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Self-consistent calculations of the hole-subband structure of acceptor 6-doped GaAs are reported.
Numerical results are obtained for the self-consistent potential, hole density, and subband energy
levels. Many-body effects beyond the Hartree approximation, such as exchange and correlation, are
included in the parabolic or diagonal approximation of the full Luttinger Hamiltonian within the
density-functional formalism and are shown to be important . Results are also reported for the less
ideal case of a doping profile with a Gaussian distribution of dopants.

I. INTRODUCTION

Doping semiconductors with donor or acceptor impu-
rities have been traditionally an essential step in most of
the basic research and industrial applications of these ma-
terials. In the last few years, and in pace with the contin-
uous reduction of the spatial dimensions of semiconduc-
tor heterostructures arid devices, the size of the dopant
distribution has been decreased dramatically. One of the
more promising doping techniques at the atomic level is
clearly the 6' doping, where the dopants are confined to
one or a few atomic monolayers. This technique repre-
sents the ultimate control of a dopant profile and cer-
tainly will play an important role in future quantum-
electronic and photonic-device research.

b-doping profiles can be obtained by epitaxial growth
methods such as molecular beam epitaxy (MBE): a distri-
bution of atoms in a single monolayer is achieved by sus-
pending the crystal growth and evaporating the dopant
impurities on the nongrowing crystal surface. Subse-
quently regular crystal growth is resumed. Experiments
have been carried out on n-type 6-doped GaAs layers
or on 6-doped GaAs n-i-p-i heterostructures. i 2 Only re-
cently have single-acceptor (Be) doping spikes in GaAs
also been investigated in detail. 3 4 Reference 3 essentially
concentrates on the characterization of Be 6-doping lay-
ers in GaAs: a spatial localization of Be in 6-doped GaAs
within a few lattice constants (( 20 A) is reported from
capacitance-voltage profiles and secondary ion mass spec-
troscopy. Reference 4, aimed to give a microscopic char-
acterization of the two-dimensional hole gas (2DHG), re-
ports photoluminescence studies, from where information
about the subband hole structure was obtained. How-
ever, there were no theoretical results available for the
valence subbands of p-type b-doped GaAs. One of the
motivations of the present work is just to fill this gap
between experiment and theory.

On the theoretical side, while the self-consistent treat-
ment of the two-dimensional electron gas (2DEG) at
the n-type doping spikes is by now almost a standard
calculation which gives a reasonable agreement with

experiments, 5 much less is known about the properties
of the equivalent 2DHG associated with p-type doping
spikes. We are aware of only two previous self-consistent
calculations on the properties of 2DHG: one by Broido
and Sham, where they studied the hole-subband struc-
ture for a GaAs p-channel inversion layer, and a sec-
ond one by Ando, s related to the subband structure of
2DHG at GaAs/A1~Gai ~As heterojunctions and quan-
tum wells. One reason for the scarcity of theoretical
studies on the 2DHG is that in order to give a rigorous
description of the valence subbands one must deal with
the full 4 x 4 matrix Luttinger Hamiltonian, which is
quite demanding from the computational viewpoint, as
compared with the scalar problem posed by the 2DEG.

A second reason that complicates the study of 2DHG
is that it is not yet clear to what extent the inclusion
of many-body corrections is necessary in order to give a
quantitative description of the subband structure; neither
of the two previous calculations includes many-body
effects. We show here that the inclusion of many-body
effects is important and leads to a better agreement with
the experimental results of Ref. 4. We also provide a
study of the subband-hole structure for the more general
case of a doping profile with a Gaussian distribution, in-
stead of a sharp 6-function doping profile.

The rest of the paper is organized as follows: in Sec. II
we define our model and give all the necessary formulas;
Sec. III is dedicated to a comparison among the numer-
ical results for the self-consistent potentials, hole den-
sities, and subband energies corresponding to different
approximations; in Sec. IV we present the results for the
Gaussian doping profile, and finally in Sec. V we give the
conclusions.

II. MODEL AND METHOD OF CALCULATION

For the general treatment of the valence bands, one
should use the 6 x 6 Luttinger-Kohn k p Hamiltonian. io

However, the spin-orbit splitting 4 between the J = 3/2
and the J = 1/2 multiplet is about 340 meV for GaAs so
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the spin-splitoff band can be ignored, and consequently
the original 6 x 6 k p Hamiltonian reduces to the 4 x 4
Luttinger Hamiltonian.

We assume that the negative charge of the ionized
acceptor impurities is homogeneously smeared out in
the plane perpendicular to the growth direction (jel-
lium approximation), neglecting the point-charge charac-
ter of the dopants and the spatial potential fluctuations
which result from the random distributions of impuri-
ties in the doped planes. We restrict ourselves in the
present calculations to a rather high dopant concentra-
tion ( lo~s/cm ) so as to fulfill this approximation in a
reasonable degree.

We consider a periodic sequence of p-type 6-doped
planes, immersed in an otherwise homogeneous GaAs
host matrix, grown in a [100] direction, which we take
along the quantization axis z. Due to translational sym-
metry in the (2:, y) plane of our system, the wave func-
t'.sns can be written as a plane wave along this plane
times a wave function along z, given by the solution of
the following 4 x 4 effective mass matrix Hamiltonian:

) [H, ~(k, ky, k, ) + V(z)6, ~]g~„i,(z) = E„(k)@;„i,(z)

(i = 1, 2, 3, 4), (1)

where V(z) is the periodic potential, g,„i,(z) the four-
component envelope wave function corresponding to sub-
band index n and wave vector k with eigenvalue E„(k),
and k, is the operator —i8/ctz.

The 4 x 4 Luttinger matrix (the kinetic energy) is given
by

with the explicit expressions

P+Q R
R* PpQ

).[H;,, (k. , k„k.)+ V( )b„,]e;..( ) = E:(&)O;..( )

(i = 1, 2) (8)

where g,„&(z) are now two-component envelope wave
functions.

The still undefined potential V(z) is the superlattice
potential, which is given by the sum of the potential of
the ionized impurities VI(z) and the Hartree potential
VH (z)

V(z) = Vl(z) + VH(z)

and is determined self-consistently from the Schrodinger
equation (8) and Poisson equation:

dz 4vre

d, V(z) = — P(z), (10)

where e is the static dielectric constant of GaAs and p(z)
is given by

R = /R/ —ik, /S/,

where cr = U (L) refers to the upper (lower) 6 signs. The
unitary matrix that block diagonalizes Ho depends on k
and k„but is independent of k„ the explicit expression
of the matrix can be found in Ref. 8. The upper- and
lower-block envelope functions satisfy

where

P+Q R -S O

o , R P —Q—S O P —Q
0 S' R* P+Q,

(2)
p(z) = N) 6(z——jd) + n(z)

with N the two-dimensional concentration of ionized ac-
ceptor impurities, d the superlattice period, and n(z) the
hole density at point z. One has for the model used here

P + Q = [(pi ~ 2pz)k, + (pr + pz)k()], (3) n(z) = ).)q, i,(z)('f[EF —E„(k)],
crink

(12)

R = y3 [p2(k —k„) —2ipsk kil], (4)
where E~ is the Fermi level and f(z) the Fermi-Dirac
function. We adopt the following boundary conditions
for the Poisson equation:

52
S = v3—ps(k —iky)k,

and

Vl(d/2) + U~(d/2) = 0 (13)

with m the free electron mass, A:~~
= A:~ + A:& and &1~ p2)

and ~3 the Luttinger parameters appropriate for GaAS.
In writing H we have neglected very small linear k terms
caused by the lack of inversion symmetry of the GaAs
zinc-blende structure. s

The 4 x 4 matrix (2) can be block diagonalized by a
change of basis into two independent matrices H+ and
a~

V(z) = V(z+ d), (14)

where (13) is equivalent to adopting the value of the self-
consistent potential at the midpoint between two consec-
utive acceptor planes as the origin of energies.

The constraint of electrical neutrality is expressed by
the condition that the integral over one period of p(z)
should be zero so (ll) can be rewritten as

(6) (15)
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with 0 the sample area. To calculate the two-dimensional
sums on k~ and k„ in Eqs. (12) and (15), we have de-
fined a grid in the reciprocal space. Using the symmetries
of (8), the summation can be restricted to one-eighth of
the full space, and typically the grid size was about 325
points. While an analytical solution of (8) is not possi-
ble, the structure of HU and Hi suggests the following
numerical strategy. We first observe upon neglecting the
off-diagonal terms that (8) is split into two (each doubly
degenerate) single-component equations:

d2 h

(» +2~2)d, , +&(z) C".
, A,.(z)

= E~(k, )C~ „(z), (16)

where

h 4
E~(k, ) = E„(k)— (» + p2)kii.

We will refer to Eq. (16) as the parabolic approxima-
tion, as all the nonparabolicities embodied in the com-
plete equation (8) are lost in this approximation. An
attractive feature of Eq. (16) is that as a consequence of
the neglect of the nondiagonal terms, the mixing between
heavy and light holes is zero, and the 2DHG splits into
two perfectly defined components, one heavy, with per-
pendicular (parallel) mass m, i" ——m/(» —2p2) [mii" ——

m/(»+ p2)], and a light component, with perpendicular
(parallel) mass rnJ rn/( yl + 2 y2) [rnid

= yn/('yl 'y2)] ~

For later use, we give the explicit parabolic version of
Eq. (15) at zero temperature, which by performing ana-
lytically the sums on kii becomes

mhh
N = ) [E —E„"(k,)]e [E —E„"(k, )]nh

mlh

+ ) .[~ —&'(k )]eÃ —&'(k.)] (»)
vrh

A j

with e[x] the Heaviside step function.
The self-consistent solutions of (16) are obtained by

performing a plane wave expansion of the periodic part

of C ~
& (z), which essentially transforms (16) into a typi-

cal matrix eigenvalue problem. More details on this par-
ticular step of the calculation can be found in Ref. 7.

The self-consistent solution of (16) yields an infinite set
of doubly degenerate heavy- and light-hole subband ener-
gies and wave functions, and we use this basis to expand
the solutions Q~„k(z) of the exact eigenvalue equation (8),
as follows:

) [ &~~( )@tnA. ( )+
m=1

(19)

(z) = ) .[&z (~)@",A:.(z)+&2 ( )C',a. (')].
m=1

(20)

If the summations in Eqs. (19) and (20) run over all the
self-consistent solutions of the parabolic equation (16),
@i„k(z) and @2„k(z) are the exact solutions of (8). In
practice, M heavy-hole states and N light-hole states
are retained and (8) is diagonalized inside this (M+ N)
dimensional subspace. We take M = N = 10 in Eqs. (19)
and (20), which gives an accurate description of the sub-
bands up to the Fermi energy for the range of parameters
investigated.

While our method of solution is similar in spirit to
the already mentioned calculations on the properties of
2DHG in p-type inversion layers and GaAs/Al Gai As
heterostructures and quantum wells, we differ in some
points: (i) In Ref. 8 the band warping is neglected by
replacing p2 and p3 by their arithmetic average. In this
axial approximation the Hamiltonian (1) depends only
on kii and the calculation simplifies considerably, as, for
example, the two-dimensional summation in Eq. (12) re-
duces to a one-dimensional summation on kii . Fur-
thermore a variational A:i~

——0 non-self-consistent solu-
tion of (16) was generated as a basis for the expansions
in (19) and (20), and only two heavy and two light solu-
tions of (16) were used in the expansion, which in the
light of the results of Ref. 9 and the present calcula-
tion is insufhcient in order to get reliable quantitative
results. (ii) In Ref. 9 two different methods were used:
an intermediate self-consistent basis was employed in or-
der to solve a GaAs/A1~Gai As heterojunction while
a Fourier expansion of the periodic part of the two-
component Q,„k(z) was attempted to solve a multiple
quantum-well problem. Our method of solution is essen-
tially a combination of both: an intermediate parabolic
anisotropic self-consistent basis is generated by perform-
ing a Fourierv expansion and subsequently the full Hamil-
tonian is projected on this intermediate basis. While
more involved from the programming viewpoint, it is by
far more efBcient in the numerical sense: as the parabolic
basis is close to the solution of the full equation (8), this
allows us to obtain excellent convergence with a relatively
small intermediate basis.

While the method of calculation presented in this sec-
tion is valid for any value of the period d, by increasing
this period one can move from the superlattice regime
to the multiple quantum well or atomic regime, where
each quantum well is effectively disconnected from its
neighboring wells. As the experimental works mentioned
in the Introduction were performed for a single layer or
quantum well, we restrict the present calculation to the
atomic limit by taking d = 1000 A. and including only
the states at k, = 0, where k, is the Bloch index in the
z direction.

III. SELF-CONSISTENT POTENTIALS,
HOLE DENSITIES) AND SUBBAND

ENERGY LEVELS

All the numerical results that follow correspond to the
zero-temperature limit T = 0 and N~ = 8 x 10' /cm
(taken from Ref. 4); also» = 6.85, p2 = 2.1, ps = 2.9,
and e = 12.5, as corresponds to bulk GaAs.

As a first rough approximation to the present prob-
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lern, one can solve Eq. (16) by neglecting any screening
effect [VH (z) = 0 in Eq. (9) j, in which case the potential
U(z) is just the bare V-shaped potential associated with
an uniformly charged plane, whose exact analytical so-
lution gives two occupied subbands, one heavy and
one light, with an energy splitting of about 43 meV. With
these subband energies, from (18) it is easy to obtain a
Fermi level that lies 90 meV above the ground heavy-hole
subband.

When screening (in the Hartree approximation) is in-
cluded in the calculation, the self-consistent solution of
Eq. (16) gives the potential and level structure displayed
in Fig. 1: the softening of the nonscreened U-shaped
potential yields now six occupied subbands (4 heavy, 2
light), an energy splitting of about 21.5 meV between the
first heavy- and light-hole subbands, and the Fermi level
lies 66 meV above the ground-state heavy-hole subband.
Using again Eq. (18), but replacing this time the level
structure of Fig. 1, it is simple to obtain that most of
the holes are distributed almost equally between the two
lowest subbands. This is due to the fact that what re-
ally matters for the calculation of the subband density
in (18) is the energy diff'erence between the Fermi level
and the subband energy times the effective parallel mass;
as E~ —E& & E~ —Ez~, while m~~" & m~~, there is a com-
pensation between these two factors and each of the two
lowest subbands accommodates approximately half of the
total density.

Finally, the self-consistent solution of Eq. (8), which in-
cludes screening and nonparabolicities, gives the results
presented in Fig. 2: two occupied subbands, an energy
splitting of about 20 meV between the two occupied sub-
bands, and about 34 meV from the ground-state subband
to the Fermi level.

From the comparison between Figs. 1 and 2 it is clear
that while the self-consistent potential and subband en-
ergy levels are not quite sensitive to the nonparabolic-
ities, the Fermi level decreases dramatically ( 32 meV)
when the full Luttinger Hamiltonian is included in the
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FIG. 2. Luttinger self-consistent potential (solid line),
subband level structure at k~~

= 0 (dashed lines), and Fermi
level (dotted line) in the Hartree approximation.

calculation. This is related to the increase of the ground
state in-plane effective mass over its value m/(pr + p2)
of the parabolic approximation: being the ground state
of the system, the only possible contribution of the off-
diagonal elements is to lower its energy, thereby increas-
ing its in-plane mass. This in turn implies that the
ground-state subband is able to accommodate more car-
riers, lowering the Fermi level. For the set of parameters
corresponding to Fig. 2, about 82%%up (18%) of the carri-
ers are in the ground-state (first excited-state) subband.
The hole density distributions associated with the poten-
tials and energy levels of Figs. 1 and 2 are displayed in
Fig. 3: the pointed line corresponds to the parabolic self-
consistent solutions, while the dashed line corresponds
to the Luttinger self-consistent solution. As can be seen,
the already discussed large lowering of the Fermi level
has been achieved by very small changes in the total
hole density, in spite of the fact that the ground-state
subband has a much greater occupancy in the Luttinger

yvv v Jv v v v4 vvv4 v vv vlvvvvhvv v Jvv vv4v v vs
2 20

Lp 15-

-100

0)

10-

Q

-150
-100 -50

I

50 100
0

z (A)
0

—100 50 100
o

z (A)
FIG. 1. Parabolic self-consistent potential (solid line),

subband structure at k~~
= 0 (dashed lines), and Fermi level

(dotted line) in the Hartree approximation. While there are
in principle six subbands below the Fermi level, essentially all
the charge is concentrated in the two lowest heavy-hole (Hp)
and light-hole (Lp) subbands.

FIG. 3. Total hole densities: dotted line, parabolic self-
consistent (Hartree) approximation; dashed line, Luttinger
self-consistent (Hartree) approximation; solid line, parabolic
self-consistent (Hartree and exchange-correlation) approxima-
tion.
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self-consistent approximation than in the parabolic one.
This can be understood when we realize that as soon as

k~~ g 0, the off-diagonal elements of the Luttinger Hamil-
tonian produce a strong mixing between the heavy- and
light-hole states of the parabolic approximation, but in
such a way that when the Luttinger self-consistent den-
sity is projected back to the parabolic self-consistent ba-
sis we find the remarkable result that the holes are con-
centrated again almost equally between the two lowest
parabolic subbands. Since the charge densities are quite
similar it is not surprising to find the similarity between
the self-consistent potentials and subband energy levels

displayed in Figs. 1 and 2. However, the confrontation
of the previous theoretical results with the experimental
data of Ref. 4 reveals a considerable discrepancy: from
the energy difference between the emission peaks of the
photoluminiscence spectra an energy splitting of 36meV
between the two lowest subbands is reported, and at low
intensity illumination, the Fermi level lies about 50meV
above the first peak. These experimental results should
be compared with the 21.5 meV (20 meV) and 66 meV (34
meV) theoretical results of the parabolic (Luttinger) self-
consistent approximation, respectively.

This discrepancy leads us to an essentially unexplored
area of semiconductor heterostructures: the importance
of many-body corrections beyond the Hartree approx-
imation for the 2DHG. An attractive way to study
the exchange-correlation effect on the subband struc-
ture of heterostructures and quantum wells is to use the
density-functional method. i is In this formulation, the
effect is taken into account by introducing an exchange-
correlation potential Vxc [n(z)] which is given by a func-
tional derivative of the exchange correlation part of the
ground-state energy with respect to the particle density.
In the simplest approximation (the local density approx-
imation or LDA) the exchange-correlation potential en-

ergy is approximated by the exchange correlation contri-
bution to the chemical potential of a homogeneous gas
having a uniform density which is equal to the local den-
sity n(z) of the inhomogeneous system.

However, there are some problems in the choice of Vxg
in our system. While for the parabolic and isotropic
gas of spin-2 particles there are in the literature sev-
eral simple and quite accurate parametrizations of the
Vxg within the LDA, we are not aware of any equivalent
parametrization for the four-component, anisotropic and
nonparabolic hole gas. Faced with this difficulty, and en-
couraged by the almost identical results for the charge
density and subband energy levels for the parabolic self-
consistent and Luttinger self-consistent calculations, we
have included the many-body corrections in the parabolic
approximation. By analogy with the spin-density func-
tional formalism, the exchange-correlation potential is
different for the heavy- and light-hole gases and con-
sequently the inclusion of many-body effects in the
parabolic approximation within the LDA amounts to re-
defining the self-consistent potential

V (z) = VI(z) + VH(z)+ Vxc[n" (z) n'(z)] (»)
where o. refers to heavy or light holes. Neglecting the
correlation between heavy and light holes Vxc (Vz~c) de-
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FIG. 4. Parabolic heavy-hole [U"(z)] and light-hole

[U (z)] potentials (solid lines) including many-body correc-
tions. The dashed lines give the subband level structure at
k~t ——0 and the dotted line the Fermi level position.

pends only on the hole density in the heavy (light) sub-
bands.

Among the many possibilities for Vxz(z) available in
the literature, we have chosen the parametrized expres-
sion of Perdew and Zunger~ that seems to give accu-
rate results over a wide range of densities; for the effec-
tive masses in Vxc, we have used the isotropic heavy-hole
mass m" = 0.62m and light-hole mass m = 0.072m as
calculated in Ref. 19. Combescot and Nozieres have
calculated the effect of the anisotropy on the exchange-
correlation contribution to the total energy and found
the effect to be quite small. The corresponding self-
consistent potential and energy levels are displayed in
Fig. 4: besides a common deepening of the self-consistent
potential, the greater density of the heavy-hole gas gives
rise to a splitting between the two self-consistent poten-
tials of about 6meV. The inclusion of many-body ef-
fects decreases the number of occupied subbands from
six (Fig. 1) to three (2 heavy, 1 light), but what is more
important, it increases the energy splitting between the
ground-state heavy- and light-hole subbands to about
26meV, in better agreement with the experimental val-
ues. The solid line of Fig. 3 shows the corresponding hole
density distribution: the inclusion of many-body effects
decreases the Coulomb repulsion between holes with the
same spin, and the holes concentrate closer to the impu-
rity charged plane.

While the use of the parabolic approximation allows
us to include exchange-correlation effects in the calcula-
tion, an intrinsic failure of this approximation, already
discussed, is that it gives a not quite reliable Fermi level
position, as a consequence of the neglect of nonparabol-
icities. By analogy with the difference in Fermi level po-
sitions between Figs. 1 and 2, we believe that a more
rigorous treatment of many-body corrections, including
explicitly the nonparabolicities, should give a Fermi level
which lies between the second and third occupied sub-
bands of Fig. 4.
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IV. GAUSSIAN DOPING PROFILE

With the purpose of investigating the dependence of
the results of the previous section on the assumption of
a perfectly sharp-defined doped plane, we have given a
finite width to the doping profile.

Figure 5 shows the corresponding results obtained in
the parabolic self-consistent approximation (including
many-body corrections) for the k~~

= 0 subband level
structure, Fermi level, and bottom of the heavy- and
light-hole potentials as a function of the Gaussian width
(cr) of the dopant profile. Due to our choice of origin of
energies as the value of the self-consistent potential at
z = d/2, which is difFerent for each value of a', only dif-
ferences of energy should be compared in Fig. 5 and not
absolute values.

As expected, the increasing of the doping profile
leads to a decrease of the subband spacing, as the self-
consistent potential becomes shallow. As a consequence
of this Battening of the potential the number of occupied
subbands increases from three (cr = 0) to six (o = 100 A.).
It should be remarked, however, that while we expect to
have a rather accurate description of the self-consistent
potential subband level, the Fermi level position is not
reliable and should be much lower with nonparabolicities
included in the calculation.

The many-body corrections, as measured by the energy
difference between the bottom heavy- and light-hole po-
tentials, are also less important as o grows; that is due
to the fact that as the potential becomes increasingly
shallow, the heavy- and light-hole densities decrease by
extending further away, and the corresponding correc-
tions follow the same trend. It is interesting to note that
the effect is particularly noticeable for o & 30—40 A. .

V. CONCLUSIONS

We have studied the hole subband structure of accep-
tor 6-doped GaAs. As a first approach to the problem,
we calculated the self-consistent potential, hole density,
and subband energy levels of the full Luttinger Hamilto-
nian, including screening in the Hartree approximation.
Considerable discrepancies between these theoretical re-
sults with experiments led us to investigate the effect of
many-body corrections beyond the Hartree approxima-
tion, such as exchange and correlation. Guided by the
strong similarity between the self-consistent solutions of
the full Luttinger Hamiltonian and its parabolic approxi-

~ ~ ~ ~ ~ ~ NA~»
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4c-50 ——----= Lp

---- Hp
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G CA 2

FIG. 5. Energy levels (dashed lines) and Fermi level
(pointed line) as a function of the width of the Gaussian dop-
ing profile. The two solid lines correspond to the bottom of
the heavy-hole and light-hole potentials.
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mation, we included the exchange and correlation effects
in the latter approximation, using the formalism of the
density-functional method.

The density of the heavy-hole subband being greater
than the density of the light-hole subband near the doped
plane, the many-body corrections (which in the LDA only
depend on the density) lead to a sizable renormalization
of the self-consistent heavy-hole and light-hole potentials,
which in turn gives rise to an additional splitting of the
first heavy- and light-hole subbands, driving the theoret-
ical splitting into better (but not perfect) agreement with
the experimental splitting. More theoretical and experi-
mental work is clearly necessary to clarify this remaining
discrepancy.

We also investigated the modifications introduced in
the previous results when we relax the condition of per-
fect b' doping, by giving a finite width to the distribution
of doping impurities. As expected, increasing the doping
profile leads to a shallow self-consistent potential, and a
decrease of the subband spacing and of the importance
of exchange-correlation effects.
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