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We develop a two-level critical-state model for calculating the intergranular fluxon density of a granu-
lar superconductor as a function of the external magnetic field, and compare it to our measurements of
magnetic-field hysteresis of the microwave surface resistance of YBa,Cu;0; bulk samples and of Nb-Cu-
Nb proximity-effect Josephson-junction arrays. Our model deals with the magnetic-flux profiles on both
macroscopic and local levels, as the intergranular critical current density is significantly smaller than the
intragranular critical current density. We first solve the simplified special case of an infinitely large flat-
slab geometry with an ideal ordered superconducting lattice microstructure, where the resulting inter-
granular fluxon density leads to anomalous magnetic hysteresis as observed experimentally. Then we
generalize to disordered samples by introducing a type of clusters of grains. In this case, fluxons move
freely in and out of the sample through percolative paths between the clusters, forming a structure topo-
logically identical to our simplified ordered structure. The sizes of clusters depend on the microstructure
and the stiffness of flux-line lattices, and on whether the sample is cooled in zero magnetic field or in a
magnetic field. These dependences are studied both theoretically and experimentally. Finally, we use
the model to explain features observed in transport critical-current and flux-creep measurements.

I. INTRODUCTION

Microwave-loss measurements have been used exten-
sively to study high-temperature superconductors. When
an external dc magnetic field is applied, a variety of
different behaviors have been reported.! > Some ob-
served magnetic-field dependences of the surface resis-
tance seem to be contrary to the case for the conventional
superconductors. For example, we reported earlier* that
the surface resistance of a zero-field-cooled (ZFC) sample
is higher (instead of lower, as in the conventional case)
than that of a field-cooled (FC) sample, which was ac-
counted for by the granular structure of the sample. In
this paper, we extend the idea that the magnetic-field-
dependent microwave loss in granular materials is
influenced by the granular structure, and give a more
quantitative study of the magnetic-field hysteresis, history
dependence, and time dependence of the surface resis-
tance.®

First, let us consider the microwave loss of a conven-
tional homogeneous superconductor in an external dc
magnetic field. In the mixed state of a type-II supercon-
ductor, magnetic flux penetrates in the form of flux tubes
called fluxons, each carrying a quantum of flux
®,=hc /2e. Under an rf field, the motion of fluxons is
governed by their viscous drag and the restoring force
from pinning centers. Here we discuss the so-called per-
pendicular mode where the rf current induced in the sam-
ple is perpendicular to the external dc magnetic field and
the fluxons. Gittleman and Rosenblum’ have shown that
at sufficiently high frequencies, viscous drag dominates,
and fluxons oscillate about their equilibrium positions,
dissipating energy as though they were unpinned. In this
high-frequency region, similar to the Bardeen-Stephen
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flux-flow model,? the sample dissipates energy in propor-
tion to the number of fluxons it contains, and inversely
proportional to the coefficient of viscous drag.
Specifically, the flux-flow resistivity is given by

’ (1)

where n =B /®, is the fluxon number density, 7 is the
coefficient of the viscous drag, p, is the normal-state
resistivity, and H_, is the upper critical field. In the
microwave-flux-flow experiments done by Gittleman and
Rosenblum and later by others, thin films were placed in
a perpendicular dc magnetic field; therefore B =H, and
no magnetic hysteresis was observed. However, Eq. (1)
should remain valid for samples with a different
geometry, which would show a magnetic hysteresis. For
the general case of a spatially dependent flux density in
the sample, and if we also assume the rf skin depth is
snzaller than the sample thickness, Eq. (1) can be modified
as

R,=R,V{|h])/H, , )

where R, and R, are the surface resistances in the super-
conducting and normal state, respectively, A (x,y) is the
local flux density, which depends on spatial coordinates x
and y, and {|h|) is a spatial average of the absolute value
of the flux density 4. Note that {|h|)#*B=<(h), the
averaged flux density of the sample, which is the quantity
measured by magnetization measurements.

Using the critical-state model,” !° 4 (x,y), and therefore
(h) and (|h|), can be calculated as a function of the
external field H.,,. However, the analytical solution for
the critical-state model is available only for a limited
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number of special cases (e.g., Refs. 9-13). In Appendix
A, we have calculated the formulas for a long slab in a
parallel dc magnetic field, with a simplified Kim-
Anderson model in which J (x,y)~1/h(x,y), where x,y
are again spatial coordinates. Figures 1(a) and 1(b) are
the initial and hysteresis curves of the flux density
B=(h), and the surface resistance R, using Eq. (2), cal-
culated for an external dc field cycled between TH*,
where H*'is the penetration field of the sample. Two
features are clearly shown in Fig. 1: (1) for the same
value of H,,,, both the averaged flux density B and the
surface resistance R in the decreasing H,,, curve are
higher than that in the increasing H,,, curve, resulting
from the trapped fluxons; (2) in decreasing H.,,, the
minimum of R, is obtained at a negative value of H,,,
where B =0. Note that the exact solution we used here is
calculated only for the special case of a long cylinder,
which is unusual for microwave measurements. The ac-
tual shape of the hysteresis loops depends on the max-
imum field applied, the geometry of the sample, and the
actual field dependence of critical current density. How-
ever, the above two features of the magnetic hysteresis
are rather general for any homogeneous sample (regard-
less of their actual geometries), as they are simply based
on flux trapping. Such features have been seen in conven-
tional superconductors such as Nb samples, which we
discuss later, and in high-T, samples!® at low tempera-
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FIG. 1. The case of homogeneous superconductors. Initial
curves and hysteresis curves predicted by Kim-Anderson
critical-state model: (a) the averaged flux density B, (b) the sur-
face resistance R,. The arrows indicate the direction of the
change of the external magnetic field.

ture and small dc fields. However, the surface resistance
measurement on ‘“‘single crystals” at high temperature
and/or high fields, and ceramic samples generally, have
shown the opposite results, as reported by many
groups.>>% Figure 2 shows a typical experimental result
we measured on ceramic samples, where the surface resis-
tance R, in the decreasing H.,, curve is lower than that
in the increasing H,,, curve, and the minimum of R; is
obtained before H, reaches zero. The details of the
sample preparation and the measurement apparatus will
be reported in a later section.

To understand this anomalous magnetic hysteresis ob-
served in granular samples, one must first clarify the
difference between a homogeneous sample and a granular
sample. For a homogeneous sample, all fluxons in it con-
tribute to the microwave loss with the same weight. For
granular superconductors, since the viscosity for fluxons
between the grains is orders of magnitude smaller than
that for fluxons in the grains, the microwave loss is main-
ly due to the flux-flow-like dissipation of intergranular
fluxons.!* In the regime where the flow-flow-like dissipa-
tion process dominates the loss,*

R, Z\/Zﬂwq)(z,nj /c4nj , (3)

where n; is the intergranular fluxon number density, 7; is
the coefficient of the viscous drag in the intergranular re-
gions, and o is the angular frequency. Here the surface
resistance is proportional to n 11 2, the square root of the
intergranular fluxon density. Thus the measurement of
the magnetic-field-dependent microwave surface resis-
tance will enable us to study the motion of intergranular
fluxons.

Electromagnetic properties in high-T, superconductors
are strongly influenced by its granularity.!>!® In this pa-
per, we develop a two-level critical-state model for the
calculation of the intergranular fluxon density of a granu-
lar superconductor as a function of the external magnetic
field and its history, and compare it to our measurements
of magnetic-field hysteresis of the microwave surface
resistance of bulk samples of YBa,Cu;0,; and of Nb-Cu-
Nb proximity-effect Josephson-junction arrays. The
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Fig. 2. Surface resistance change 1/8 vs external magnetic
field measured on a ZFC YBa,Cu;0, bulk sample at 78 K. The
arrows indicate the direction of the change of the external mag-
netic field.
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two-level model we propose deals with the flux profiles on
both macroscopic and local levels. The basic ideas of the
two-level critical-state model are discussed in Sec. II. In
Sec. III, we simplify the general problem and solve it for
the special case of an infinitely large flat-slab geometry
and for an ideal ordered superconducting lattice micro-
structure. We calculate the intergranular fluxon density
as a function of the external magnetic field, which gives
the underlying mechanism of the anomalous hysteresis
observed. Then, in Sec. IV, we extend our results to
disordered systems. For granular samples with random
microstructures, we propose that some fluxons can bend
around the superconducting grains and stay unpinned.
These fluxons move freely in and out of the sample
through percolative paths between the clusters of grains,
similar to the picture proposed by Gurevich.!” The clus-
ter structure is topologically similar to the structure we
solve in Sec. IIT and therefore our results can be extended
to an arbitrary granular system. For ZFC samples, the
size of the clusters depends on the maximum field ap-
plied. For FC samples, the cluster size is much larger
and almost independent of the applied field. Section V
reports the microwave surface resistance measurements
of bulk YBa,Cu;0,; samples and Nb-Cu-Nb proximity-
effect Josephson-junction arrays. The results will be com-
pared to the two-level critical-state model. In Sec. VI, we
use the model to account for features observed in the
transport critical current and the flux-creep measure-
ments. Section VII is a conclusion. Some formulas used
in the calculation of critical-state quantities are listed in
the Appendixes.

II. BASIC CONCEPTS
OF THE TWO-LEVEL CRITICAL-STATE MODEL

The conventional critical-state model deals with ma-
croscopically homogeneous samples, where a single criti-
cal current density controls the gradient of flux density
everywhere. For granular materials, however, two dis-
tinct critical current densities exist: a large critical
current density J,, inside the grains, and a much weaker
one J; reflecting the intergranular Josephson coupling.
Thus the gradient of the flux density in the grains can be
much larger than that in the boundaries between the
grains. For this reason, we propose that the critical-state
model in a granular system should be built on two levels.
On the macroscopic level, the flux density averaged over
a scale of many grains should have a gradient determined
by the macroscopically flowing intergranular critical
current density J,;. On the local level within single
grains, a critical state is established with a flux density
gradient determined by the intragranular critical current
density J,,. The flux density in the grain boundaries
influences this local critical state by supplying the
effective external field. On both levels, the relation be-
tween the shape of the flux profiles and the outside field is
determined according to the principles of the original
critical-state model.” We give a schematic representation
in Fig. 3, where the dashed line is the averaged flux
profile on the macroscopic level and the solid line is the
flux profile on the local level.
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FIG. 3. A figurative representation of the flux profile in a
granular sample where grains (denoted as g regions) and grain
boundaries (denoted as b regions) have different flux density gra-
dient. The solid line represents the critical states on the local
level and the dashed line represents the critical state on the
macroscopic level.

Though we explicitly assumed two distinct levels in the
above paragraph, the same principle applies for any sys-
tem with different levels of pinning strength, whether it is
two levels or more. For example, some grains can form
strongly Josephson-coupled clusters, and making a new
level where the critical current density within it is much
larger than that for the whole sample but smaller than
that for the grains. However, we will limit our discussion
to the two-level case and try to explain some experimen-
tal results using it, though a real sample may contain
many more levels.

If the macroscopic screening is dominant, we expect
that a two-level critical-state system will still show behav-
iors similar to that of a homogeneous sample as shown in
Fig. 1. However, when the local critical state becomes
dominant, a dramatically different picture will appear.
Figure 2 shows anomalous hysteresis curves measured on
a granular YBa,Cu;0; bulk sample, which we will attri-
bute to such a case.

III. FLUXONS IN AN ORDERED
SUPERCONDUCTING LATTICE

The general problem of an arbitrary granular sample
with finite sizes is difficult to solve.!®* However, the case
of an infinitely large flat slab (also composed of an or-
dered structure) in a perpendicular magnetic field is solv-
able analytically, and contains the physics we wish to ex-
plore. As shown in Fig. 4, we assume the thickness of the
slab is d, and the microscopic composition of this flat slab
is an ordered lattice of superconducting cubes (or grains),
where a is the lattice constant and L, is the side of the su-
perconducting cubes. We further assume L, ~a, so that
the grain boundary region is small compared to the
grains, and that d >>a, which makes the critical-state
model on the local level easier, as we will discuss later.

We define two types of fluxons according to their dc
pinning characteristics: (1) grain-pinned fluxons, denoted
by h,, are those pinned by pinning centers within the
grains; (2) grain-boundary fluxons, denoted by h;, are
those that never pass through grains; they are relatively
free, since they are not pinned by the strong pinning
centers in the grains. Throughout this paper, we use & as
the microscopic magnetic flux density, with A, for the
pinned region of the local critical state, and & for the re-
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FIG. 4. (a) Side view of a flat slab composed of an ordered
lattice of superconducting cubes in a perpendicular field. Exam-
ples of the grain-pinned fluxons (the line with 4,) and the grain-
boundary fluxons (the line with h) are also shown. (b) A figura-
tive representation of the flux lines in critical state. (c) The flux
profile in critical state.

gion where free grain-boundary fluxons exist. Figure 4
shows the two kinds of fluxons and the two-level critical-
state flux profile.

Due to the macroscopic spatial uniformity, the grain-
boundary-flux density A, is a constant, as shown in Fig.
4(c), if the intergranular critical current density is negligi-
ble compared to the intragranular critical current densi-
ty. The grain-pinned-flux density 4, varies within grains,
and will be determined later according to the critical
state on the local level. For our simplified system in a
perpendicular magnetic field, the average flux density is
equal to the external magnetic field, H,,,, since the sam-
ple is infinite in horizontal directions. Therefore,

(1—s,)h;+s,(h, Y =Hqy @

where s, is the cross-sectional fraction of the pinned area
(or the local critical-state region), and (h,) is the aver-
aged grain-pinned-flux density over it. For our simplified
case, the cross-sectional area of the local critical-state re-
gion is L;, the area of the weak boundary region is
(a?—L}), thus

2
Ly

0)—
o T 420 )

where we used superscript “(0)” to denote the simplified
ordered case.
The total intergranular fluxon density n; is

n.=6}—0[(1—sp)|hf|+spx<lh,,|>], (6)

J

where the parameter x in the ordered case is
a—L

a

x©O= £ (7

Here the first term in the bracket in Eq. (6) is due to the
grain-boundary fluxons and the second term is due to the
grain-pinned fluxons that pass through weak link regions
between grains over a fraction x¥=(a —L,)/a, of their
length. Also, we have called n; the intergranular fluxon
density instead of flux density, since in microwave surface
resistance study we measure the total number of the in-
tergranular fluxons (regardless of their directions).

As a result of the assumed infinitely large flat-slab sys-
tem, Eq. (4) serves as a key to simplify the complicated
general problem discussed in the last section. Physically,
assuming the sample to be an infinitely large flat slab is
equivalent to saying that we can neglect the screening of
the external field on the macroscopic level. It is prefer-
able to compare this model to samples with the flat-slab
geometry. However, because the intergranular critical
current in high-temperature granular superconductors is
very small, our results should be applicable to any cases
where the macroscopic screening becomes negligible in a
weak field.

A grain-pinned fluxon passes through a vertical row of
superconducting cubes, as shown in Fig. 4. For our case
of L, ~a and of a perpendicular (vertical) external field,
such a vertical row of superconducting cubes behaves like
a solid rod of square shaped cross section ng and height
d. To this superconducting rod, the effective external
field is the flux density in the weak link region ;. We
can find the relation between 4, and h, according to the

critical-state model, and then wlt,: can easily obtain
(hp)=f(hf), (8)
(lhp|>=g(hf). 9)

Here f(x) and g(x) are given in Appendix B, calculated
using Bean’s critical-state model (which assumes a con-
stant critical current density) for the case of an infinitely
long slab of penetration field H*. (The magnetic field is
parallel to the plane of a long slab whereas it is perpen-
dicular to the plane in the so-called flat-slab geometry.)
Since the general features of the two-level critical state
we discuss here do not depend on the specific critical-
state model used for the grains, we choose the Bean mod-
el for its mathematical simplicity. We further approxi-
mate the long rod with a long slab for the simplicity of
algebra: Such an approximation does not severely change
the underlying physics. The penetration field Hg* for
each rod is

H*z%ﬁ-J L, . (10)

g g g

Using Egs. (4)-(10), one can theoretically solve for the
intergranular fluxon density n; as a function of the exter-
nal field H.,,. Only two parameters are needed, one is
H;‘ of the grains, the other is L, /a, which is related to
the microstructure. Though 4, is not directly propor-

tional to H.,,, their relation is monotonic: (1) when H
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increases, hy increases; (2) when H.,, decreases, h, de-
creases. Therefore, using Egs. (4) and (6), we parametri-
cally plot n; vs H, with h, as the free parameter. Fig-
ure 5 shows one such plot, where an external field H.,, is
applied to a ZFC sample, rising from zero to 0.82H;
(which corresponds in this example to h,=H'), then de-
creasing to —0.82H, then increasing again to 0.82H,.

Contrary to the conventional case as shown in Fig.
1(b), Fig. 5 shows two significant anomalous features: (1)
for the same value of H.,,, n; in the decreasing H,,,
curve is lower than that in the increasing H,,, curve; (2)
the minimum of #; is obtained before H.,, reaches zero in
decreasing |H,,,|. These two features have been observed
experimentally in granular samples, as shown earlier in
Fig. 2. To help to understand the underlying physics,
Fig. 6 shows the flux profiles (dark solid lines) and H,,
(dashed lines) for points A, B, C, and D of the decreasing
H,,, curve in Fig. 5. Physically, as H,,, decreases from
the maximum fields H,,, fluxons move out of the un-
pinned regions first, giving a lower n; (the first anomaly).
The minimum of n; is reached at point B, where the un-
pinned fluxon density k=0, but the macroscopic aver-
aged flux density B (equals to the external field H,, in the
infinitely flat-slab case here) is still positive (the second
anomaly). The important point here is that n; and B are
two different physical quantities.

Now we discuss how H,, depends on H_,,. Again we
use h; as a free parameter, and notice that H,, is reached
when h,=0. From Eq. (4), the corresponding external
field H,, is equal to s,{|h,|). Using the results in Ap-
pendix B, we have
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FIG. 5. The calculated (normalized) intergranular fluxon
density n/’? vs the external field H.,, for an ordered ZFC sam-
ple with L, =0.8a, showing initial application of fields, followed
by a complete cycle of external fields between +H,,,, =0.82H,".
The arrows indicate the direction of the change of the external
magnetic field. The flux profile of points A to D of the decreas-
ing field curve will be given in Fig. 6.
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FIG. 6. The flux profiles (solid lines) of the critical state for
points A, B, C, and D of the decreasing field curve in Fig. 5.
Dashed lines indicate the level of the external field H.,,. Notice
the dashed line is the two-dimensional average of the solid line.
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— f>
H,, —sp—‘u%x— for hy max <Hg (11a)

g
H, =s, 2 T g
g

for H <h; ..,<2H; ,
(11b)

*
H,=s, for Ay e = 2HY . (11c)

Here A .,y is the value at the maximum external field
H_,.. Using Eq. (4) and the appropriate formulas in Ap-
pendix B, the exact relation between A ., and H,, can
be determined,

2
Hmax=sp£2f1’;%+(1—sp Vs max fOF hp o SHY
4
(11d)
*
Hopoy =hy mon— —o= for hy 0, >HY (11e)

For a given value of H,,,, we first solve for A ,, using
Egs. (11d) and (11e); then we obtain H,, using Egs. (11a),
(11b), and (11c¢). Further analysis of Eq. (11) indicates
that H,, increases with increasing H,,y, if A,y is small-
er than 2Hg‘; and H,, becomes a constant, if A £, max is
larger than 2H,'.

IV. FLUXONS IN DISORDERED SYSTEM:
HISTORY DEPENDENCES

The essence of the two-level critical state is the ex-
istence of regions where fluxons are weakly pinned and
can move in and out of the sample relatively freely.
These free regions cut a large sample into smaller and iso-
lated tube-shaped (with axes in the direction of the exter-
nal magnetic field) sections where fluxons are strongly
pinned. The local critical state is built up in these
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strong-pinned sections. For the ordered system, the size
of the strong-pinned sections is equal to the grains.

Now we extend our discussion to the case of a disor-
dered microstructure of densely packed superconducting
grains. Do free regions still exist and what is the size of
the strong-pinned sections? When an external magnetic
field is applied to a ZFC sample, the flux will enter only
the grain-boundary regions if the effective field in the
grain boundaries is smaller than the lower critical field of
the grains. Obviously these grain-boundary fluxons will
have to bend around the grains, as shown in Fig. 7(a). As
the effective field at the grain boundaries becomes larger
than the lower critical field of the grains, some fluxons
will enter the grains. However, if the flux-line lattice is
flexible enough, which seems to be the case for the high-
T, superconductors, it is energetically more favorable for
fluxons to bend around the grains and to stay in the
grain-boundary regions. These fluxons are so weakly
pinned that they move in and out of the sample freely,
and serve the same function as the free fluxons do in the
ordered system discussed in Sec. III. As shown in Fig.
7(b), which is a cross-sectional view in the direction of the
external field, the sample is then divided into free regions
(shown in white) and strong-pinned regions (shown in
dark). Though the strong-pinned sections now are
curved tubes, they are similar to the straight tubes for the
ordered system in the sense that the local critical state
can be built within them.

In Fig. 7(b), a fluxon in the free regions (white areas)

(a)

FIG. 7. A small field is applied to a ZFC sample. Fluxons go
around the grains so that the structure is topologically
equivalent to the ordered system. There exist distinctive free
areas (in white) where fluxons are free, as well as cluster areas
(in dark) where fluxon are pinned. (a) Side view for the case of a
ZFC sample in a small field, where free fluxons (represented in
lines) go around grains. (b) Top view of case (a). (c) Top view:
For larger field, fluxons are less flexible, some free region disap-
pears, clusters are formed. The cluster size increases as the
external field increases. (d) Side view of the case of FC samples,
where flux lines are straight.

can have a path through the sample (by going around the
grains) without being caught by grains. Such a path
would not be possible if the flux lines were straight, since
a straight line passing through a densely packed random
granular system is likely caught by grains and pinned
strongly. Thus, as the flux lines becomes less flexible,
some of the free regions as shown in Fig. 7(b) will disap-
pear, where the flux lines cannot be bent enough to go
around the grains. Correspondingly, Fig. 7(b) develops
into Fig. 7(c), where in the shaded area between the
grains, free fluxons no longer exist. Still, the active free
or weak-pinned regions can form percolative paths, along
which fluxons can move in and out of the sample freely.
We may define sections (all shaded areas) enclosed by
these percolative paths (white areas) as clusters. Outside
the cluster, fluxons are free or weakly pinned. Within the
cluster, fluxons are strongly pinned, and a local critical
state exists.

In the dimension parallel to the external field, these
clusters are curved tubes. Perpendicular to the external
field, the cross-sectional size of the clusters is important
for the local critical state. The cluster size depends on
the geometry of the granular system and the flexibility of
flux lines.

How to determine the cluster size L,? One may use
the elasticity theory of flux-line lattice. Since the reason
for the flux line to bend around the grains is that doing so
is more energetically favorable, the maximum bending is
when the line tension of the curved fluxon line equals to
the force preventing its entering the grains. Thus, the tilt
modulus C,, is relevant for the discussion of the flux-line
flexibility.!! The value of C,, increases with increasing
H, thus the flux-line lattice becomes less flexible as the
external field increases. This causes the cluster size L, to
be a monotonically increasing function of H,,,, the max-
imum field applied to the sample. Here H,,, is used for
the following reason: When the external field is de-
creased from its maximum value, it is likely that the clus-
ter size will stay about the same, for the fluxons inside the
cluster will stay pinned by the grains. The lower bound
of the cluster size is the grain size L,. Therefore, we may
write,

L.=L,(1+aH},), (12)

max

where L, is the size of grain, H,,,, the maximum external
field applied and a and y are constants to be determined
by the experimental results. The penetration field of the
cluster H} is

H!~HJ(1+aH},,), (13)

where H,' is the penetration field of the grains. Note in
Eq. (13), we assume the apparent screening current in the
cluster can be approximated by J,. Also, Egs. (12) and
(13) are likely to be valid for small H_,,. As H_, be-
comes larger and larger, L, and H} will saturate at the
values corresponding to the FC case which we discuss
later.

In order to use the result obtained in the previous sec-
tion, one needs to know s, and x, in addition to the clus-

ter penetration field H*. Equation (12) shows L, in-
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creases with the external magnetic field, but this does not
necessarily mean that s, increases with the external field
because of the following reason. Due to the randomness
of the granular structure, we expect that clusters with
different sizes appear. For the critical-state model, larger
clusters with larger H* will contribute much more to the
hysteresis curve than smaller clusters with smaller H*.
Thus one may define a characteristic cluster size L,.
Clusters significantly smaller than L, will not contribute
much to the hysteresis, and therefore, play a role similar
to intergranular material. As the external field increases,
grains combine to form clusters with different sizes.
Since smaller clusters can be treated as though they are
free regions where the critical state is concerned, it seems
there is no clear definition of free regions for the critical-
state model. The exact relation between s, and the exter-
nal field needs further study. In this paper, we assume s
is the same as in the ordered case determined by Eq. (5),
2
~s0= L , (14)

aZ

(n
Sp

where we used superscript “(1)” to denote the disordered
case. For the same reason, x will stay the same as deter-
mined by Eq. (7),

a—L

a

D xO= £ (15)

X

Now, the result in Sec. III can be easily applied to the
disordered system.

For the FC sample, the situation is different. The
magnetic-field lines in an FC sample are straight above
the transition temperature. As the sample cools down,
we expect them to stay straight, as shown in Fig. 7(d).
Since here the flux lines are straight, there will be very
few free regions. Equation (13) is not relevant in this
case, since the equivalent ZFC field would be infinitely
large. The cluster size will be very large, and one expects
HZ} for the FC samples to be much larger than the one
for the ZFC samples.

The above results will be compared to the experimental
data in the next section, where we find that the fitting of
the data on ZFC samples indeed requires that the cluster
size increases with the maximum external field applied to
the sample, while the data on FC samples can be fitted
with a single and a much larger penetration field of the
cluster.

V. MICROWAVE SURFACE RESISTANCE
MEASUREMENTS OF INTERGRANULAR FLUXONS

The measurement of the microwave surface resistance
enables us to study the intergranular flux motion. In this
section, we report the experimental study of large two-
dimensional Nb-Cu-Nb proximity-effect Josephson-
junction arrays (which to some degree serve as a model
system for granular superconductors) and of bulk
YBa,Cu;0, granular superconductors, and compare the
results to the model discussed in the previous sections.

Low-frequency fluxon motion in Nb-Cu-Nb
proximity-effect Josephson-junction arrays has been stud-

ied recently in our laboratory, in part as a model system
in the study of the granular superconductors. The fabri-
cation process involves thermal evaporation, magnetron
sputtering, rf cleaning and etching, reactive ion etching,
and ultraviolet photolithography with positive and in-
verting photoresists. The details of the microfabrication
technique have been described elsewhere.!® A schematic
top view of such an array is shown in Fig. 8. The cross-
shaped niobium islands of thickness of 2000 A are on top
of a 3000 A thick copper film. The lattice constant of the
square lattice is 10 um. Array samples with a 3/8 in. di-
ameter circular disk geometry were fabricated on sap-
phire substrates. Each sample contains about 7.1X10°
Nb islands. The normal resistance r, is about 2 m{) per
junction. The critical current i, is on the order of 10 uA
per junction, in the temperature range of our microwave
measurement. The array was placed on top of the bot-
tom end plate of the copper microwave cavity described
elsewhere.*

The bulk samples of YBa,Cu;O, are synthesized
through the standard solid-state reaction method, also
made in circular disk geometry of a 3/8 in. diameter,
with thickness typically in the range from 1 to 2 mm.
Both the dc resistivity and the surface resistance mea-
surements show an onset transition temperature of about
92K.4

The microwave system used in this experiment is de-
scribed in detail in Ref. 4. We measure the reflected
power from the cavity on resonance, from which we com-
pute the sample surface resistance as follows:

1_1+Vp
B 1FVp

Here B is the ratio of the cavity Q to the coupling Q,
p =P, /P; is the ratio of the power reflected from the cav-
ity at resonance to the incident power, R, and R, are sur-
face resistances for the sample and the cavity, respective-
ly, and the y’s are geometrical factors. The upper and
lower signs are for the undercoupled (8 < 1) and the over-
coupled (B> 1) situations, respectively. At a given tem-
perature, the surface resistance of the cavity is constant,
so that A(1/B)x<AR;,. Therefore, by measuring the
change of 1/, we measure the change of the surface
resistance of the sample, apart from a constant scale fac-
tor.

For measurements on both junction arrays and bulk
YBa,Cu;0, samples, we used input microwave powers
ranging from 1 to 10 mW. The measured 1/f8 are the

—L —y R, +7.R, . (16)

| Copper

Il Niobium

FIG. 8. Top view of a small segment of the Nb-Cu-Nb prox-
imity Josephson-junction array sample. The cross-shaped Nb
1s1ands (shown in black) of 2000 A thickness are on the top of a
3000 A Cu film.



47 MAGNETIC-FIELD-DEPENDENT SURFACE RESISTANCE AND. .. 477

same within one percent at both power levels, indicating
the currents induced by the microwave fields are much
smaller than the critical currents of both arrays and bulk
YBa,Cu;0, samples.

Though the microstructure (shown in Fig. 8) of the
Nb-Cu-Nb proximity-effect Josephson-junction array is
not ideal for modeling the local critical state, these arrays
nevertheless provide some insight into the two-level
critical-state model. Interestingly, we observe both con-
ventional and granular behaviors in this system. The
measured temperature dependence in zero field of the dc
resistance and the microwave surface resistance of the
Josephson-junction array shows the two-step resistive
transition (e.g., Ref. 16) usually observed for the granular
system. The niobium islands become superconducting at
about 9 K, but thermal fluctuations prevent establish-
ment of a coherent superconducting state through the
whole sample. At the array transition temperature (i.e.,
the Kosterlitz-Thouless temperature) of about 4 K, a
macroscopic coherent superconducting state is estab-
lished as the Josephson-coupling energy overcomes the
thermal fluctuations.

Figure 9(a) shows the field dependence of microwave
absorption by the ZFC sample at 4.2 K. Clearly, the sur-
face resistance in decreasing field is larger than that at
the same external field during increasing fields. Also,
when the field is decreased, no minimum point is reached
before the field goes to zero. As discussed in Sec. I, such
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FIG. 9. (a) Surface resistance change vs external magnetic
field measured on the ZFC array sample at 4.2 K (above the ar-
ray transition temperature) shows the conventional behavior of
Nb. (b) At 3.25 K (below the array transition temperature), it
shows the behavior of a granular system. The arrows indicate
the directions of the change of the external magnetic field.

behavior is expected for a classical homogeneous materi-
al. Since there is no phase coherence between the Nb is-
lands above the array transition temperature, the inter-
granular contribution to the surface resistance is simply
determined by the resistivity of the copper, independent
of the applied field. The field-dependent change of the
surface resistance should then primarily reflect the
change in the intragranular part, i.e., the individual
homogeneous Nb islands. (Because both the Nb islands
and the intragranular Cu are metallic with comparable
values of p,, their contributions to microwave loss in
these strong fields are comparable, unlike the situation of
grains separated by highly resistive barriers in granular
YB32CU307.)

At temperatures below the array transition tempera-
ture, different behavior appears. Figure 9(b) shows the
measurement on a ZFC sample at 3.25 K. Now the sur-
face resistance during decreasing fields is somewhat
smaller than that at the same external field during in-
creasing fields. Also, when the field is decreased, a
minimum resistance point is reached before the field goes
to zero. Such behavior is consistent with our two-level
model for the granular superconductors. However, it
seems that the theoretical model describes the
YBa,Cu;0, granular superconductors more quantitative-
ly than the Josephson-junction arrays, even though the
arrays have a periodic structure of the sort assumed in
the ordered model. Several factors may account for this.
First, each Nb island (only 3000 A thick) is essentially a
two-dimensional object perpendicular to the applied field,
significantly different from our theoretical model of a
three-dimensional system, where each cluster is treated as
a long tube in the direction of the applied field. Second,
our model [Eq. (3)] assumes the loss contribution from
the grains to be negligible; this is appropriate for the dis-
cussion of granular superconductors with weakly conduc-
tive intergranular regions such as the high-T, ceramics,
but not for the Nb-Cu arrays discussed here, where both
regions are metallic. A further complication in the ar-
rays is that the strength of the superconductivity induced
by the proximity effect varies continuously with position
in the copper intergranular region, so that superconduct-
ing effects persist in the Cu immediately adjacent to the
Nb, even when there is no effective coupling between
grains. Thus, one might distinguish at least three distinct
levels of superconductivity instead of the two on which
our model is based. Accordingly, we expect at best a
rough correspondence with the predictions of our model.

The typical initial and hysteresis curves of a ZFC sam-
ple of bulk YBa,Cu;0; have been shown in Fig. 2. It
closely resembles the behavior predicted by the two-level
critical-state model shown in Fig. 5. Notice that the
minimum dip here is not as sharp as that shown in Fig. 5,
probably due to the fact that the actual grain size is not
uniform and that the critical state on the macroscopic
level makes the average field vary slightly at different po-
sitions in the sample.

While the two-level critical-state model qualitatively
explains our experimental results, a more quantitative
agreement is difficult to achieve. Figure 10(a) shows the
decreasing field curves, which are measured after various
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initial maximum fields H, ,, are applied to a ZFC
YBa,Cu;0, bulk sample at 4.2 K. Assuming the grain
size of 1 um, and a critical current density of grains to be
10° A/cm?, one obtains an Hg‘ of 63 G from Eq. (10).
Figure 10(b) shows the calculated results based on the or-
dered system model discussed in Sec. III, with
L,/a=0.8, H' =100 G. Here the positions of H,, over-
lap for the curves of H,, of 150 G or higher, as in the
saturated region described by Eq. (11lc), but not con-
sistent with the experimental data shown in Fig. 10(a).
Also, the ordered system model predicts that when
hs max>2H], the decreasing field curves overlap when
O<hy<hj ,.x—2H,, which also disagrees with the ex-
perimental results shown in Fig. 10(a). Figure 10(c)
shows the calculated results based on disordered system
model using Eq. (12), with L,/a=0.8, HS=100 G,
a~ =500 G, and the exponent ¥ is taken to be 1. With
this model, we see that H,, changes with H_,., and that
the curves of different H,, no longer overlap, which are
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FIG. 10. (a) Decreasing-field curves of the surface resistance
(~1/B) hysteresis measured on a ZFC YBa,Cu;0; bulk sample
at 4.2 K, for various maximum external fields H,,,. (b) Calcu-
lated results based on the ordered system model described in
Sec. II1, with L, /a=0.8 and H,* =100 G. (c) Calculated results
based on the disordered system model described in Sec. IV, with
L,/a=0.8, H} =100 G, and a~'=500 G; v is taken to be 1.

significantly more consistent with the experimental re-
sults. Here a ! is much larger than Hg, suggesting that
the flux lines can bend around almost every grain when a
field of the order of 100 G is applied to a ZFC sample.
The cross section of the cluster contains only about 4
grains even at 500 G. A better fitting can be achieved by
assuming a field dependent s;” instead of a constant one
used in Eq. (14), but an extra free parameter would be in-
troduced. Moreover, for a real sample, the cluster size
and the penetration field are likely to be statistically dis-
tributed, rather than a single value assumed here.

The decreasing field curve measured on the FC sample
is significantly different from that of the ZFC sample.
Figure 11(a) shows the decreasing field curve for the FC
sample at 4.2 K cooled at various fields. Figure 11(b) is a
fitting with L, /a =0.8 and a single penetration field H}
of 1000 G [recall that Eq. (13) is not relevant in the FC
case], a value corresponding to a cross section of the clus-
ter containing about 100 grains, significantly higher than
that obtained from the ZFC sample. This is in agreement
with our disordered model, which predicts that the clus-
ter size of the FC sample is much bigger, since the flux
lines in the FC sample are straight. Apart from the
rounding of the experimental curves caused by statistical
spread of parameters, we see that the model curves in
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FIG. 11. (a) Decreasing-field curves of the surface resistance
hysteresis measured on a FC YBa,Cu3;0; bulk sample (same as
the one in Fig. 10) at 4.2 K, for various maximum external field
H,,,,. (b) Theoretical fitting with H* =1000 G and L, /a =0.8.
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Fig. 11(b) capture the general features of the data quite
well.

Figure 12(a) shows a different way to study the hys-
teresis due to intergranular fluxon motion. The surface
resistance is measured when a magnetic field is first ap-
plied to a zero-field-cooled sample (shown in squares).
Then the magnetic field is withdrawn, and the surface
resistance is again measured (shown in circles). A change
of the slopes of field dependence happens at about 40 G,
corresponding to hy .., passing over 2H*. Figure 12(b)
shows the intergranular fluxon density n; vs H /H}
calculated for the above process using the ordered system
model (Sec. III and Appendix B), where n; becomes a
constant at high field. Figure 12(c) shows the result cal-
culated using the disordered system model (Sect. IV and
Appendix B), where n; slowly increases with H,, at high
field. The latter seems closer to the experimental case.
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FIG. 12. (a) Squares: The surface resistance measured when
the external field is first applied to a zero-field-cooled sample.
Circles: The remnant surface resistance after the field is with-
drawn at each H,,. The temperature is 78 K. (b) Calculated
results from the ordered system model with L, /a=0.8. The
solid line is for a ZFC sample in an external field, and the
dashed line is for the remnant surface resistance. (c) Calculated
results from the disordered system model with L,/a=0.8,
a”'=4H}, y=1.

VI. FLUX CREEP AND TRANSPORT CRITICAL
CURRENT DENSITY MEASUREMENTS

The surface resistance measurement of flux creep has
been reported in a previous paper. When turning off the
field on either an FC or a ZFC granular sample, logarith-
mic decay of the surface resistance is observed. However,
when a field is applied to the ZFC granular sample, a
nonconventional flux creep is observed. After an initial
increase over a very short time, the surface resistance de-
creases with time. Within the two-level critical-state
model, this reversal in flux creep direction can be ex-
plained as follows: The grain-boundary fluxons that
quickly enter the sample, subsequently creep into the
grains, where they become immobilized and no longer
contribute to the microwave loss.

Based on the ordered system model described in Sec.
III and using the Bean model formulas listed in Appendix
B for the local critical state in the grains, we now give a
quantitative description for the time dependence of the
surface resistance. The thermally activated flux creep
leads to a logarithmic time dependence of the critical
current, thus

kgT
1— =B

H(t)=H,(t=0) 11‘1(!/7’)] , (17)

where H (¢t =0) is the value without flux creep, U is the
thermal-activation energy, and 7 is the characteristic
time.

First, we consider the case of applying an external field
H,,, to a ZFC sample, where H.,, is assumed to be larger
than 2H; for simplicity. The two-level critical state is
shown in Fig. 13(a). At H,,,, the value of h, is deter-

mined by Eq. (4), and using Eq. (B2),

N N

(b)

AN -

FIG. 13. Flux profiles for (a) an external field H.,, applied to
the sample; (b) after the field is turned off. The solid line
represents for the critical state right after the change of the
field. The dashed line represents for a later time, indicating the
direction of the flux creep.
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s,HE(1)  HR)

spHJ (t)
hy=Hog+ 2. (19)

Substitute Eq. (19) into Eq. (6), and using Eq. (B2) again,
we have

Hg(t)
(l_sp)hf+sp hf_ 2 =Hext , (18)
which gives
_J
s,Hg (2)
n;®,=(1—s,) Hm+T Fspx | Hey + >

sp(1=5,)(1=x)H} (1 =0)

2

kg

=(1=s,+s,x)H, + >

U

: T
1— ln(t/‘r)l . (20)

Note that in Eq. (20), the first bracket in the second term is always positive, since s, and x are always smaller than uni-

ty; thus n J will decrease logarithmically with time.

P

Secondly, we consider the case that the external field H,, applied to and then withdrawn from a ZFC sample or that

the field is withdrawn from a FC sample cooled in H

ext*

Again, H_,, is assumed to be larger than 2H for simplicity.

g

When the field is withdrawn, the two-level critical state is shown in Fig. 13(b), which is independent of the previously
applied field H.,,. At H,,, =0, the value of &, is determined by Eq. (4), and using Eq. (B9),

H/ (1)
(1—=sg)hpts, |hpt =0, (21)
which gives
s, HX(t)
hy=—-22% _
f 2 (22)
Substitute Eq. (22) into Eq. (6), and using Egs. (B9) and (B11), we have
sgHX(1) sgHF (1) HX(t) (s HF(1)/2)
nj@y=(1—s,) | ==L |+s,x | — =% £ S
2 2 2 2H/ (1)
xs; | | H}(z=0) kgT
= sg(l—-sg)(1+x)+T — 5 T, In(z/7) | . (23)

Equation (23) shows that n; will again decrease logarith-
mically with time.

In summary, whether an external field is applied to a
granular sample, or the previously applied field is with-
drawn from the sample, the surface resistance will de-
crease with time for both cases. Figure 14 shows the ex-
perimental results for both cases. In the case that an
external field is applied to the sample as shown in Fig.
14(a), the surface resistance initially increases with time
since, at the macroscopic level, the flux creeps into the
sample and increases the surface resistance. At a later
time, the process of the grain-boundary fluxons creeping
into the less-dissipative grains becomes dominant, and
the surface resistance decreases with time as predicted by
Eq. (23). The data in Fig. 14(b) show a much cleaner log-
arithmically decay measured after the field is withdrawn;
it gives a value of the activation energy at 78 K of about
0.1eV.

The motion of fluxons determines many other proper-
ties such as the critical current density. For a conven-
tional homogeneous superconductor, fluxons are trapped
by pinning sites in the sample as the field is decreased,
and the maximum value of J, can only be reached at a
negative external field where the total number of fluxons

is a minimum. However, the macroscopic critical
current density J, in the granular superconductor is
greatly influenced by the intergranular flux density in-
stead of the total flux density in the sample, and thus, the
field dependence of J, should be similar to our microwave
study result. Several groups have studied some anoma-
lous magnetic-field dependences of the transport critical
current density J, measured on bulk polycrystalline
YBa,Cu;0,.2°722 When a magnetic field is applied to a
ZFC sample and then slowly reduced, J, increases and
reaches a maximum value before the external field
reaches zero. Evetts and Glowacki qualitatively analyzed
their data with a simple model consisting of two grains
and one grain boundary.?® They proposed that the anom-
alous maximum of the critical current density in the
granular samples is due to the fact that the flux trapped
in the grains provides a field opposite to the external field
in the grain boundary and therefore, zero flux in the
grain boundaries can be reached when the external field is
still positive. Such a picture is similar to the conclusions
drawn from the more detailed two-level critical-state
model proposed here. However, they did not analyze
their data analytically, since the shapes of their hysteresis
curves depend on the critical current density criteria be-
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FIG. 14. Time dependence of the surface resistance measured
on a YBa,Cu;0, ceramic sample at 78 K. (a) An external mag-
netic field of 65 G is applied to a ZFC sample at t =0. (b) A
previously applied field of 65 G is turned off at £ =0. The line
represents a logarithmic fitting with a thermal activation energy
U=0.1eV.

ing used. Our microwave data shows no power depen-
dence, presumably because, within our power range, the
perturbational rf currents induced in the sample are
much smaller than the critical current density of the sam-
ple.

The magnetization data should show the granularity-
related effects, even if it is the total flux density that is
measured, because the intergranular current can
influence the change of total flux density. However, the
situation there is more complicated and the assumptions
made in our calculation for the intergranular fluxon den-
sity are no longer useful (for example, for an infinitely
large flat slab, the total magnetization is zero).

VII. CONCLUSION

In conclusion, the proposed two-level critical-state
model deals with the flux profiles on both macroscopic
and local levels. While the exact solution for an arbitrary
sample geometry requires numerical calculation, we can
solve a special case of an infinitely large flat slab in a per-
pendicular magnetic field. The model reveals anomalous
behavior that is unexpected from the single level critical-
state model used for homogeneous superconductors. Our
measurements of the magnetic-field hysteresis of the mi-
crowave surface resistance of bulk samples of YBa,Cu;0,

and of the Nb-Cu-Nb proximity-effect Josephson-
junction arrays are in reasonable agreement with the
two-level model, though more quantitative work is need-
ed to understand the clusters we described in Sec. IV.
Our study has shown that the microwave surface resis-
tance measurement provides a unique tool for the study
of the intergranular fluxons.
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APPENDIX A: KIM-ANDERSON MODEL
FOR A LONG SLAB OF PENETRATION FIELD H*

Here we give the formulas we used for the Kim-
Anderson model,'° where J. =a/h. The penetration field
H* in a parallel field is related to the thickness of the slab
D,

H*=V'47aD .

The following formulas for the initial and the hysteresis
curves are calculated according to the critical-state mod-
el, for the case that the maximum external field is smaller
than H*. The formulas for (4 ) were previously calcu-
lated in Ref. 13, where (% ) was denoted as B. (I) Initial
application of field H to a ZFC sample, where H is small-
er than H*:

2H3
(hy=(l) =20
(I1) Hysteresis curves for a ZFC sample, where H is cy-
cled between +H,, and Hy <H*:

for H<H* . (A1)

2H}
(h)== 7D
1 H H 372 H 3
X —| [1x=— |-+ —-=11,
V2 H, |H, H,

(A2)

where + and — signs apply for increasing and decreas-
ing fields, respectively. For decreasing field,

(ln|Y=(n) for Hy>H>0, (A3)
3H3
(lhl)=<h>+2m2 for 0> H>—H, . (A4)
For increasing field,
(|lh|Y=—<hn) for —H,<H <0, (A5)
_ 3H?
(|h|)—-—(h)+5;{7 for O<H <H, , (A6)

where {4 ) is given in Eq. (A2).
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APPENDIX B: BEAN MODEL FOR A LONG SLAB
OF PENETRATION FIELD H *

In this section, we give the results of calculations of
(h,) and (|h,|) for a long slab in a parallel field, with &,
to denote the flux density in the slab and 4, to denote the
parallel external field. A constant critical current density
is assumed, as usual with the Bean model, and the
penetration field H* is related to the slab thickness D,

2

H*zTJCD .

Again, some of the following formulas were previously
calculated in Ref. 13. (I) Initial application of field to a
ZFC sample
2
hy
2H*

(hy)=(lh,|)= for h,<H*, (B1)

(hy)y={Ih,|y=h,— =

5 for hy = H* . (B2)

(II) Hysteresis curves for a ZFC sample, where 4/ is cy-
cled between thy: (1) Ifhg<H*,

hfhoihfz—h%
2H*  4H*

(h,)= , (B3)

where + and — signs apply for increasing and decreas-
ing fields, respectively. For decreasing field,

(ln,1>=(h,) for hy>h;>0, (B4)
h}
<Ih,,|>=<h,,>+F for 0> h, > —h, . (B5)

For increasing field,

(ln,|Y=—<h,) for —hy<h;<0, (B6)
2

h
(1Y =—Ch, )+

H*

for O<h,<hy . (B7)

(2) If hy = H*, for decreasing field,

H* (hf_h0+2H*)2

(hy)=hp+= Al
for ho>hp>hy—2H* ,
(B8)
H*
(hy)=h,+ for hy—2H*>h;>—h,, (B9)
(lny1>=(h,) for hy>h;>0, (B10)
h2
<|h,,|>=<h,,>+H—£ for 0>h,>—H*,  (Bll)
(ln,1)=—<h,) for —H*>h;>—h, . (B12)
For increasing field,
H* (hy+ho—2H*)
h,)=h;—=—+
< P> f 2 4H*
for —ho<hy<—ho+2H*,
(B13)
Ht
(hp)=h,=-2—~ for —ho+2H* <h;<h,, (Bl4)
(ln,|Y=—(h,) for —ho<h;<0, (B15)
h2
(|h,,l>=—<h,,>+—HL* for 0<h,<H*,  (B16)
(ln,1>=(h,) for H*<h <h, . (B17)
(ITI  For a FC sample (cooled in a field of h,). For de-
creasing external field, 4 is decreasing,
(hy—ho)
<h,,)=h0——fT{;°—— for hg>h;>ho—H*,  (BI8)
H*
<hp)=hf+T for hy—H*>h, , (B19)
(lh,|Y=C(h,) for hy>h;>0, (B20)
h2
(Ihp|)=(hp)+Ef; for 0>h,>—H*, (B21)
(n,1)=—(h,) for —H*>h,. (B22)

*Present address: Department of Physics, State University of
New York at Stony Brook, Stony Brook, NY 11794.
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