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We study the far-infrared optical-absorption spectrum and collective excitations of electrons confined
in an imperfect parabolic quantum well in a magnetic field tilted with respect to the growth axis. Using
a self-consistent-field approach both with and without a local exchange-correlation potential, we calcu-
late spectra for an “overfilled” well with abrupt boundaries. We choose well parameters to match a real
experimental sample, and investigate the effects of well asymmetry and finite temperature on the optical
spectrum. We compare our calculations to experiment and find excellent agreement over a wide range of
magnetic-field strengths. We also study the effects of overfilling on the low-lying collective excitations,
and find that in the sample considered, nonparabolicities are strong enough to shift the energies of the

excitations substantially from their ideal-well values.

I. INTRODUCTION

Remotely doped parabolic quantum wells provide an
opportunity to study an interacting electron system in the
transition region between two and three dimensions.! ™ 1°
By separating the ionized donors by several hundred
angstroms from the electrons confined in the well, it is
possible to create an almost three-dimensional (3D) elec-
tron gas with much weaker electron-impurity interac-
tions than are obtainable in conventional doped semicon-
ductors. In such a system, it might'® be possible to ob-
serve broken-symmetry ground states that have been pre-
dicted!! for the 3D electron gas in the presence of a
strong magnetic field. Experimental work has been done
on magnetotransport,l on magnetocapacitance,2 on pho-
toluminescence excitation spectroscopy,® and on optical
and magneto-optical absorption*# in parabolic wells. In
the case of perfect parabolic confinement, with an applied
magnetic field in a general direction, it has been shown
theoretically'? that long-wavelength optical perturbations
can cause transitions only at the two frequencies that cor-
respond to exact excitations in the center-of-mass motion
of the electron gas. The substantial agreement between
experimental optical spectra* ®® and the distinctive
spectrum predicted by theory!? suggests that the effective
confining potential in these samples is indeed nearly para-
bolic.

In order to observe excitations in the internal degrees
of freedom of the electron slab, recent optical experi-
ments have studied systems designed to deviate from per-
fect parabolicity.®”® For small deviations, one might ex-
pect that nonparabolicity would both shift the excitation
energies slightly and redistribute the oscillator strength
so that excitations other than the center-of-mass modes
become visible in the optical spectrum. For larger devia-
tions, excitations would be shifted substantially from
their perfect-well positions, and many peaks of compara-
ble strength would appear in the optical spectrum. Al-
though a detailed study of the dependence of the excita-
tion energies and oscillator strengths on the strength of
the nonparabolicity has not yet been made, the general
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effects of nonparabolicity have been observed in experi-
ments with no magnetic field,” and with in-plane®® and
tilted® magnetic fields, and in calculations of optical spec-
tra for imperfect parabolic wells at B =0, '3

Intersubband optical absorption in quasi-two-
dimensional electron systems without!* and with!>!®
external magnetic fields has been studied by Ando, who
used the local-density approximation (LDA) to include
exchange and correlation effects within a self-consistent-
field (SCF) framework. The picture that emerged from
this work!” is one with absorption peaks near the self-
consistent intersubband energy spacings, shifted up
slightly by the ‘“‘depolarization” effect and shifted down
slightly by the “excitonlike” correction. In quasi-2D sys-
tems, the size of each correction is 10-20 % of the inter-
subband spacing. Because these corrections are relatively
small, and because fully self-consistent calculations are
computationally demanding, simple approximation
schemes have been used to analyze experimental results
in quasi-2D systems,!” particularly those in tilted magnet-
ic fields.'®

In remotely doped parabolic wells, however, the pic-
ture of shifted intersubband transitions and approxima-
tion schemes based on it fail. Because of the parabolic
bare potential, Coulomb interactions have a dramatic
effect on both the static and the dynamic properties of
electrons confined in the well. In the ground state, the
electrons form a nearly uniform slab with a width that in-
creases as more electrons are added to the system. The
self-consistent potential is nearly flat in the region of the
electron slab and, for wide slabs, yields self-consistent en-
ergy spacings that are a small fraction of the bare
confinement energy 7w, In the presence of long-
wavelength radiation, the small energy spacings make the
electron slab very polarizable, so that intersubband tran-
sitions are strongly mixed, forming collective excitations
that occur at energies many times larger than the self-
consistent energy spacings.'® The peaks in the absorption
spectrum, which correspond to collective excitations,
give only obscure information about the intersubband
transitions. Indeed, in an ideal parabolic well, absorption
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occurs at center-of-mass excitation energies that depend
only on #iw, and give no information whatsoever about
the self-consistent energy spacings. In imperfect parabol-
ic wells, too, depolarization is typically such a strong
effect that it is impossible to identify absorption peaks
with particular intersubband transitions.

The collective excitations in parabolic wells can be
viewed as being midway between intersubband transitions
in quasi-2D electron systems and plasmons in three-
dimensional systems. In a quasi-2D system, self-
consistent screening leads to a small upward shift on the
already-large transition energies. In a 3D system, the sit-
uation is reversed: there is no gap for particle-hole exci-
tations, and the entire plasmon energy arises from the
coherent polarization of the electron gas. In a parabolic
well, the electrons are in an intermediate regime where
low-energy intersubband transitions are strongly mixed
and shifted upward by self-consistent screening. For this
reason, a fully self-consistent treatment both of the
ground state and of the excitation spectrum is essential.

In a recent paper,?® the authors reported fully self-
consistent calculations of absorption spectra for an im-
perfect parabolic well in a tilted magnetic field at finite
temperature, in which we obtained excellent agreement
with experiment over a wide range of magnetic fields.
We chose well parameters to match the sample studied
experimentally in Ref. 6, and found that finite tempera-
ture effects alone could account for the experimental
spectrum, without assuming asymmetries in the confining
potential. In this paper, we consider the same system —
again with a tilted magnetic field—and present detailed
calculations of the effects of temperature and of well
asymmetries on the optical spectrum. We also calculate
and compare the ac density fluctuations associated with
the collective modes in the overfilled well to those in an
ideal well. In the following paper,?! we calculate optical
spectra for the same overfilled well in the case of in-plane
magnetic field. In Sec. II of the present paper, we give
details of our method for calculating the self-consistent
single-particle eigenfunctions and eigenvalues, the ab-
sorption spectrum, and the density fluctuations associat-
ed with the collective modes of the system in tilted fields.

0.022 85

2
Vxc(z)=—0.9855—n(2)! [1+ =

€. agn(z)

In these expressions, —e is the electron charge, n(z) is
the electron density, € is the dielectric constant of the
host semiconductor, and a} =€, #*/m*e? is the effective
Bohr radius.
Because [#y,p, ]=0, we can write the eigenfunctions
of #, in the form
iYx /1%
¢HY(x’y’z)= e‘/—L— ¢p,(y “‘Y,Z) (5)
X

and apply periodic boundary conditions in the x direc-
tion. ¢,(y,z) satisfies the nonseparable partial differential
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In Sec. III, we present numerical results for ground-state
densities, absorption spectra, and density fluctuations,
focusing on the effects of temperature and well asym-
metry. In Sec. IV, we summarize the tilted-field results.

II. METHOD

We adapt the method of Ando,' and use the SCF ap-
proach to calculate the excitation energies, oscillator
strengths, and density fluctuations associated with the
collective excitations of the system. We first calculate the
self-consistent single-particle eigenfunctions and eigenval-
ues of the system, then use them to find the collective ex-
citations and the self-consistent response of the electron
system to incident infrared radiation.

A. Single-particle wave functions
and ground-state density

We begin by calculating the self-consistent single-
particle wave functions for electrons confined in the z
direction by a bare potential that is nearly parabolic, in
the presence of a magnetic field tilted at an angle 6 with
respect to the z axis. We choose the magnetic field to lie
in the yz plane, and use the gauge A=(zB,—yB,,0,0).
The single-particle Hamiltonian is then

(pe—m*o,y +m*o,z)*  p’ p?

*

<y

,7{0:

*

2m 2m

where m* is the electron effective mass, o
eB,/m*c and eB, /m *c, respectively, and

V(2)=V,(2)+ Vy(2)+ Vye(z) 2)

oy and o, are

is the sum of the bare confining potential V., the Hartree
potential

__ 2me

2 e
Vi(2)=—=_ f_wdz’n(Z’)lz —z'l, 3)

sc

and a local exchange-correlation potential??

In[1+33.852a3n(2)!3] | . 4)

equation

Heab=€.9, (6)

where g,—independent of Y —is the eigenvalue of #,
belonging to ¥,y. We write the effective Hamiltonian
F . as the sum of three terms:

p2

H,= Zn:* +im*oly?, (7
P2

FH,= 5 —+im*0l 22+ V(z), (8)
m
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H

vz =—m a) cuczyz N 9)

and expand ¢, in a basis formed from direct products of
the (real, normalized) eigenfunctions of #/, and #,:

Z)ZESNm,p)(N(y)é'm(Z) , (10)
Nm
where
?[y)(N(y)=(N + Lo, xn() , (11)
H,En2)=¢,§,,(2) . (12)

7{y is the Hamiltonian for an harmonic oscillator, and we
can write Yy explicitly as

1 — (1722712

XN(y)ZWHN(y/ll)e L, (13)

where Hy is a Hermite polynomial and
1, =(#/m*0,)""*= (eB, /#ic)!/? is the effective magnetic
length in the xy plane.
In this basis, the matrix elements of %/, are
(NmY|HJN'm'Y')=8yy{ [(N + Do, + e, 18 nnS
+{(NmY|#,,IN'm'Y)},
(14)
where
(NmY|H,,IN'm"Y )
—M* Oy @ Zyy [ VN 18y y 1 VN Sy v ] (15)

m=[dz§,,(2)2§,,(2). The coefficients {Sy,, ]}
form a real orthogonal matrix that diagonalizes %,

and z,

ST HoS) =8, - (16)
If we define
pMEZ‘)TI%ZI,b;y(r)II'vy(I') > an
Y

and use the relation

A 1y T=E

v, 8,0,

uv et

Depolarization (a ) and excitonlike (8

v, v, 1

_ 4ge?
pvu, v T
GSC

a

and

o
B,uv,y'v': - f_

and the oscillator strengths { f'

such that U,, ,

5 ch

dz P;w(Z) Puv(2),

(1)

U

8s 1/2 172
7L (€)= (€] e

J7 dzpua [ az [ _z'mdz"p,w(z“)

} satisfy the sum rule 3, f
and the matrix elements {u|x;|v) for i = [y, } are real.
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1

— 8N > (18)
212 YN

L]lg]m L ZXNJ’ Y)xy(y —Y)=

we can write the ground-state density as

no(z)= 12 3 fepulz) (19)

where

pH" 2 2 SNm p.SNm vgm gm 6NN s (20)
Nm N'm’

fle)=(exp[(e—u)/kyT]+1)"" is the Fermi function,
and g, is the spin degeneracy. The chemical potential u
is fixed by the relation n, =(g, /2m1%) 3, f (¢,)

B. Absorption and collective modes

Having calculated the self-consistent single-particle
eigenfunctions and eigenvalues, we can calculate the ab-
sorption spectrum. Because the radiation in the experi-
ment of Ref. 6 is normally incident and unpolarized,” we
want the xx and yy components of the modified two-
dimensional conductivity #?°. Ando'® and Zaluzny?**
have shown that the zz (Ref. 16) and yy (Ref. 24) com-
ponents of &P can be written

) (i)
72P(w)=—iwe® % >3 zfn ,
2m* | & —(fiw) = 2itio(f/T)
(21)
where
172 172
. 2me,, g
f(l)E 2 U y [ad
n e v, ﬁZ 277.1%
2
X[f(e,)—f(g,)] " ulx|v) (22)
and i ={y,z}. In these expressions, ¢,,=¢,—€,,7 is a

phenomenological relaxation time, and {Ef,} and {U,, ,}
are the eigenvalues and eigenvectors of the matrix

—pr,#'v')[f(ev’)_f(Sy’)]l/28,]1/‘/2 . (23)

) effects are included through

(24)

(25)

=1. We point out that we have chosen phase conventions

Because of the tilted magnetlc field, light polarized along the x direction will couple to the same collective excita-
tions, with the same energies [E }, as light with y or z polarization. To calculate %0, however, the formulation of

XX

Ando16 in terms of a scalar perturbmg potential is inconvenient. Instead, we consider the response to an external vector
potential in the x direction, and obtain the general result (valid at finite frequency)
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(26)

where ﬁ=B><i=3? cosf—Zsinf. Using our knowledge of the excitation energies {%,}, we obtain the oscillator

strengths for x polarization,

172
fiw,

2me,,

hZ

&s
2713

(x) —
fn =

nv,m

€ v

The relation in Eq. (26) is derived in the Appendix.

Also of interest are the ac density fluctuations n(z) as-
sociated with the collective excitations of the system.
For the excitation at g,, the form factor n,(z) can be
written

«251/2 fle)—=f(e)]"%p,(2)U (28)

wv,

III. RESULTS

As in Ref. 20, we calculate optical spectra for two
wells: one well de51gned to be identical to the nominally
750-A-wide well in the sample of Ref. 6, and one well
with the same curvature but with perfect parabolicity.
The two wells are shown schematically in Fig. 1. The ex-
perimental sample used in Ref. 6 was cut from a wafer
grown to have a well width of 750 A and an Al concen-
tration that varied quadratically from x =0 at the center
of the well to x =0.1 at the well boundary, where the
concentration jumped discontinuously to x =0.3. Thick
Si-doped layers were set back 200 A from the well on
both sides.”® Because the Al profile in unrotated
molecular-beam-epitaxy samples like that used in Ref. 6

150 meV
70 meV
787.5A
(b)
280 meV
1575A

FIG. 1. Schematic representation of the two model wells con-
sidered. The well in (a) is designed to be identical to the nomi-
nally 750-A-wide well studied in Ref. 6. We use a well width of
787.5A,and a parabolic height of 70 meV. We use donor layers
that are 160 A wide, set back symmetrically 200 A from the well
on both sides. The well in (b) is a model of an idealized well
with the same curvature but perfect parabolicity. In practice,
the calculations for both wells use infinite walls at z ==1787.5
A, which are indicated by vertical dotted lines.

2

172
l [f(ev)—f(E#)]l/z[cos6<,u|y[v)—sin9(,u|zlv>] . 27)

f

can vary across the wafer,?® and because the conduction-
band offset in Al,Ga,_,As is somewhat uncertain, the
potential profile for the experimental sample is not
known precisely. To obtain a quantitative match be-
tween theory and experlment we use well parameters
that lie within the various uncertainties: width 787.5 A,
parabolic height 70 meV, and additional potential discon-
tinuity 150 meV. The sheet density of carriers was mea-
sured?’ to be n, =4.7 X 10! cm ™2 which, for the present,
we shall assume to come equally from the donors on each
side of the well and to be independent of magnetic-field
strength. We use the tilt angle 23° specified in Ref. 6 and
an effective mass m * =0.07m,, which represents an aver-
age over the width of the well.

The main computational difficulty in doing self-
consistent calculations with a tilted magnetic field is the
nonseparable partial differential equation, Eq. (6), that
must be solved at each iteration in the approach to self-
consistency. In our calculations of the self-consistent
single-particle eigenfunctions and energies at each value
of the magnetic field, we diagonalize the effective Hamil-
tonian in the basis {xy(»),§,,(z)} described in Sec. IL A.
In the calculations presented here, we have truncated the
basis at 200, using the Nm combinations with the lowest
combined energies (N +1)fiw, +e,. We find that this
gives convergence in the eigenvalues {e,} to one part in
10° for the lowest 20 eigenfunctions. The actual
confining potentials V.(z) we use for both model wells
have infinite walls at z =+787.5 A, which have negligible
effects on our results. In calculating the absorption, we
consider all transitions between the lowest 20 eigenlevels.

A. Perfect well

As a check of our calculational techniques, we first
consider the well with perfect parabolicity. In this case,
we know from the generalized Kohn’s theorem'? that ab-
sorption should take place only at the two center-of-mass
(CM) mode frequencies

wiZ;‘(a}é-}-w

+1[(0f+w?)?—40dw?, 1V, 29

and that for normally incident unpolarized light the oscil-
lator strengths of the two modes should be

fo=YrP+rE)

(0., cosa+w,,sina)?
L sin2a+ -2 T , (30
2 W
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fo=1(fW+ )

(w,,sina—w,,cosa)?
=% cosa+—= - , (3D
o5

where the angle a is defined'? by tan2a=2w, y @z /
(a)0+a) —wl,).

Flgure 2 shows the ground-state electron density and
self-consistent potential for the ideal parabolic well at 12
T in the Hartree approximation (where V(. is omitted).
At this large magnetic field, the charge density in the
center of the well is quite uniform, and takes a value
shghtly larger than the design density 77,=/(¢€,.m*w3/
47e?) because of the magnetic field. Because the parabol-
ic potential is relatlvely “soft,” the density is appreciable
out to z ==+500 A, even though the nominal slab width is
n,/fp=2%X362.25 A. The self-consistent potential is
smooth, with minima near the edges of the electron slab
and a maximum at the center of the well. As the magnet-
ic field is increased, the width of the electron slab shrinks,
the density of electrons in the central region increases,
and the height of the central maximum of the self-
consistent potential increases.

In Fig. 3(a), we show the absorption spectrum calculat-
ed for the idealized well using the method of Sec. II, and
compare it to the requirements of the generalized Kohn’s
theorem, Eqs. (29)-(31). The spectrum shown is calculat-
ed in the random-phase approximation (RPA), where
Vxc and B, . are omitted. Our calculated spectrum is
shown as filled circles, with the area of each circle pro-
portional to the calculated oscillator strength. The
center-of-mass-mode frequencies are shown as solid lines.
In Fig. 3(a), we see that the calculated RPA spectrum for
the idealized well matches the exact excitation frequen-
cies expected from Kohn’s theorem. In fact, the RPA
frequencies and oscillator strengths agree to one part in
104, except at very high fields, where numerical problems
associated with calculating £,,(z) for large m cause small
deviations from the Kohn’s theorem predictions.

To underline the strength of the depolarization effect in
parabolic wells, and the importance of self-consistency in
calculating the optical response, we show in Fig. 3(b) the

15 . : . . . 25.0

20.0
=
= 150 N
/\\ ~~
G 8
= 100 &
S

5.0

0.0 : 0.0

X600 -400 200 0. 200 400 600

FIG. 2. Ground-state electron density (solid line, left scale)
and self-consistent potential (dashed line, right scale) calculated
in the Hartree approximation for the ideal parabolic well at
B=12T.
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spectrum that results if the self-consistent single-particle
eigenfunctions and eigenenergies are used, but the
response is calculated without taking into account the
self-consistent polarization of the electron slab; that is,
without including a,, . Instead of peaks only at the
center-of-mass-mode frequencies, as required by Kohn’s
theorem, one finds many peaks at any given field. Fur-
thermore, the peaks away from the cyclotron frequency
appear at frequencies far below the correct center-of-
mass-mode frequencies. This is a dramatic illustration of
the importance of the depolarization effect in parabolic
wells. Not only are some of the excitation energies shift-
ed up by a large factor by the inclusion of depolarization,
in fact they coalesce in an ideal parabolic well into a sim-
ple two-peak spectrum.

When Vxc and B, . are included in our calculations,
the results are very similar to those shown in Figs. 2 and
3(a). The inclusion of V. leads to a ground-state charge

00— 7T 7 1" T T T ‘' T 7
() _

S oo | i

> 200 ]

é L

> L

&5 | _

-

g 10.0 -
SN | i
0.0 J L 1 " 1 L 1 L 1 L | " 1 L ] "

00 20 40 60 80 100 120 140 160
B (T)
30.0
>
> 20.0
E
>
80
)
(=1
& 10.0
0.0 . t : .
0.0 2.0 4.0 6.0 80 100 12.0 140 16.0
B (T)
FIG. 3. (a) Comparison of the numerically calculated far-

infrared absorption spectrum for an ideal parabolic well in a
tilted magnetic field, with the positions predicted by the gen-
eralized Kohn’s theorem (Ref. 12). The present calculation is
shown as filled circles, with the area of each circle proportional
to the calculated oscillator strength. (b) Calculated optical
spectrum for an ideal parabolic well ignoring the depolarization
effect. In this and in all succeeding figures, the tilt angle of the
magnetic field is 23° from the sample normal and the spectra
shown are for normally incident, unpolarized radiation.
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density that is less uniform at 12 T than the Hartree
ground state shown in Fig. 2, with larger maxima near

=4200 A. The LDA-SCF absorption spectrum has the
same level of agreement with Kohn’s theorem as the
RPA spectrum shown in Fig. 3(a). In general, we have
found that LDA-SCF spectra for imperfect wells, too, are
nearly identical to spectra calculated in the RPA, with
peak positions differing at most by 3—-4 %. This is evi-
dence that while depolarization effects are large in para-
bolic wells, excitonlike effects—at least those calculated
using a zero-field local exchange-correlation potential —
are small in comparison. This is much different from the
situation in quasi-2D systems, where depolarization and
excitonlike effects are of comparable magnitude. Because
the differences between LDA-SCF and RPA spectra are
small, and because the validity of the zero-field
exchange-correlation potential V. is doubtful at high
magnetic fields, we show only Hartree-RPA results in our
figures unless explicitly indicated.

B. Overfilled well

Now we consider a parabolic well designed to match
that used in the experiments of Ref. 6. As mentioned
above, we take the width of the well to be 787. 5 A which
is 5% larger than the nominal width of 750 A, and we
take the height of the parabola to be 70 meV, which cor-
responds to a conduction-band offset of 0.56, assuming
that the change in the aluminum concentration from the
center to the edge of the well has its design value
Ax =0.1. Taken together, these assumptions reduce the
natural frequency w, of the well by 10% compared to the
value it would have with the nominal width and a
conduction-band offset of 0.6, and by 17% compared to
its value with the nominal width and a conduction-band
offset of 0.7. In Fig. 4, we compare the center-of-mass-
mode frequencies, shown as solid lines, to the experimen-
tal data of Wixforth er al.,® shown as open boxes. A
larger value of w, would lead to CM-mode frequencies
that were everywhere higher than those shown. We shall

30.0 — T T T T T T T T T T T T
>
> 20.0
E
e
o0
Pt
g 10.0
m ' -
0.0 " 1 " 1 L 1 P L 1 L 1 " 1 L
0.0 2.0 4.0 6.0 80 100 12.0 14.0 16.0
B (T)

FIG. 4. Comparison of the center-of-mass mode frequencies
(solid lines) for our choice of parameters to the experiment of
Wixforth et al. (Ref. 6) (open boxes). Agreement over a wide
range of magnetic fields puts strong constraints on wy.
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see that overfilling leads to a slight increase in the reso-
nance frequencies near the horizontal portions of the
CM-mode frequency curves and to no appreciable change
in the portions of the curves that follow the cyclotron
resonance. Thus, the experimental data for the CM
modes suggest that the actual parameters of the experi-
mental sample have values close to those we use.

1. Symmetric well, zero temperature

We begin by studying the system at 7 =0, and by as-
suming that the confining potential is symmetric about
the center of the well. Figure 5 shows the ground-state
electron density and the self-consistent potential at 12 T.
A comparison with the density for the perfect well shown
in Fig. 2 shows that the hard walls at z =+393.75 A have
a strong effect on the ground-state density. While the
density in the ideal well was appreciable out to z=2500
A the hard walls in the overfilled well squeeze the elec-
tron slab so that its density rises quickly from z =+400
Atoa higher average value in the center of the well.
Correspondingly, the central maximum in the self-
consistent potential has a larger value than in the perfect
parabolic well.

In Fig. 6, we compare the calculated absorption spec-
trum for the imperfect well at 7 =0 to the CM-mode fre-
quencies. As expected, the imperfect well spectrum has
peaks close to the CM-mode frequencies of the perfect
well. These peaks are shifted up along the horizontal
portions of the CM curves, and follow the CM-mode fre-
quencies closely in the regions near the cyclotron reso-
nance. The upward shift along the horizontal branches is
to be expected, since the center-of-mass motion in these
regions is predominantly along the z direction, while the
motion lies mostly in the xy plane along the cyclotron
resonance portions of the curves. One can also view the
upward shift as resulting from an increase in the plasma
frequency, due to the increase in the average electron
density.

In addition to the peaks that lie near the CM-mode fre-
quencies, the nonparabolicities of the confining potential
give rise to extra peaks in the absorption spectrum, corre-
sponding to excitations in the internal degrees of freedom

1.5 . : : : . 25.0
' |
|
! ! 4 20.0
| |
MOT I | 1150 ’Nﬁ
E | ! ' =
N | ! =
=1 | ! 1100 @
ost | i S
|
| | 150
| i

0.0 . - 0.0
-600 -400 -200 0, 200 400 600
z (A)

FIG. 5. Ground-state electron density (solid line, left scale)
and self-consistent potential (dashed line, right scale) for an im-
perfect parabolic well at B =12 T. The walls at z=+393.75 A
squeeze the ground-state density and lead to a higher average
density over the central region of the well.
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FIG. 6. Comparison of the calculated absorption spectrum
for an imperfect well at T'=0 (filled circles) to the center-of-
mass mode frequencies (solid lines). Horizontal portions are
shifted up from the CM frequencies because of the increased
confinement in the z direction. Extra peaks appear between the
two CM modes at large fields, but only one persists to 15 T.

of the electron slab. We call particular attention to the
new peaks that lie between the two CM modes in the
range from 6 to 15 T. A comparison to the experimental
data in Fig. 4 shows that the extra peaks match well with
the experimental peaks in the range from 5 to 7 T.
Above 10 T, however, the calculated spectrum has only
one extra peak, while the experimental data show two.
The calculated extra peak lies quite close to the experi-
mental peak near 12.5 meV.

2. Effects of asymmetry

One possible origin for the second peak is the presence
of asymmetry in the confining potential of the experimen-
tal sample. Although the well itself in the experimental
sample was grown to be symmetric, differences in the
thickness of the donor layers on the two sides of the well
and the application of a metallic front gate introduce the
possibility that the experimental well has a symmetry-
breaking linear term in its confining potential. Even a
weak linear potential might produce new peaks in the ab-
sorption spectrum, since it would allow transitions that
were previously forbidden by symmetry.

To investigate this possibility, we repeat out calcula-
tions with a term linear in z added to the bare confining
potential. In Fig. 7, we show the self-consistent ground-
state density (solid line) and potential (dashed line) in the
presence of a linear potential that gives a drop of 20 meV
across the width of the well. A potential gradient of this
size would result from a difference in donor charge of just
a few percent between the layers on either side of the
well. One can see that a linear potential of this strength
has a substantial effect on the ground-state density, piling
up extra charge against the right wall.

In Fig. 8, we compare the absorption spectrum for the
asymmetric well to the experimental data. The asym-
metry does indeed lead to new peaks that lie between the
CM modes at high fields, one near 10 meV and one near
17.5 meV. To make the positions of the new peaks clear,

z (A)

FIG. 7. Ground-state electron density (solid line, left scale)
and self-consistent potential (dashed line, right scale) for an im-
perfect parabolic well in a symmetry-breaking external electric
field at B =12 T. The electric-field strength corresponds to a
voltage drop of 20 mV across the width of the well.

we show them as crosses in Fig. 8. We emphasize that
the size of the crosses does not indicate the strength of
the new peaks, which have oscillator strengths on the or-
der of 0.001-0.005, an order of magnitude smaller than
that of the calculated peak that lies between them. Nei-
ther of the two peaks lies near the experimental peak at
15 meV. Furthermore, the two new calculated peaks
have nearly equal oscillator strengths, so one would ex-
pect either both or neither to be visible in an experiment.
We conclude that asymmetry is an unsatisfactory ex-
planation for the second extra peak in the experimental
data, since it predicts accurately neither the number of
extra peaks nor their positions.

3. Effects of temperature

A careful examination of Figs. 6 and 8 suggests anoth-
er explanation for the second extra peak. In all our cal-
culated spectra, we see two extra peaks in the range from
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FIG. 8. Comparison of the calculated absorption spectrum
for an asymmetric well at 77=0 (crosses and filled circles) to ex-
perimental data of Wixforth et al. (Ref. 6) (open boxes). Peaks
that are forbidden in a symmetric well (crosses) appear near 10
and 17.5 meV for B > 10 T, but do not match the peak observed
experimentally near 15 meV.
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8 to 10 T. Around 10.5 T, however, the oscillator
strength in the higher frequency of these two modes goes
to zero. The question arises: what happens at 10.5 T?

The answer is that 10.55 T is where the second (g,)
subband depopulates at zero temperature. The second
extra peak in the calculated spectrum arises from transi-
tions from the g, subband to the g, subband, which disap-
pear when the ground-state occupation of the £, subband
vanishes. Although the experiments® were done at low
temperature (4 K), the lowest self-consistent intersubband
energy spacing in the well is ~1 meV. Because kT at 4
K is ~0.35 meV, a small ( ~10%) but significant fraction
of the electrons are in the €, subband, even at 15 T.

The presence of these electrons has a strong effect on
the absorption spectrum. In Fig. 9, we compare the cal-
culated absorption spectrum for the symmetric overfilled
well at T =4 K (filled circles) to the experimental data
(open boxes). We see that the finite temperature leads to
a second extra peak in the calculated spectrum that lies
very close to the second extra peak seen in the experi-
ment. In addition, finite temperature introduces only this
new peak, whereas the symmetry-breaking linear poten-
tial considered in the last section leads to two new peaks
in the relevant region. We point out that in our calcula-
tion the number of electrons in the €; subband drops to
zero rapidly as the temperature is reduced from 4 K.
Our calculation therefore predicts that the strength of the
second extra peak will also vary rapidly in the tempera-
ture range from 1 to 4 K.

In Fig. 10, we compare the experimental data (open
boxes) to the LDA-SCF absorption spectrum (filled cir-
cles) calculated at 4 K. We see that the LDA-SCF spec-
trum fits experiment well, and does not differ dramatical-
ly from the RPA spectrum shown in Fig. 9. The main
difference between the LDA-SCF spectrum and the RPA
spectrum is that the LDA-SCF calculation places the
lower of the two extra peaks 3—4 % lower than the RPA
calculation in the range from 8 to 10 T. As discussed in
Sec. IIT A, the similarity between the RPA and the
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FIG. 9. Calculated RPA absorption for a symmetric well at
T =4 K (filled circles) vs the experiment of Wixforth et al. (Ref.
6) (open boxes). Note the excellent agreement between theoreti-
cal and experimental peaks at 12.5 and 15 meV in the region
B>10T.
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FIG. 10. Calculated LDA-SCF absorption at T =4 K (filled
circles) vs the experiment of Wixforth et al. (Ref. 6) (open
boxes). Because the spectrum is dominated by depolarization
effects, the LDA-SCF spectrum is very similar to the RPA spec-
trum shown in Fig. 9.

LDA-SCF spectra suggests that excitonlike effects are
small relative to the depolarization effects in parabolic
wells.

4. Strong asymmetry

As a further and independent check of our understand-
ing of the system, we calculate the spectrum in a case
where the well has been partially depopulated by apply-
ing a voltage to the front gate. In this situation, the elec-
tric field due to the transferred charge adds a strong
linear term to the confining potential and makes the well
both very asymmetric and, because of the abrupt walls,
very nonparabolic. At a gate voltage of —0.7 V, the mea-
sured?’ sheet density is 1.87X10!' cm™2. From the
change in sheet density, we can calculate that the electric
field leads to a drop of 205 meV across the well. Because
the measured change in sheet density fixes the electric
field, there are no new parameters in this new calculation.

The ground-state density (solid line) and self-consistent
potential (dashed line) at 12 T are shown in Fig. 11. The
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FIG. 11. Ground-state electron density (solid line, left scale)
and self-consistent potential (dashed line, right scale) for a par-
tially depopulated well in a strong symmetry-breaking external
field at B =12 T. The field strength corresponds to a voltage of
205 mV across the width of the well.
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confining potential has lost all resemblance to a parabolic
potential, and the electron density has a maximum that is
more than 1.5 times larger than the design density 77, of
the well. Calculated and experimental absorption spectra
at 4 K are shown in Fig. 12, and we once again see excel-
lent agreement.

C. Collective modes

As a final application, we study the charge-density fluc-
tuations associated with the collective modes of the sys-
tem. In particular, we focus on the lowest few modes in
the high-field regime. In this regime, all the electrons are
in the lowest subband at zero temperature, so the spec-
trum is particularly simple. In Figs. 13 and 14, we show
the density fluctuations (solid lines) for the lowest three
modes at 12 T for the perfect well at 0 K and the imper-
fect well at 4 K, respectively. In the perfect well (Fig. 13)
only the lowest-energy mode, the center-of-mass mode, is
seen in far-infrared absorption. For comparison, we indi-
cate with a dashed line the derivative of the ground-state
density shown in Fig. 2. For a rigid translation of the
electron slab, the two curves would be identical. The
small difference seen here is caused by numerical inaccu-
racies [associated with calculating £, (z) for large m] that
appear at large fields. The two modes of higher energy
can be viewed as slab magnetoplasmons with an increas-
ing quantized wave vector in the z direction. In fact, they
are remarkably similar to the plasmon density fluctua-
tions calculated in Ref. 28 using a classical hydrodynamic
model and shown in Fig. 13 of Ref. 28.

Figure 14 shows the lowest three collective modes
(solid lines) in the imperfect well at 4 K. In the infrared
spectrum, the mode in the bottom panel corresponds to
the ““center-of-mass peak’ at 9.5 meV, while the mode in
the top panel is the lower of the two extra peaks at 12.5
meV. The mode in the middle panel cannot be excited in
a symmetrical well, but becomes visible near 10.8 meV in
the presence of a symmetry-breaking electric field. Al-
though the lowest-energy excitation falls near the fre-
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FIG. 12. Comparison of the calculated absorption spectrum
for a partially depopulated, strongly asymmetric well (filled cir-
cles), with unpublished experimental data provided by Wixforth
(open boxes).
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n,(z)
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FIG. 13. Density fluctuations n,(z) for the three lowest col-
lective modes at 12 T in a perfect parabolic well. The dashed

line shows the derivative of the ground-state density shown in
Fig. 2 for comparison to the center-of-mass mode.

200 400 600

quency expected for a perfect well, it is no longer a
“center-of-mass”” mode, since it does not correspond to a
pure translation of the electron slab. This can be seen
clearly by comparing the actual density perturbation,
shown with a solid line, to the derivative of the ground-
state density (see Fig. 5), shown with a dashed line. The

n,(z)
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FIG. 14. Density fluctuations n,(z) for the lowest three col-
lective modes at 12 T in an imperfect parabolic well. The
dashed line shows the derivative of the ground-state density
shown in Fig. 5 for comparison to the center-of-mass mode.
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FIG. 15. Density perturbation n,(z) for the extra excitation
that appears at finite temperature. n,(z) for this mode is very
similar to that for the lower-frequency extra excitation, which is
shown in the top panel of Fig. 14.

shape of the two higher modes, on the other hand, is not
changed dramatically by the hard walls, except that the
wavelengths of the fluctuations are reduced. The energies
of these excitations, on the other hand, are shifted up
substantially from the corresponding values in the perfect
well. In the perfect well at 12 T, the three excitations
shown have energies 8.94, 9.00, and 9.98 meV. In the im-
perfect well, the equivalent excitations have energies 9.41,
10.79, and 12.08 meV. Thus we see that the deviations
from parabolicity in the imperfect well are sufficient not
just to render the internal excitations of the electron slab
visible in the optical spectrum, but also to shift their en-
ergies substantially.

At finite temperature in the imperfect well, we also ex-
cite the mode corresponding to the second extra peak.
The density perturbation for this excitation is shown in
Fig. 15. Although this mode arises only when the €, sub-
band is occupied, the similarity of its form factor to that
of the other “‘extra peak” (shown in the top panel of Fig.
14) and an examination of the eigenvectors U,, , shows
that it arises from a mixture of 0—3 and 1—4 transi-
tions.

IV. SUMMARY

In this paper, we have studied the far-infrared absorp-
tion spectrum and the collective excitations of an
overfilled parabolic well in a tilted magnetic field using a
self-consistent-field approach. We have investigated the
effects of well asymmetries and of finite temperatures,
and have found that the experimental spectra of Wixforth
et al.® can be understood by including finite temperature
effects in calculations on a symmetric well. Our calcula-
tions predict that one peak in the spectrum should have a
strong temperature dependence in the range from 1 to 4
K. We have also found that the same well parameters
that explain the experimental data of Wixforth et al. also
give excellent agreement with unpublished spectra taken
for the same sample in the presence of a strong
symmetry-breaking electric field.

Electron-electron interactions are extremely important
in parabolic wells, and it is necessary to calculate both
the ground state and the response functions self-
consistently. We have found that self-consistent screen-

ing mixes the intersubband transitions so strongly that it
is in general impossible to associate peaks in the absorp-
tion spectrum with particular transitions. On the other
hand, we have found only small differences between opti-
cal spectra calculated in the random-phase approxima-
tion and those that include exchange and correlation
effects through the local-density approximation. This is
in contrast to the situation in quasi-2D electron sys-
tems,'” where the depolarization and excitonlike effects
are of comparable magnitude.

We have also studied the effects of overfilling on the
low-lying collective excitations of a parabolic well. For
the experimental sample we consider, we find that the de-
viation from parabolicity is sufficiently strong to shift the
energies of the excitations substantially, in addition to
rendering new excitations visible. It remains to be seen
whether the addition of controlled deviations from para-
bolicity can allow the optical excitation of the internal
degrees of freedom of the system without shifting the en-
ergies away from their values in the ideal system.
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APPENDIX

We define the modified two-dimensional conductivity
&P and the modified two-dimensional electric suscepti-
bility ¥*P as response functions to a uniform external
electric field:

J(0)=5"(0)E™(w) , (A1)

d(0)=VP(0)E*(w) , (A2)

where J = fd3r j(r) is the integrated current density and

d= [d’r P(r) is the total electric dipole moment. The

relationship j=dJP /9t implies that
~2D_

oP=—iwy® . (A3)

In the presence of a uniform time-dependent external
electric field derived from a scalar potential, we can write
the perturbing Hamiltonian as

Hi=—d-E™. (A4)

If E** is polarized along the fi direction, linear-response
theory® gives the diagonal response at temperature T as
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e kT [ (W, ld, W (Y, ld, ;)
0—w;+i0"
(W, ld, |9, ) (W, ld,|¥;)
B co-ffa),-j-!-iO+

y 1
Vrlo)=3 3

i

(AS)

where |W,) is an exact many-particle eigenstate of the
unperturbed Hamiltonian with energy ¢;, €, =¢; —uN;,

—./kyT .
w;=(€,—%;)/%, and Z=3;e /7 is the grand-
canonical partition function. The electric dipole moment
operator is

d(r)=(—e) 1,4, (A6)
k

n

and Y20 =f-y*° A

When the electric field is polarized along X, it is con-
venient to derive the electric field from an external time-
dependent vector potential AS* and to define a new
response function K 2P relating the current to the external
vector potential:

~%,;/kgT <\I/j|JfI\I/i)<Wi|J£'\I’j> _
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A )

c

(A7)

Choosing a gauge with ¢**'=0 and using the relation
E=—(1/c)(QA/3t)=i(w/c) A", we see that
KR

iw

~2D _
Oxx —

(A8)

In this case the perturbing Hamiltonian can be written
A ext

Wl=—JiP)—%+O[(A§X‘)2], (A9)
where the operator JP'=(—e/m*)3, [py+(e/c)
X Ay(ry )] plays the role of the paramagnetic current in a
system with a uniform B field B=V X A, Applying
linear-response theory once again, we find that K22 has
two pieces,

KPP (p)y=———N, (A10)

m

due to the diamagnetic current (N is the total number of
electrons), and

SRV DI AV

= 1 e
KZD(p) =
xx (@) # ,21 z co—-co,-j+i0+

a)—+—co,-j-|-iOJr (ATD

Choosing A,=(zB,—yB,,0,0), and noting that the total canonical momentum in the x direction commutes with the

Hamiltonian, we see that

RDP(0) =02y,

nﬁ(w) 4

(A12)

provided that i=BXX=% cos6—2sinf. Use of Eqgs. (A3) and (A8) allows us to write

2 w?

2 _ ¢

72P(w)=—- N+
iom 15}

_2D
05 @) .

()

Taking real parts, we obtain Eq. (26).
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