internal
electric Beld on currents with spin up and spin down is
tenable only if we allow spin-flip (spin-mixing) processes.
This will be called CPP(2).

p'(z z') = [o'] '(z z') (29)

(30)

As the voltage drop across the sample is independent of
the spin direction of the conduction electrons, we find
that the total current is
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and that the conductivity in CPP(1) is

+CPP(1)
s=T l L

dz dz' p'(z, z')
(31)

1
PCPP(2} dz dz' p(z, z')

In the CPP(2) model we find by following the same
procedure that

whose range dependence is scaled by the average mean
free path A (arising from the average scattering) as a
characteristic length scale. In reciprocal space the two-
point conductivity is diagonal,

o(v, v') = o(v) b(v —v'), (37)

with o (v) being the Fourier transform of the real-space
conductivity kernel, Eq. (36).

By writing Eq. (23) in reciprocal space, we find in the
homogeneous limit that

or ~'(v) = dv' o'(v) 6(v —v') E'(v') = o'(v) E'(v) .

&CPP (2)

L

where

dz dz' p(z, z')

and

p(z, z') = cr '(z, z')

(33)

(34)

(38)

For a divergenceless current (j, =const), this implies that
v = 0 and that we can use an effective constant elec-
tric field. In this case there is no distinction between
CPP(1) and CPP(2); both have constant electric fields
in this limit. From Eq. (37) we note that the conductivity
matrix is readily inverted in reciprocal space, so that

0 Z) Z = Ossr Z) Z

s,s'= T, j.

j.p(v)=,
( )

and that

(39)

[see Eqs. (15)—(17)], i.e. , the resistivity p(z, z') is the so-
lution to the integral equation (13). It should be empha-
sized that in CPP(2) matrix inversion of the conductivity
in real space should be carried out after summation over
all spin indices. Instead, for CPP(1) it is not possible to
define o.(z, z') and p(z, z') without spin indices (because
of the inequality of the electric fields of the two chan-
nels). Therefore, the salient difFerence in the eonductiv-
ities of the two models is that the CPP(l) conductivity
is the sum of the conductivities of the independent spin
currents (channels), i.e. , as if conduction is in parallel,
while in CPP(2), where there is mixing of the currents in
the two-spin channels, the conductivity is not expressed
as simply [Eqs. (34) and (35)]. In order to obtain more
explicit results, we now consider two limiting cases.

V. LIMITING CASES

The form of the two-point conductivity is controlled by
(1) the distribution of the scatterers and (2) the intensity
of the scattering. The first is dictated by the layering and
is characterized by d;„, which is the repetition length of
the layered pattern; the second is characterized by the
mean free path A, which represents the average of the
scattering encountered over the distance d;„. There are
two limits for which o(z, z') is simple: (1) when A )) d;„
and (2) when A « d;„.

When A )) d;„, the conductivity is "self-averaging"
and the layering is not important. This limit resembles
the case in homogeneous alloys and will be referred to as
such. In this case the inhomogeneities are irrelevant and
translational invariance is restored, yielding a kernel

s/
~rcpp(11 „»„, = g . ~r (- = o) = ocpp(21 ),»„, )

s=T l

as can be seen by placing Eq. (38) in the Fourier-
transformed version of Eqs. (31) and (32). From Ref. 1
it can be seen that in the homogeneous limit the CPP
conductivity is identical to that in CIP, because, as men-
tioned before, the layering is imperceptible in this limit,
and we have taken the impurity scattering to be isotropic.

When A « d;„, which we call the "local" limit, the
conductivity is a one-point function

o.(z, z') = cr(z) 6(z —z'), (41)

for points z and z' separated by distances ~z —z'~ )) A.

Notice that, in the local limit, for distances ~z —z'~ & A,
the two-point conductivity exhibits its nonlocal structure

/

cr(z, z') = f ~qAz
whose functional form is like that of Eq. (36), but scaled
with the local mean free A(z) [related to the one-point
conductivity o(z)] rather than with the average mean
free path A.

In the local limit we find differences between the two
models for CPP, and both are different from the conduc-
tivity for the CIP case. By placing Eq. (41) in Eq. (23),
we find that the electric field in CPP(l) is proportional
to the inverse of the one-point conductivity o'(z), which
is precisely the case we originally made for CPP.s In this
case the spin-dependent internal electric fields (I agrange
multipliers) are

I
o.(z, z') = F(z —z') = f i A ) (36) &'(z) =,(,)
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where j is the constant current density. In this limit the
conductivity is a diagonal matrix which is easily inverted,
so that

AF:

p'(z, z') = tI(z —z') .
o'(z) (44)

1/2 x
M55—

Actually, this is true only when the linear response of
the system is probed over distances ~z —z'~ )) A (oth-
erwise, it would be nonlocal); this is precisely the case
for multilayers, when the external Beld is uniform, as the
nonuniformity of the internal field arises from the layer-
ing (length scale d;„). By placing this result in Eq. (31),
we Bnd that in the local limit

F:

1/2 x

&CPP (1)
s=T l 1

I

1

dz
cr'(z)

(45)

which is just our previous result. 5

For CPP(2) we find, upon placing Eq. (44) in Eqs. (32)
and (34),

+CPP (2) L

I
dz

). o' (z)
s=T l

(46)

In this limit the two cases are decidedly different; in addi-
tion, they are different from the CIP conductivity found
by placing Eq. (41) in Eq. (6),

L
CIP I &&&pi„)

~=T,l
dzcr'(z) . (47)

For CPP(2) and CIP, the local character of the conduc-
tivity, Eq. (41), makes the global conductivities, Eqs. (46)
and (47), independent of the orientation of the magne-
tization of one layer relative to another, i.e. , we note
that g, o'(z) enters these expressions before integration.
This is not the case for CPP(1), where, in Eq. (45), the
sum over spin is taken only after one has evaluated the
global resistivity for each spin channel; the latter is sen-
sitive to average magnetization in the layered structure.

Prom this we conclude there is no magnetoresistance
in the local limit for CIP and CPP(2); however, it does
exist for CPP(1). By using the expressions for cr'(z) that
we have previously derived, in Eq. (45), we find that
in the local limit

FIG. 1. Resistor network analogy for the CIP resistances
of the ferromagnetic (F) and antiferromagnetic (AF) configu-
rations in the local limit (A « d; ). R+, R, and R„stand
for the resistances of the magnetic layers for spin parallel and
antiparallel to the local magnetization, and of the nonmag-
netic layers. The current-density vector j is perpendicular to
the growth direction z.

pendent on the average magnetization of the multilayered
structure, i.e. , whether M = 0 or M = M, (saturation).

In the local limit it is meaningful to talk about the
conductivity or resistivity of each layer independent of
the neighboring layers. Thus, it is appropriate to make

AF:

1/2 x

~CPP(1)
ne2 . 1

~=T, l
(48)

where 4' = (Q,. 4;)/L represents the average scattering
in the one-spin channel, i.e. , the average of the scattering
that electrons with spin direction s are subject to. This
expression is independent of the orientation of one layer
relative to its neighbors, as long as the average mag-
netization M = P,. M, is maintained. When we con-
sider noncollinear magnetization conBgurations we have
showns that the CPP(1)-MR is the same for randomly
oriented and antiferromagnetically aligned multilayered
structures; both have M = 0. However, Eq. (48) is de-

FIG. 2. Resistor network analogy for the CPP(1) resis-
tances of the ferromagnetic (F) and antiferromagnetic (AF)
configurations in the local limit (A « d;„). R+, R, and
R„have the same meaning as in Fig. 1. The current-density
vector j is parallel to the growth direction z.
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F: to know the two-point conductivity o'(z, z'); however,
in the local limit (A « d;„), the one-point conductivity
suKces, because

E'(z) ~~((~,„= (49)

In Fig. 4 we show the current and Held distribution
across three layers (two magnetic, one nonmagnetic) for
no mixing of the currents, CPP(l), with the condition
farl ) oi for the magnetic layers and o'I = 01 for the
nonmagnetic. The "sum rule"

oiii iIoi
dzEI(z) = dz Ei(z) = V,„t

g
=R

FIG. 3. Resistor network analogy for the CPP(2) resis-
tances of the ferromagnetic (F) and antiferromagnetic (AF)
configurations in the local limit (A « d;„). R+, R, and
R„have the same meaning as in Fig. 1. The current-density
vector j is parallel to the growth direction z.

analogies with resistor networks to understand whether
or not the resistivity changes in going from an antifer-
romagnetic (random) configuration to a ferromagnetic
alignment of the magnetic layers. In Fig. 1 we show the
appropriate network corresponding to four layers, two
magnetic, two nonmagnetic, in CIP, Eq. (47). We see
that the resistivities are the same for the ferromagnetic
(F) and antiferromagnetic (AF) conffgurations, so that
there is no CIP-MR in this limit. For CPP(1), where
there is no mixing of the currents (for electrons with spin
up with those of spin down), the resistances of the indi-
vidual layers for each spin direction are added in series,
while those for the two channel are added in parallel. In
Fig. 2 we note that in the ferromagnetic configuration the
resistance is less in one branch than in the other, produc-
ing a "short-circuit" effect while in the antiferromagnetic
configuration they are equal. Thus we have magnetore-
sistance for CPP(1). However, when the currents are
mixed via spin flips, the resistors are coupled as shown
in Fig. 3, and we see there is no short-circuit effect for
this case, i.e. , there is no magnetoresistance for CPP(2)
in the local limit.

AF:
Currents

M& NM Mt
Fields

NM Mt

E' E'
E=E

Ef

Currents
M& NM M&

Fields
NM

E$ E) E

F E&

should be applied when one tries to understand the
changes in E'(z) as one goes across the layers.

With spin Hips, the currents j'(z) vary with distance
on the length scale of the spin-diffusion length (A,~),
see Fig. 5. Actually, as we have not introduced spin
Hips in our theory, we are not able to calculate E(z');
however, we can intuit what follows. Far from the in-
terfaces (compared to A, g), the electric field is unique
and ET = Ei = E Howe. ver, close to the interfaces
the mixing of the currents for spin up and spin down
is insufficient to maintain this condition. The salient
difference with CPP(1) shows up in the current distri-
bution; although j = P, j' is constant the individualj' varies with distance; in fact, in the antiferromagnetic
state the spin-up and spin-down currents exchange roles.
One becomes smaller while the other becomes larger.

VI. CURRENTS AND FIELDS

For the CIP geometry we have the same electric field
in every layer, and the current is proportional to the one-
point conductivity o'(z). Typical variations of the cur-
rent across a multilayered structure have been previously
depicted. i Here we want to show that while the current is
constant for CPP throughout, it is the electric Geld that
varies. In general, to determine E'(z'), it is necessary

FIG. 4. Current densities (ji and ji) and electric fields
(Zi and Ei) for both spin channels, across two magnetic lay-
ers (M) and one nonmagnetic layer (NM), for CPP(1) (no
spin mixing) and in the local limit (A « d; ). The mag-
netizations of the magnetic layers are parallel (M t' and M I)
for the ferromagnetic configuration (F) and antiparallel (M I'

and M 1) for the antiferromagnetic configuration (AF). The
current density (j) and the electric field (E) are parallel to
the growth direction (z axis). It is assumed that a ) cr for
the magnetic layers.
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AF:
Currents

NM Mt M&

E&

Fields
NM M&

E)
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Currents
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Fields
NM M&

E&
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FIG. 5. Current-density (j~ and j~) and electric-field dis-
tributions (E~ and R~) for both spin channels, across two
magnetic layers (M) and one nonmagnetic layer (NM), in the
presence of a small amount of spin mixing and in the local
limit (A « d;„). The magnetizations of the magnetic layers
are parallel (M I and M t') for the ferromagnetic configuration
(F) and antiparallel (M 1' and M I) for the antiferromagnetic
configuration (AF). The current density (j) and the electric
field (E) are parallel to the growth direction (z axis). It is
assumed that o.~ ) o.~ for the magnetic layers. For the AF
configuration the dotted lines represent the current and field
patterns over a length scale A, g much larger than the thickness
of the nonmagnetic layer. For the ferromagnetic configuration
the relative changes in the currents and fields are small and
occur near the NM layer.

This seems correct inasmuch as the majority spin current
(conduction-electron spin parallel to the magnetization)
is higher for o.t & o.~; however, this does not occur in
CPP(l), because without spin flips there is no way of
transferring charge from one current to the other.

The current distribution in Fig. 5 can be understood
with reference to CPP(1), Fig. 4, where one recognizes
that in the magnetic layers the different conductivities
o' act to create differences in the currents j', while in
the nonmagnetic layers the equality of the conductivities
tends to equilibrate the currents j'. The electric fields
in Fig. 5 can also be understood with respect to CPP(l)
by noting that, far from the interfaces (with respect to
A, ~), the electric fields E'(z) tend to become the same.

We conclude with some unusual predictions for the
magnetoresistance for CPP(1). In general, we need the
two-point conductivity a(z, z') and the electric fields
E'(z'). However, we note that in the local limit, Z'(z)
is proportional to the inverse of o'(z), Eq. (49), and that
in the homogeneous limit this is trivially satisfied as o'
is independent of position. Therefore, as an approxima-
tion, we take Z'(z) cc [a'(z)] over the entire range
of layering repeat distances d;„relative to the mean free
path A fp. In Figs. 6 and 7 we compare our predictions
for the CPP(1)-MR with the behavior of the CIP-MR.

FIG. 6. Magnetoresistance vs spacer layer thickness t
for fixed magnetic layer thickness f = 30 A. The param-
eters used for these curves are (see Refs. 1 and 7 for the
meaning of the parameters) A = 40 A, A„= 200 A,
A, = (t + t )/0. 6; p, = 0.5 and pq = 0.2. These are the
mean free paths for the magnetic and nonmagnetic layers and
interface, and the ratio of spin-dependent to spin-independent
scattering potentials for the interface and the bulk, respec-
tively.

60--
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0 I

0 50 100 150 200

cpp
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500 1000 1500 2000
Spacer Layer Thickness (L)

FIG. 7. Magnetoresistance vs spacer layer thickness t„
for equal layer thicknesses t~ = t~~. The parameters used
for these curves are the same as in Fig. 6.

To obtain these figures we used the formulas derived in
Refs. 1 and 5. The parameters we used are close to those
we have found by fitting the data on CIP-MR and CPP-
MR of Co/Cu or Co/Ag. We note the magnetoresistance
behaves differently if the thickness of the magnetic layer
t~ is constant, as compared to when it varies in size so
as to be equal to the thickness of the nonmagnetic layer

nm
When t is held fixed both CIP-MR and CPP-MR

approach zero as t„ increases, but for different reasons;
see Fig. 6. The decrease in the CIP-MR comes from the
inability of the electrons to sample more than one mag-
netic layer within the distance of the mean free path A fp,
as the thickness of the nonmagnetic layer t„ increases.
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For CPP(1), there is no decay from mean-free-path ef-
fects. Rather the CPP(l)-MR decreases due to the re-
duced spin-dependent scattering per unit length as t„
increases.

When t = t„,see Fig. 7, the CPP(1)-MR reaches a
finite asymptote, which comes from the spin-dependent
bulk scattering per unit length. This is held constant,
because as we increase t„~ so we also add t~ to main-
tain the equality of the two. We note from Fig. 7 that
the CPP-MR with t = t„provides a sensitive test for
the presence of spin-dependent bulk scattering. If it is
not present the CPP-MR goes to zero as t„ increases
in much the same way as in Fig. 6. The curve for the
CPP-MR in Fig. 7 is predicated on CPP(l), i.e. , the as-
sumption that all the distances t~ + t„are much less
than A,g. Once t~+t„A,g, one goes over to CPP(2);
as t + t„~ = d;„)) A t~, one is in the local limit and,
as mentioned earlier the magnetoresistance goes to zero.
In other words, the CPP-MR maintains its plateau in
Fig. 7, only as long as d;„(& A,g.

Although the electron mean free path was crucial to
understanding the dependence of the CIP-MR on t„and
t~, this is not the case for CPP. Here the only relevant
length scale is the spin-diffusion distance A, g. As it is
typically an order of magnitude larger than A p~, it does

not seem to play a role in the interpretation of the CPP-
MR results in Co/Ag and Co/Cu.

VII. SUMMARY

We have shown that in CPP there are two distinct
possibilities depending on whether the currents associ-
ated with spin-up and spin-down electrons mix or not.
If they do, which occurs when the layer repeat distance
d;„ is large compared to the spin-difFusion distance A, g,
the spin is no longer a good quantum number for the
currents, the two currents mix and one loses the giant
magnetoresistive effect that is due to a "short-circuit"
effect for one of the currents. When A, ~ )) d;„ the cur-
rents do not mix, and as the electron mean free path A fp
does not cause the magnetoresistance to decrease for the
CPP geometry, we find reasonably large magnetoresis-
tances extending out to large bilayer repeat distances.
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