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Transport through a single barrier in a one-dimensional (1D) interacting electron system is studied
theoretically. By using renormalization group and duality mapping, the phase diagram of the ground
state is shown to be divided into four regions in terms of the zero-temperature limits of the charge
and spin conductances. The conductances are calculated perturbatively for both limits of weak
and strong potential. The results are applied to clarify the crossover and scaling of the Anderson
localization in a 1D system with dilute impurities. It is shown that the temperature dependence of the
resistivity of the system can change significantly around a characteristic temperature corresponding
to discretization energy.

I. INTRODUCTION

Effects of electron correlation on quantum transport
have attracted great attention. i In particular, in a one-
dimensional (1D) electron system both the interaction
and randomness play important roles, i.e. , the former
makes the system a Luttinger liquid~ while the latter
causes the localization. The interplay of these two has
been discussed by several authors, and a metal-insulator
transition is predicted as the interaction changes. 4~ Al-
though the Luttinger liquid has been studied only from
an academic point of view, it may actually be realized
in very narrow single-channel quantum wires, which will
be widely fabricated in laboratories in the near future.
Another example of real Luttinger-liquid systems is an
edge state in the two-dimensional fractional quantum
Hall system. If there are some impurities or rough-
ness, electronic transport in quantum wires or edge states
will be crucially affected by the presence of these defects.
Thus, not only in the academic sense but also from the
practical point of view, it will be quite interesting and
important to investigate the electronic transport in Lut-
tinger liquids with one or few impurities.

Kane and Fisher have very recently discussed the elec-
tronic transport through a single barrier in a Luttinger
liquid, s inspired by recent studies on the electron trans-
port through very narrow mesoscopic quantum wires
which can be regarded as one dimensional. iP iz They
derived an efFective Lagrangian for the phase field at the
barrier site by integrating out the continuum degrees of
freedom. Hence the problem becomes zero dimensional
and is equivalent to that of a quantum mechanical parti-
cle moving in a periodic potential subject to the dissipa-
tion of Caldeira-Leggett type. is is They showed that the
system is classified into two phases: insulating phase and
perfectly conducting phase. A similar conclusion has also
been drawn by Glazman, Ruzin, and Shklovskii, who
have studied the tunneling of the Wigner crystal through
a pinning potential barrier.

In the first part of this paper we generalize the model
proposed by Kane and Fisher to include the spin degrees
of freedom in order to make the model more realistic.

There are several aspects coming out. The phase dia-
gram is divided into four regions in the plane of coupling
constants by the behavior of the charge and spin con-
ductances at low temperatures. Phase boundaries de-
pend on the strength of the potential in contrast to the
spinless case. These zero-dimensional (OD) results are
then applied to the localization problem. We propose
the characteristic temperature Td;, = v/k~R (R: aver-
age interval between neighboring impurities) in addition
to Tj« ——v/k~L~« in Ref. 6 (L~« localiza. tion length).
Above Td;, the impurity potential acts as the assembly of
independent barriers and the OD results are applicable.
Below Tg;, the recursion formulas for renormalization-
group (RG) fiow change to those discussed in Ref. 6. This
crossover, which manifests itself in the nonmonotonous
temperature dependence of the resistivity, is described
in a unified fashion. The issue of the resonant tunnel-
ing through a double-barrier structure in a Luttinger liq-
uid is not discussed in this paper but will be reported
elsewhere. s We set h = k~ = 1 in this paper.

II. MODEL

We analyze the spin-dependent Tomonaga-Luttinger
modelis zP with a scattering potential at x = 0, in which
only forward scatterings are included as electron-electron
interactions. The partition function of the system at tem-
perature T can be written in terms of phase fields, 8(x, w)
and P(x, r), as

l('D8 'Dgexp — dr[Lp(r) + Li(r)j, (2.1)
p

(2.2)

where P = 1/T, 8(x, P) = 8(x, 0), and P(x, P) = P(x, 0).
Lp(7 ) is the (imaginary-time) Lagrangian of a pure sys-
tem with no Anpurity,

Lp = dx (0 8)z+ ~(B 8)z4' vp'gp 'Qp

+ '
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and Li (7.) represents the impurity (barrier) potential and
is given by

L1 = —Up ) C»(0, r)@g,(0, r) + @„(0,r)@1,(0, r)

1/2
&g2((+ g2~&

vp =vF 1— )

i/2

v =vF 1 —
I

&gs((
—g» &

)

(2.4)

2Vp
cos 8(0, r) cos $(0) r),

where Vp is the strength of the scattering potential, @i~ql,
is the field operator for an electron with velocity vF
(—vF) and spin s, and n is a cutofF parameter of the
order of the lattice spacing. We assume Vp ) 0, but
actually the results do not depend on the sign of Vp.
Interactions between electrons are parametrized by cou-
pling constants, gq(( and g2z, or gq(( = g2((/~vF and
g2~ = g2~/xvF, where vF is the Fermi velocity. The
phase fields 8 and P represent charge and spin density
fluctuations, respectively, and these fluctuations with
wave number k cost excitation energy & = vzk and v k,
where vp and v are defined by

The other coefficients in Eq. (2.2) are given by

(1 —
(gg(( + g2~) /2 &

'
np =

I01+ (g&((+ g»)/2)

1 —(g'2(( —g2~)/2 ~
'

1+ (g2((
—g2 L)/2)

(2 5)

which determine the exponents of various correlation
functions at zero temperature. ~ Note that g is fixed to
be 1 when the system is invariant with respect to the
SU(2) rotation in the spin space.

We integrate out the phase fields except Hp = 8(2: = 0)
and pp = p(x = 0). Introducing auxiliary fields A1(r)
and A2(r), we first rewrite the partition function as

Z = DHo Dpo DA1 DA2 'DH 'Dp exp( — dr( Lp(r) + L1(r) + iA1(r) [Ho(r) —8(0 r)]

+iA2(r) [Pp(r) —P(0, r)]) (2.6)

and then integrate out 8(x, r) and P(2:, 7) to obtain

Z = DHp Dpp DA1 DA2 exp (

—" ) Al (~n)A1( ~,n)
dq 1

~ 27K' 4)~ + V~@

dg 1

2' ~„+v~g

dr cos Hp(7) cos Pp(r)

) A2(~„)A2(—cu )

+-' ) [Ai(~ )Hp(-~ ) + A2(~ )Wo( —~ )]

2Vo+ (2.7)

where u„= 2~n/p (n = 0, +1,+2, . . .) and we have neglected an unimportant numerical factor. Here the Fourier
transforms are defined as

Ho(~„) = drHp(r)e' ", Pp(~„) =
P

dr go(r) e' ",A, (~) =
p

drA~(r)e' " (j = 1, 2). (2.8)

Integrating out Ai and A2, we finally obtain

Z = DHo 'D+o exp — ) Ice„II Ho(cu„) I

27I 7/p

P).I~ II@(~ )I'+ ldr cos Hp (r) cos Po (r)

(2.9)

Note that this partition function is similar to that of a
quantum Brownian particle [coordinate (Hp, Pp)] moving
in the periodic cosine potential (2.3) and coupled to a
dissipative environment; in our model the low-lying
charge and spin excitations cause the dissipation. Hence

I

our 1D problem is now reduced to quantum mechanics
of a particle, i.e. , a OD field theory. To avoid ultraviolet
divergences, we introduce a high-frequency cutoff, A
vF/o. , which may also serve as a mass of the particle
m 1/A '
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III. WEAK BARRIER POTENTIAL

In this section we consider the limit where the bar-
rier potential is very weak. We thus perform RG trans-
formations and calculate charge and spin conductances
perturbatively with respect to Vp.

A. Scaling equations

Following Fisher and Zwerger, we derive scaling
equations for the barrier potential by recursively inte-
grating out high-frequency modes. At zero temperature
the partition function (2.9) is written as

Ho(r) = Ho. (r) +8«(r) A(r) = 4p. (r)+ Af(r)
(3.3)

such that

Hp, ((u) for Iu)l & ]u

8«(~) for & & l~l & A,

(3 4)

Pp, (a)) for l(ul & p&( )- y„(~) forl &I~I&A.

Integrating out the fast modes Hor and Ppg, we then get
an efFective action S for the slow modes in powers of Vp.

Z = 'DHp 'Dgo exp( —Sp —Sg), (3.1) 2 1
2

I~IIH"(~)l'+
2 „

where

1
Sp ——

27I gp

1+
2K QQ'

A

2
I~IIHp(~)l'

2
l~ll4'o(~)l'

(y ) —y;)') +O(V,'
Averaging over the fast modes, we get

(3.5)

2Vp» '(~,+n-)
{F)= dr cos Hps(r) cos /ps(r).~n A

(3.6)

2Vp
S] = — dr cos Hp(r) cos Pp(r).

We first divide the phase fields into slow and fast modes,
I

Since Gs(r) = (Hpf(r)Hpr(0)) and Gy(r) = {Qpf(r)(t)pr(0))
are short ranged and fall off exponentially for r )) 1/p,
(Ref. 16), the second-order cumulant can be approxi-
mated as

(2Vp ) p ')~+')- 1 (dHp, 1 (dgp, 'i
V') —{F)' =

I(~o, ) A
dr aq cos[28o (r)] cos[24'os(r)] + a2 1 ——

I2 q dr 2 ( dr )
+oe coe[2eo (c)] + oe coo]2&o (c)]) (3.7)

( + )—&

Vo(14) = Vc(A) (
—)

or in differential form

(3.8)

where a; (i = 1—4) is some constant. Finally we
must rescale the imaginary time as r ~ (A/p)r to
complete the RG transformation. Note that it is
not necessary to rescale Hp and Pp due to the fact
that the theory has underlying symmetries, Hp(7) —+

Hp(r) + 2vr and pp(r) ~ po(r) + 27r. 's In addition,
since the second term of the integrand in Eq. (3.7),
f dr[(dHps/dr) + (dip /dr) ], is irrelevant compared
with f d [I~IIHo.(~)l'+ I~II%.(~)l'] b«h np and n
are not renormalized. Hence the quantities left to be
renorrnalized are the barrier potential, VpcosHpcosgo,
and its descendants in the second-order perturbation,
i.e. , V2p cos28p, Vo 2cos2gp, and V22cos28p cos2fp. We
note that the potentials, V2pcos28p and Vo2COS2pp,
can also be written in terms of the fermion 6eld op-
erators at x = 0 as 2V2,p(@&T@qt@z&@yg + H.c.) and

2 V0,2(@2t@lt'@g)42$ + H.c.) ~
t t

From Eq. (3.6) we get

= [1 —2(9p+ rl )]V()(l)+0(Vo), (3.9)

= (1 —2rlp) V2, () (l),

= (1 —2' )V(),2(l),

(3.10a)

(3.10b)

which show that V2, p cos28o (Vp 2 cos2pp) is relevant
when rip & 1/2 (q~ & 1/2). These three RG equations,
(3.9), (3.10a), and (3.10b), suffice for determining the
phase diagram at zero temperature. Other higher-order
terms, V~ „cosmHp cosngp (m+ n ) 4), generated by
higher-order expansions are not important, since at least
one of the above three pinning potentials is always rele-
vant in parameter regions in which the higher-order terms
become relevant, m gp + n p~ & 2.

where dl = dy/P, . Thus, —if rip+ rl ) 2 the Potential
scales to zero whereas for g~ + g & 2 it grows as the
cutoff p, is reduced.

The scaling equations for V2 p and Vp 2 can be derived
in a similar way, and the lowest-order B.G equations are
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Prom the RG equations we can deduce the phase di-
agram at T = 0 as shown in Fig. 1 where the phase
boundaries are g~ + g = 2, rI~ = 1/2, and g = 1/2.
In region I, Vp cos8pcosgp is relevant so that both 8p
and Pp are pinned around the potential minima, which
means that electrons are perfectly reflected by the bar-
rier at T = OK. In region II, only Vp z cos 2gp is a rele-
vant perturbation, and therefore spin phase, Pp, is pinned
whereas charge phase, Oo, is not pinned. In region III, on
the other hand, V2 p cos 28p is relevant; the charge phase
is pinned, while the spin phase is not pinned. The phys-
ical implications of these phenomena will be discussed
in Sec. IV. Finally in region IV all the pinning poten-
tials are irrelevant, so electrons can freely go through the
barrier. It is interesting to note that the phase bound-
ary gz+ g = 2 obtained above is different from that of
the Anderson localization transition studied before in the
weak-pinning limit. s s This difference will be discussed in
detail in Sec. V.

B. Conductance

Next we shall calculate the charge (spin) conductance
G~ (G ) in powers of Vp by using the inHuence-functional
formalism. 2i Since the method is described in detail in
Ref. 16, where the mobility of a quantum Brownian par-
ticle is calculated, we simply apply their results to our
problem. We refer the reader to Ref. 16 for details.

When a voltage V is applied across the potential bar-
rier, an additional term, eV8p/vr, should be added to Li
in Eq. (2.3). The (charge) current J~ induced by the
voltage difference is given by J~ = (e/7r) (d8—p/«) where

I

IV

FIG. 1. The phase diagram of the ground state in the @~-
plane for the weak potential limit. The phase boundaries

are g~ + g = 2, gq ——1/2, and g~ = 1/2.

t is a real time, and the charge conductance is defined by
Gz —J~/V with V ~ 0. On the other hand, when there
is a magnetic field difference H between the two sides
of the potential barrier, another term, pgyH(gp/2vr) (p~.
Bohr magneton), must be included in Li, resulting in
a spin current J = (1/27r)(dip/dt); the spin conduc-
tance is defined as G = J~/H with H —+ 0. In the ab-
sence of the potential Vp cos 8p cos Pp, G~ (G ) is e g~/x
(p~g /2vr).

First we evaluate the charge conductance in powers of
Vp, assuming V g 0 but H = 0. Following the same path
as in Ref. 16, we arrive at the following expression of the
charge current Jp.

J, = gpv —eqp —lim-
vr

~ ~~ t \ 2vrn) ( 2vra. )+o (&&j &~&j ) (&2j &~2j )

«i dt2 2
1 dt'

X—1
2

x exp~ i
t
dto —eV8 to —26I to p to +P to

where

(3.11)

(3.12a)

(3.12b)

j=1
(3.12c)
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(3.12d)

1
«2~(ui) oa(~i —~2)&(uz) +

7t gg
~2(e 4) =

7t gp Q Q

n~(u) = ~ cos(cuu) cothi
des (p(ui

Q 7t E2)

«~4 (~i)oR(~i —~2)p(~~), (3.12e)

(3.12f)

and O(t') is the step function. The summations in Eq. (3.11) are performed under the charge and spin neutrality
conditions,

81j = Cgj, S]j = S2j) (3.13)

which imply that n+ n' must be even. In the lowest order, Eq. (3.11) is evaluated as

J~ = —g~v —erl~
~ ~

tanh(zg~Pev)
e' (Vp1'

(mo. )
dt cos(rl~evt) exp —(g~+ q )

OO

e—cu/A pld
da

~
(1 —cos ut) coth + i sin ut

~

id 2
(3.i4)

where we have adopted an exponential cutoff, exp( —w/A). The charge conductance G~ is then obtained as

e rl~ ( vega r((gz+g )/2) f Vp l (7rT l

r((n, +~.+1)/2) &» «) (3.i5)

where r(2:) is the I' function. The next leading term in the expansion can also be obtained from Eq. (3.11). Here we
evaluate it by a simpler method: we regard the barrier potential as (2V2 p/era) cos 28p instead of (2Vp/em) cos Hp cos Pp,
and calculate the charge conductance in the lowest order. By so doing, together with Eq. (3.15), we get G~ up to the
order (Vp/nA) as

6 vp &
' (~r l """

Gp —— 1 —cp i

vr (nA) & A)
(V2 p& (~T l
(oA) ( A )

(3.16)

where cp and cq are dimensionless numbers which depend on gz, g~, and the cutoff procedure. Note that Vq, p is of
the order of Vp2/nA.

The current-voltage characteristic of the single barrier is obtained from Eq. (3.14). At zero temperature it becomes

e' (v l'
Jp — T]p V —egp

vr (7m)
(v, .l'
g ~a. )

dt cos(2g~evt) exp —4q~

dt cos(rj~ev t) exp (g~ + q )— —i~t)
(d

/ —iui)

e~ vreg~ t' Vp l (rl~ev lI
Ar(n, +n-) &~~)

~earp ('Vg pb (2gpev& "'
Ar(4~, ) k~~) «) (3.17)

where we have included the contribution from Vq, p cos 2ep
and neglected unimportant exponential factors such as
exp( —q&ev/A). For temperatures T (( eV the current-
voltage relation deviates from Ohm's law, as described
in Eq. (3.17). If eV (( T (( A, on the other hand,
the current-voltage characteristic obeys Ohm's law, J~ =
G~v, where G~ is given by Eq. (3.16).

The spin conductance G can also be evaluated in a
similar manner by taking H g 0 and V = 0. Here we
show only the final expression which is valid up to the
order (Vp/nA)4:

p~g, ( Vp & (~T)"'+"
2~ ' qo.A) q A )

&v
'~ Ar

(3.18)

where cQ and cl are dimensionless numbers.
The temperature dependences of G~ and G are

naturally understood from the scaling equations (3.9),
(3.10a), and (3.10b). For example, integrating the RG
equation (3.9) from y, = A to p, = T yields the renormal-
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ized potential, (2Vp/vrc4)(T/A) &«&+" ) . Then, the re-
duction of the conductances due to the potential scatter-
ing is proportional to the square of the renormalized one,
giving the power-law dependence of T"~+'P z in Eqs.
(3.16) and (3.18). The same reasoning can be applied
also to the reductions due to V2 p cos 28p and Vp z cos 2$p.

The above perturbative calculations are valid if the re-
ductions of the conductances due to the potential scatter-
ing are much smaller than the zeroth-order term, e rl~/vr
or @~re /2vr. Thus Eqs. (3.16) and (3.17) are valid
down to T = OK in regions II and IV of Fig. 1, where

G~(T = OK) = e2rl~/x. In the other regions (I and III),
however, the expansion is valid only for high tempera-
tures. At low temperatures expansions with respect to
the tunneling matrix elements become appropriate, giv-
ing Gz(T = OK) = 0. Similarly, the expansion of G
is justified only in regions III and IV down to T = OK,
and G (T = OK) = pearl /2x. In regions I and II, on
the other hand, the expansions fail at low temperatures,
which suggests G~(T = OK) = 0. In summary, at low
temperatures the perturbative calculations are justified
in the regions where the pinning potential is irrelevant
and the phase field of interest is not pinned. Finally
we note that for the noninteracting case ()7~ = rl = 1)
the leading-order corrections proportional to (Vp/chA)2
in Eqs. (3.16) and (3.18) are independent of T, which
is consistent with what the Landauer formula tells; the
conductance can take any value from 0 to e2/vr at zero
temperature.

the tunneling of one electron or hole [(her, +van)], the sin-
glet pair of two electrons or holes [(+2vr, 0)], and the
triplet electron-hole pair [(0, +2vr)], respectively.

A. Duality mapping and scaling equations

Z78p Vgp exp( —Sp —Si ), (4.1a)

1 (dHp ) (dPp l
( d~ ) ( d~ )

2Vo+ (2 —cos 8c cos ttc) ), (4.1b)

):l~ IIHo(~ )I'+
2 ).l~ llano(~ )I'

7i gp

(4.1c)

Generalizing the duality argument by Schmidi4 and
using the dilute instanton gas approximation (DIGA),
we show below that the partition function in the strong
potential limit is mapped to that in the weak potential
limit discussed in the preceding section.

Remembering that the high-frequency cutoff A serves
as the mass m of the Brownian particle, we may write
the partition function (2.9) as

IV. STRONG BARRIER POTENTIAL

In this section we consider the opposite limit in which
the barrier potential is very strong, Vo/nA )& 1. In this
limit the electron transport can be viewed as the tun-
neling from a potential minimum to an adjacent mini-
mum, and tunneling matrix elements are natural expan-
sion parameters. The cosine potential (2.3) has min-
ima at (Hp, Pp) = ((m + n)7r, (m —n)vr) and maxima
at (Hp, Pp) = ((m + n + 1)vr, (m —n)vr), where m and
n are integers (Fig. 2). Thus a particle initially at
(8p, Pp) = (0, 0) can tunnel to (+vr, +vr) through a lower
tunnel barrier and to (+2+, 0) and (0, k2x) through a
higher barrier. Physically these processes correspond to

6So d'8o

bg d~2

6Sp d2gp

6go d~

or equivalently,

2VO+ sin8pcosgo = 0,
7l A

2Vo+ cos8psingp = 0,
7CA

(4.2a)

(4.2b)

Note that for simplicity we have assumed that the mass is
isotropic in the (Hp, Pp) plane. We evaluate the partition
function in the semiclassical limit, in which the functional
integral is dominated by the stationary path of So+S&. It
is important to notice that Sp describes the physics in the
short time scale, i.e., tunneling of an electron (instanton),
whereas Sq describes the physics in the long time scale,
i.e. , interaction between instantons. We, therefore, first
construct the stationary paths of So, denoted by 8O and
Pp, and then we substitute them into Si. Hp(r) and Pp(w)
are determined from

~ 2Q I I

2z ~ eo

d2 — — 2VO
(8p + Pp) = sin(Hp + Pp),d7.2 pro, m

d2 — — 2VO

d7- Fo.m
(Hp —Pp) = sin(Ho —(t)o)

(4.3a)

(4.3b)

FIG. 2. Minima of the pinning potential
—(2Vp/2m) cos Hp cos (ttp. The matrix element for the (0, 0) —+

(2r, 2r) tunneling is t.

A solution of d X/dr = (2Vp/~chm) sin X describing one
instanton at x = 0 is given by

X(r) = 2 arccos (
—tach(r (2Vs/ttota) ~ ]), (4.4)

which satisfies X(—oo) = 0 and X(oo) = 2vr. From this
we see that the width of the instanton is of the order
of (ceram/2Vp) ) 2. In the DIGA, we neglect the overlaps
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n1

Ho(r) + 4'o(r) = ) ei, X(r —Ti, ))
j=1

(4.5a)

of instantons assuming that P is much larger than the
width and that fugacity of instantons is very small. Thus
we write Hp and Pp as linear combinations of the one-
instanton solution X(r):

n2

8p (T) —pp (r) = ) e2~ X(r —r2~ ),
j=l

(4.5b)

where e,~
= 1 (instanton) or —1 (anti-instanton) and

r,z
's specify the locations of instantons or anti-instantons.

It follows from 8p(0) = Hp(P) and Pp(0) = Po(P) that
p. ei~ = g e2~ = 0 (neutrality condition). We may
write the Fourier transform of 8p(r) and Pp(r) as

p
Hp(cu„) = dr8p(r)e' "

p
Pp(~„) = dr Pp(r)e' "

n1

) .ei~" j=l
~ n$

):ei~
n j=1

ter
exp(i~nri, )+n

$77
exp(i~nr„)—

(dn

e2j eXP(i4fnr2g),
j=l
n2

) e2~ eXP(iurnr2~ ),
j=l

(4.6a)

(4.6b)

where we have used an approximation,

d
d7. e' " —X(r —T, ) = e' " "

d~ U
dX(

d~ (4 7)

By substituting Eqs. (4.6a) and (4.6b) into Eq. (4.1c), the partition function can be calculated, within the DIGA, as

n1=0 n2=0 $g

d7 11 ~ ~ ~ dvln d721 . dT2n.

n1 n2
Xyp'+"' eXp — ) ) ei~ eXp(iunri~) + ) e2~ eXp(iCunr2~')

2=1

n$ n2
7r 1) ) eij eXP(iLdnrlj) ) e2j eXp(iCdnr2j)

j=1
(4 8)

where P i, , represents summation over possible configurations of e,~ s under the neutrality conditions, and yp is an(~~+ I
instanton fugacity, i.e. , tunneling matrix element t corresponding to (8p, Pp) = (0, 0) ~ (+~, +7r). Equation (4.8) can
be simplified by introducing the dual fields 8p and Pp as

n1=p n2 o (el' I (e21'I

d71 1

p
d~ln

p
d72 1 de ~ DHp 'Dgp

X

dr cos[Hp(T) —Pp(r)]

yo'+"'exp —
2
' ).f~ IIHo(~ )I' — ).l~ llano(~ )I'

27r

1 n2

+i ) ei& [Hp(ri&) + pp(ri~)] + i ) e2j [80(T2j ) $0(T2j )]
j=1 ,=i )/

'DHo &go exp
2 ) l~n IIHo(~ ) I 2 ) l~nll+o(~n) I

P
+2yp dT cos[Hp(r) + pp(r)] + 2yo

+Ho +0'o exp ) l~ IIHo(~ )I' —2" ):l~ II%(~ ) I' + yo dT cos Hp(7 ) cos Pp(r), (4.9)

which is identical to the original partition function (2.9)
with correspondences g~( l

+-+ 1/qp( ), 2yp ~ Vp/7ra,

Hp ~ 8p, and Pp +-+ Pp. It is of interest to note that Hp

represents the Josephson phase whereas 80 corresponds

I

to the charge. Pp is also the conjugate variable of Po in
the same sense.

Because the partition function in the strong potential
limit is found to be identical to that in the weak poten-
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IV

,
'phase I',
I

I

'

, phase IV

o (—:p.)
0

FIG. 3. The phase diagram of the ground state for the
strong potential limit. The phase boundaries are —+—= 2,

gp Vj(J

pp: 2 and g = 2. The charge conductance Gp is 0 in
regions I and III, and e q~/n in regions II and IV at zero
temperature. The spin conductance t is 0 in regions I and
II, and peri /2~ in regions III and IV at zero temperature.

I'p (Gp)

oo (0)

o (—'.p.)
0

,'phase

I
I ~

(b)

phase IV

tial limit, we can readily write down the scaling equa-
tions applying the analysis in the preceding section. As
is shown in Sec. III, the second-order cumulant expansion
of gp cos 8p cos pp yields y2 p cos 28p and yp 2 cos2pp. By
analogy with the fact that yp cos 8p cos pp represents the
tunneling from (8p, pp) = (0, 0) to (+Pl, +7r), '$2 p cos28p
and yp 2 cos 2pp correspond to tunnelings from (0, 0) to
(+2m, 0) and to (0, +2vr), respectively. We note here that
if (d8p/dw) and (dip/dw) in Eq. (4.1b) do not have the
same coefficient rn, then the effective action in Eq. (4.9)
will have y2 p cos28p, gp 2 cos2pp, etc.

From Eqs. (3.9), (3.10a), and (3.10b), we obtain

dyp 1 (I I )
dt 2 (qp

= 1 ——
I

—+ —
I up(I),

dy2, p 2 &

dt
I ——

l y2, p(&),

QO2

(4.1Oa)

(4.10b)

(4.10c)

from which we deduce the phase diagram at T = OK
(Fig. 3). The ground state is classified into four regions,
and phase boundaries are —„+—„=2, ri~ = 2, and

= 2. In region I all the fugacities (tunneling matrix
elements) scale to zero, which means that no tunneling
occurs at T = OK. In region II (III) only y2 p (yp 2)
scales to a larger value, which means that only the sin-
glet electron pair (triplet electron-hole pair) can tunnel
although the individual electron is perfectly reflected by
the barrier at T = OK. This corresponds to the fact
that in this region II (III) the singlet superconductivity
(spin density wave) instability is the most enhanced one
for the 1D system without impurities. Lastly, in region
IV yo scales to be larger so that the barrier transmits

I

FIG. 4. The RG flow diagram for g~ = g (a) and q~ =
2g (b).

electrons perfectly at T = OK. The phase diagram is
qualitatively the same as that in the weak potential limit
(Fig. 1). In contrast to the spinless model, s the phase
boundaries change as Vo increases from Fig. 1 to Fig. 3;
the pinning regions (I, II, and III) expand as the poten-
tial barrier becomes higher. Prom Figs. 1 and 3 we can
deduce the RG flows (Fig. 4). Here the essential point
is that gz and g are not renormalized so that the RG
flows are all vertical. is When g~ = q [Fig. 4(a)j, the
phase boundary is vertical at gp

——g = 1, and the RG
flows are reminiscent of those of a quantum Brownian
particle in a cosine potential 6 as well as of the spin-
less fermion model. The same flow diagram is obtained
for the case of g = 1, i.e. , the case where the system has
an SU(2) spin symmetry. The noninteracting Fermi liq-
uid (ri~ = rj = 1) is just on the vertical phase boundary,
where the barrier potential is a marginal perturbation.
In the general case, however, the phase boundary is not
vertical and looks like an unstable fixed line. In Fig. 4(b)
we show the RG flows along the line g~ = 2g .

B. Conductance

In this section we calculate the charge and spin conduc-
tances perturbatively in powers of the tunneling matrix
element t from the golden rule.

As shown by Caldeira and Leggett, ~ the dissipation
suffered by the particle of coordinate (8p, Pp) in the parti-
tion function (2.9) can be expressed as the linear coupling
with harmonic oscillators:

k

+&2k &8p &Pp exp l

— «&((&i~), (&2a); 8p, Pp) (4.11)
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where

~({xlj)~ {x2k)i ep~ 4'p) = ) ™1jI I
+ ™1j~jj xyj + 9' xlj ~p + 2 ep

2V.+ rn2k
I d I

+ rn2&~skx2k + 92j x2kpp +
2 g pp + (1 —cos ep cos pp)
2m2k4)2k 7l ~

(4.12)

with spectral functions for the harmonic oscillators {xqj) and {x2kj,

Jg(cu) = ) ' b(u) —~g, ) =
2m] g QJ yg

J2(~) = ) " 6(~ —Cu2k) =
2mekcd2k

O(u)),
7T gp

e(~)
7m

(4.13a)

(4.13b)

The tunneling probability through the potential barrier is calculated from the overlap between the initial state and
the final state. The probability of the tunneling from (Hp, Pp) = (0, 0) to (x, m) is thus given by

P(p, pi-(, i =2«'). 1(fli)l e '~(&f —&' —«) ).e

—iHf tp iH;tp y ieVtp (4.14)

where V is the applied voltage and Ii) (I f)) represents eigenstates of H, (Hf) with energy E, (Ef). The initial- and
final-state Hamiltonian are obtained from L({x]&),{x2k);9p, pp) by setting (ep, pp) = (0, 0) and (7r, vr), respectively:

H, =) cup, (a,a, + 2)+ ) ~gk(b„bk+ 2),
2 k

(4.15a)

Hy =) ~g(aa + s)+ ' (a +a)+
2'fQyjMy~ 2Bl]j&g .

7r2 2
+ ). ~2k(bkbk + —,') + (bk + bk) +

2m2k &2k
(4.15b)

where a~ and bk (at and btk) are the annihilation (creation) operator for the mode j and k, respectively. The thermal
average in Eq. (4.14) is performed with respect to H, as (A ), = Tr(Xe ~ ')/Tr(e ~ '). The above two Hamiltonians
are related to each other by Hj = UtH, U, where the unitary operator U is given by

U = exp ) (at —a, ) +) (be
—by)

2rnakw2k
(4.16)

With the help of this relation, Eq. (4.14) is evaluated as

P(00) ( ) =~ dip exp ieVtp —vr
cled rPhd

[Jq(w) + J2(u)j I (1 —coswtp) coth +i sinwtp
I

(4.17)

In the same way, the probability of the reverse process, (8p, Pp) = (vr, ~) ~ (0, 0), is obtained as

= 2
( ) (0 o) = —iH, tp iHf tp y —ieVtp

—PeV ~
P(0,0) (m, vr) ) (4.18)

where the last line represents the detailed balance. The difference between P(p 0) ( ) and P( ) (p p) amounts to
the net charge current Jp.

Jp = 2e (P(p pl (~ ~) —P(m m)~(p p))

=2et'(1 —e ~'~) r 1 1 Cku Phd
dtp exp ieVtp —

I

—+ — (1 —coscutp) coth +i sincutp
I

OO 4'Op '9~ p r2

(4.19)
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where the prefactor 2 comes from the spin degeneracy. Hence, in the lowest order, the charge conductance G~ is given
by

|p ——2etP
OO p~

&&0 exp —
~

—+ —
~

d~
~

(1 —coswto) coth + i sin~to
~

0 2
(4.20)

where we have introduced an exponential cutoff e )A to avoid ultraviolet divergences. At low temperatures Eq.
(4.20) is estimated as

G'p ——dre
qAy A) (4.21)

where dr is given by 2x ~2r(2„+ z )/I'(2 + 2 + z). The next-order term of the charge conductance is due

to the tunneling from (8O, PO) = (0, 0) to (2vr, 0), whose tunneling matrix element, tz, is of the order of t2/A. The
probability for this tunneling process is then obtained as

2
P(o,o) (2~,o) = t2 dto exp 2ieVtp —4' PMJ~(~) (1 —eos~to)cath +i sin~to)

2
(4.22)

The probability for the reverse process is obtained from the relation P(2 p) (p p) = e ~' P(p p) (2 p}. Thus the
charge conductance due to these tunneling processes becomes

2e t&P
OO

Pu)
dt's exp —— Cku

~
(1 —coswto) coth + r srnwtr)

~

'9) o r2

(4.23)

Combining Eqs. (4.21) and (4.23), we get the charge conductance, up to the order of (t/A)4, as

qA (Ap qA
where d2 is a dimensionless number of order unity.

The current-voltage characteristic at zero temperature is also obtained from Eqs. (4.19) and (4.22) as

(4.24)

+et2

(1
d))o exp ieVto —~—

k&p
OO 4

dtp exp 2ieVtp ——
OO gp

—~/A
(] 14PtO

)

-~/A
(1 74JC )o

(d

4+et eV &» 2met2 2eV+ 1 2 —' —1

Ar( —'+ —') Ar( —„') (4.25)

where we have neglected exponential factors that reduce
to unity as eV/A ~ 0. Equation (4.25) shows that the
tunneling is suppressed in the charge-pinning regions I
and III: J~ oc V& (g ) 1). This result is reminiscent
of recent theories on the efFect of electromagnetic en-
vironrnent on the Coulomb blockade in a single tunnel
junction. 2 s In our model the many-body correlations
suppress the tunneling. In regions II and IV, on the other
hand, Eq. (4.25) tells that the tunneling is enhancecl to
give J& oc U~ with g ( 1. This is, however, not the case;
the enhancement suggests that the expansion in powers
of t is not valid, and rather the expansion in powers of
Vo described in Sec. III becomes appropriate.

We can also evaluate the spin conductance G in
the same way. The lowest-order conductance is ob-
tained again from P(pp) ( } and P( ) (p p), but the
relation between the two probabilities is now given by
P( ) (op) = e ~~~ ~2P( ) (pp} where H is the
magnetic field difFerence across the barrier. The next-
order term is obtained by examining the tunneling from

I

(8p, Pp) = (0, 0) to (0, 2vr). Hence the spin conductance
is calculated up to the order of (t/A)4 as

= drPB I A) Ap

(tp ' f7rT) ~-'
d,'Prr

I

AqA qAp
(4.26)

where d~ and dz are dimensionless numbers.
Equations (4.24) and (4.26) are correct low-tern-

perature expansions for the conductances in the parame-
ter regions where the corresponding phase field is pinned
at zero temperature: the expansion is valid in regions I
and III of Fig. 3 for Gz and in I and II for G . In the
other regions, II and IV for Gp and III and IV for G,
as the temperature is lowered, the tunneling probabili-
ties scale to infinity while the potential Up scales to zero.
Thus, in this case the perturbative calculations in powers
of Vo become appropriate for low temperatures.
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V. ANDERSON LOCALIZATION the partition function of the system is given by

Now we discuss the relevance of the above OD results
to the Anderson localization in 1D electron systems. 4

We have shown in Sec. III that in the weak-potential
limit the phase boundary of the single-barrier problem is

q~ + q = 2. In the previous studies on the Anderson
localization, on the other hand, the phase boundary
of the localization transition is shown to be g~ + g
3. We will show below that our strong-pinning picture
holds true for high temperatures but gives way to the
weak-pinning picture at low temperatures, and that this
crossover occurs around a temperature comparable with
the discretization energy.

Suppose that N impurities are distributed dilutely at
x = x~ (j = 1, 2, . . . , N) with average interval R. Then

Zp = 'D8 DP exp
P

dr [Lp(r) + L'(r)], (5.1)

where L p is the pure Lagrangian (2.2) and L' is given by

L' = —) cos[8(x~, r) + 2kFx~] cos[P(x~, r)].
7i'A

(5.2)

In the same way as in Sec. II, we introduce the phase
fields at impurity sites, 8~(r) and P~(r), and auxiliary
fields, Aq~(r) and Az~(r), and then integrate out 8(z, r)
and P(z, r). The result is a generalization of Eq. (2.7),

Zp— 'D8~'D$~'DAq~ DAz~ exp i

— ) ) ) exp[ l~n(&j 2:k) I/ vp]Alj ( n) 1k( ~n)

) ) ) exp[—lw„(2;, —xg)l/v ]Az, (cu„)A2g( —~„)
2P .

+-) ).[A,(.)8,(- .)+A.,(.)~,(- -)]
2ij

.2V,~ ) ~ «cso[8 (~)r+ 2kpx~] cos P~(r)
7t A

(5.3)

where we have used the relation

dg 6 1
27r uz + vzqz 2vlu„l

exp( —I~„xl/v). (5.4)

Assuming that the randomness of impurity distribution affects the electronic transport mainly through the random
distribution of the phase 2k~x~, we now approximate the z~ s in exp[—lcu (x~ —zg) I/v~i l] by x~ = jR (j = 1, 2, . . . , N)
while keeping 2kFx~ to be a random variable. Then we introduce the Fourier transforms,

8, (cu„) = ) e"qR8(q, cu„),
N

4, (u)„) = ) e" 4(q, ~„),
N

(5.5a)

A~~(~~) = ):e"'"Ai(q,~ ),
N

Az, (~„)= ) e"q~A2(q, cu„),
N

(5.5b)

where q belongs to the first Brillouin zone (—vr/R & q & vr/R). Substituting Eqs. (5.5a) and (5.5b) into Eq. (5.3) and
integrating out A&(q, m„) and Az(q, w„), we get the effective Euclidean action for 8(q, u„) and y(q, w„) as

p
~& = —).). ~~« ~ )18(q ~~)l'+~ (q ~ )I4(q, ~ )I' —): ' «cos[8, (r)+2kpx, ]cos[y, (r)] (5.6)

with

l~~l 1 2 exp( —Rl~„l/v~) cos qR+ exp( —2RI~~I/vz)
1 —exp( —2RI~„I/v~)

(v = c»~). (5.7)

It is easily seen that the kernel K~(q, ~„) is approximated as

for Ice„l » v~/R,
2"n~

K~(q) cd~) ~
((u2 + vzqz) for I~„l && v~/R and lqRI && vr.

, 4vrv~g~

(5.8)
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Now we shall assume that v~ and v are of the same or-
der of magnitude ( v). Then v/R is the discretization
energy within the interval between two neighboring im-
purities. For ~w

~

)) v/R the correlations between the
different impurities are unimportant, and the effective
action is just the sum of the action in Eq. (2.9) with re-
spect to the impurity sites with a trivial modification,
Vp cos gp(r) cos $0(7 ) ~ V& cos[g&(7') + 2k' x&j cos P&(T).
On the other hand, if ~w„(& v/R, the correlation be-
tween the impurity sites must be properly treated. The
effective action describing the long-wavelength (~q~

x/R) and low-frequency (~w„~ ( v/R) phenomena is ob-
tained by integrating out the high-frequency (~~„~ )
v/R) components by the RG method for the single-
impurity problem discussed above. When the impu-
rity potential V~ is weak enough, it is renormalized to
V~ = V~(R/a)i &("~+'i ) with a being the lattice spac-
ing. This V~ exists at every site j in this coarse grained
system, and we can now apply the previous analysis
assuming a random potential expressed as a continuous
function of x. Thus we can expect to see a crossover
from the single-impurity behavior to the dense-impurity
behavior, when the relevant energy scale or, equivalently,
the temperature is varied across Tg;, = v/kiiR. We note
that this crossover temperature Td;, is higher than Tj,
because the localization length I I« is always longer than
B. It may be instructive to show that this RG procedure
is compatible with the previous theories on the localiza-
tion length. According to the weak-pinning analysis, s the
localization length is given by

2.—./'V. lL(„ n, (n, a.)&-~
~

—
~

(5.9)

(V.
g v

(5.10)

which is exactly the same as Eq. (5.9) with a = o. In
this way our RG procedure matches the previous result.

For homogeneous 1D systems a physically observed
quantity is resistivity p(T), which is related to the con-
ductance by p(T) (LG~) i where L is some charac-
teristic length scale. L is estimated as R for T ) Td;„
v~/T for Tj c & T ( Td;„and L~ c for T & Ti „while
f» T & Td;, G~ is proportional to V(T)2 with V(T)
being the renormalized potential strength down to the
energy scale of the order of k~T. As a particular exam-
ple, suppose that interaction parameters lie in the range
2 ( gz+ g & 3. At high temperature T ) Td;, both
charge and spin phase fields are not pinned, and the re-
sistivity p(T) is proportional to the inverse of the con-

where rl = rl~ + rl, n, = 1/R, and a is the short-
distance cutoff. By integrating out the high-frequency
modes ~w„~ ) v/R, the potential is renormalized to
V~ = Vo(R/a)i ~". Substituting V~ for Vo and R for
a. in Eq. (5.9), we get

2

Vo R~Li„ R
v a)

Jl

)
CU

v/Lb, v/R

temperature

I'IG. 5. The schematic temperature dependence of the re-
sistivity. In the high temperature limit it approaches p
(Re g~/x) '. For q~+ rI & 3, it has a maximum at some
temperature T"() Tq;, ). Below Tq;„p(T) oc T~'+" for
Tjo, & T & Tq;, and p(T) oc T"~+" for T & Tj,.

ductance of a single impurity. As discussed by Fisher
and Zwerger, ~ when p~+ p ) 2, the resistivity is non-
monotonous as a function of the temperature, showing
a maximum at some temperature T*. In the high tem-
perature limit, it approaches p~—:(Re g~/vr) i. Below
T the resistivity decreases again toward p with de-
creasing temperature. When the temperature is further
reduced below Td;„ the resistivity changes to decrease
to zero as p(T) oc T"~+" z and then turns to increase
around Tj, as p(T) oc T«+" s, as the phase fields be-
gin to be pinned. 6 Thus the temperature dependence of
the resistivity has a fairly complicated structure with two
crossover temperatures, Tj, and Td;„and this scenario
can be checked experimentally by changing the concen-
tration of the impurities, i.e. , R . Schematic temper-
ature dependence of the resistivity for general cases is
shown in Fig. 5.

VI. CONCLUSIONS

In this paper we have investigated a model for the
transport through a single barrier in a 1D spin- 2 interact-
ing electron system. We have obtained the phase diagram
of the ground state for both weak and strong potential
barrier, classifying in terms of the charge and spin con-
ductances at zero temperature. We find regions where
only the charge or the spin can transport coherently, in
addition to the insulating region (G~ = G = 0) and
the perfect-conductor region (G~ = ezra~/7r and G
p~g /2a). We have obtained correct low-temperature
expansions of the charge and spin conductances. The re-
sults are applied to the problem of the Anderson localiza-
tion for the energy and/or temperature higher than the
discretization energy v/R. We have shown that the trans-
port in a 1D system with dilute impurities changes qual-
itatively around Td;, = v/R in addition to Tj c = v/L~ C.
We have also pointed out a possible anomalous temper-
ature dependence of the resistivity due to this crossover,
which may be observed experimentally, probably with
narrow 1D quantum wires.
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