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The renormalization of the staggered-order parameter as a function of hole doping is studied for a
two-dimensional doped antiferromagnet in the framework of the ¢-J model. The self-consistent Born ap-
proximation is used to calculate the Green’s functions of holes and spin waves. It is shown that magnon
softening is mainly due to the incoherent motion of the holes. The staggered-order parameter vanishes
at a small critical density of holes §.. The calculated value for §, as well as the concentration depen-
dence of both the staggered moment and spin-wave velocity are consistent with experimental data for

Laz — 8Baacu04 and YBazCU306+x .

I. INTRODUCTION

The parent compounds of oxide high-7, superconduc-
tors are antiferromagnetic (AF) semiconductors. The
Néel temperature as well as the low-temperature
magnetic-order parameter strongly depend upon the hole
concentration 8. When 8 exceeds some critical value (~
few percent) the AF long-range order disappears, though
the neutron scattering and NMR data has revealed that
strong two-dimensional AF fluctuations still persist. Ac-
cordingly it is important for an understanding of the elec-
tronic properties of these materials to study the interplay
between doping and antiferromagnetism. The values of
the staggered moment m =2|(S?)| as well as the spin-
excitation spectrum of the undoped compounds are well
described! in the framework of the conventional two-
dimensional spin-wave theory.? Doping reduces both the
spin-wave velocity v and the staggered moment. Both of
them have pronounced nonlinear dependencies on hole
concentration & and vanish at critical concentration.’>~®
The calculation of the concentration dependence of the
order parameter m (8) is the main aim of the present pa-
per.

The suppression of the Néel order parameter as a
consequence of hole doping has already been studied by
Aharony et al.” on the basis of a static frustration model
and by Lee and Feng® in the framework of the z-J model.
Lee and Feng considered a variational RVB ground state
in the presence of a staggered field and found numerically
that the staggered order is strongly affected by the
motion of holes and disappears at very low hole concen-
tration which is consistent with experiment.

In this paper we will investigate this problem using a
slave-fermion representation of the #-J model. We find
that the staggered moment strongly decreases due to the
spin disorder introduced by the fast incoherent motion of
holes. We show that the magnetic order parameter has a
nonlinear concentration dependence and estimate the
critical doping concentration

SC:(J/zt)/ [1+%ln(zt/2.l)] , (1)

at which the long-range order disappears. Here J is the
exchange interaction constant, ¢ the hopping integral,
and z the number of nearest neighbors.

The slave-fermion formalism has been already used to
study the spin dynamics of two-dimensional doped anti-
ferromagnets by Gan, Andrei, and Coleman® and by
Igarashi and Fulde.!° Gan et al. showed that doping
leads to a softening of the long-wavelength spin waves
and to a damping of short-wavelength spin waves due to
the decay into particle-hole excitations in a coherent
band. Igarashi and Fulde'® took into account the in-
coherent character of the hole spectrum on the large en-
ergy scale w > J, and pointed out the very important con-
tribution of the incoherent background. Our result for
the spin-wave-velocity renormalization is consistent with
the numerical result in Ref. 10 at small doping.

Alternatively one may calculate the critical concentra-
tion from the condition that the spin-wave velocity tends
to zero.!! We have calculated this concentration &*
along the lines of Ref. 11. We find that 8* is very close to
the value §, obtained from the staggered magnetization
(1), and also in agreement with Ref. 11, where a quite
different slave-particle representation has been used. Our
result for 8* differs from that obtained in Ref. 9.

The organization of the paper is as follows. The in-
teraction Hamiltonian between spin waves and holes is
derived in Sec. II. The Green’s functions for the spin
waves and holes are obtained in Sec. III within the self-
consistent Born approximation. The renormalization of
spin-wave velocity and the concentration dependence of
the staggered moment are calculated in Sec. IV. Finally,
the comparison of theory with experimental data is per-
formed in Sec. V. In the Appendix we present an alterna-
tive derivation of the interaction Hamiltonian between
spin waves and holes.

II. THE INTERACTION HAMILTONIAN BETWEEN
HOLES AND SPIN WAVES

Our theory is based on the ¢-J model

H=—t3 (c},c;;+H.c.)+J 3 (5,5;)
(ij )8 (ij)

=H,+H, , 2
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which describes essential aspects of oxide high tempera-
ture superconductors (HTSC’s) as it is now believed.
Here S, is the electronic spin operator and (ij ) indicates
a sum over pairs of nearest neighbors. This Hamiltonian
acts on the space with no double occupancy of sites

n; +n;  =1. At half filling the model (2) reduces to the
S —‘ Heisenberg AF which is expected to show long-
range Néel order at zero temperature. The value of the
order parameter is considerably reduced by quantum
fluctuations. Away from half filling the hole motion in-
troduces further spin disorder. These additional quan-
tum spin fluctuations strongly reduce long-range order.

To avoid a double occupancy of sites we use the slave-
fermion parametrization of electron operators'?

cia=finio 4 3)

where the Schwinger boson operator b,,, 0 ==+, keeps
track of the spins, and the slave fermion f;' generates a
hole state at site i. This representation is natural for the
Néel-ordered state, which can be considered as a conden-
sate of b 41(bg,) Bose fields in 4 (B) sublattice and un-
condensed bosons b 4,(bg;) turn then into spin-wave ex-
citation operators in the Néel background.'*~16

The replacement (3) transforms the -J Hamiltonian (1)
into

*tzb Jj’f+HJ, 4)
(ij)o
together with the local constraint (f'f+b5b_),=1 at
each site i. We consider the Néel state at T'=0 and
divide the square lattice into 4 (1) and B (|) sublattices.
Then after substituting

i6. i, io. .
i by=be', fi=he 'i€A,

if.; i0. i0. .
bjl:rje 4 ) b”=bje J , szhje j,_’EB ’

by=re
t (5)

where the r fields are real and b,b" are simply Holstein-
Primakov spin-wave operators, we have

H=t3 3 [(rb;+br)hln,+H.c.1+H, , 6)
i€ AjEB

=(1-bb—hTH)" 21—, )

Keeping the leading relevant terms for our purpose in the
expansion of the r fields in the Hamiltonian (6) we find

H=t3 (b;+b)nlh,

i,j (i) i,j (i)

(8)

The interaction Hamiltonian (8) between spin waves and
holes can be derived via a different method based on
another representation of the ¢-J model (see Appendix),
which may be particularly useful for the study of the
spin-liquid phase.

In Fourier space after Bogolubov ¥ —v transformation
b, =cosh9qaq +sinh9qa L4 We arrive at

H, —-th(yk cosh®, +7 1, sinh6, )k}, hia, +H.c. ,
kq

zwqqq’

%)
wq=%zJ(1—-'y§)l/2 .

+1I > (bb,+b]b,+b,b;+bb]) .

Here the lattice spacing is taken as unity, and
- — 2= 1/29172 41/5
cosh@, =[1+(1—77) "W2Ve,

sinh6, = —sign(y,)[ —1+(1—y2)"'2]'2 V2,

v4=/(cosg, +cosq,)/2 . (10)
The kinetic term of the #-J model now (1) transforms into
the coupling term between holes and spin waves. Note
that the coupling constant ¢ is large, and therefore the
hole motion strongly affects the spin background. The
coupling vertex vanishes in the long-wavelength limit
q =0 as expected for a Goldstone mode.

After u—v transformatlon the staggered moment
m(8)=1—2¢(b'b ) reduces to

m(8)=my[1—¢(8)], (11)
where
my=2—3(1—y;)"'"? (12)
p

is the staggered moment of the two-dimensional Néel AF
and
8)=—2-3(ala,—y,a,a_,) /(1—y2)2 . (13)
my %
If there are no holes the expectation values in (13) vanish
and the function ¢=0. However, there are a finite num-
ber of spin-wave excitations in the doped system even at
T =0 resulting from the mutual interaction between spin
waves due to their coupling to hole-density fluctuations.
For the copper oxides ¢ is larger than J and the coupling
term in (9) is dominant. Thus the function @(8) increases
quickly with doping and the Néel-order parameter m (8)
goes to zero.
To calculate @(8) and the staggered moment (11) we
need the Green’s functions D (p)=(—T, a,a, (7)) and
F.(p)=(—T,a_,a,(7)) which will be con51dered in the

. -p%p
following section.

III. GREEN’S FUNCTIONS FOR SPIN WAVES
AND HOLES

The equations for spin-wave Green’s functions in Born
approximation are as follows:®°

(iv—a®)D,(p)=1+=,(iv,p)D (p)+Z,(iv,p)F,(p)

? 14)
—(iv+a))F,(p)=24(iv,p)D,(p)+Zy(iv,p)F (p) .
The self-energy diagrams for =,(iv,p)=23,,(—iv,—p)

and X,,=3,, are shown in Fig. 1. Equations (14) lead to
D, (p)—v,F,(p)=[iv— A (iv,p)+@)+B(iv,p)
+v,2(iv,p)l/d (iv,p) ,  (15)
where
d(iv,p)=[iv— A (iv,p)]?
—[@)+B(iv,p)+Z,(iv,p)]

X [@) +B (iv,p)—Z,(iv,p)] (16)
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FIG. 1. Feynman diagrams for spin-wave self-energy from
particle-hole excitations.

and

A(I‘V,p) —21-[2”(1'1’,[’)_211(_1.1’, —'P)] ’

(17)

B(iv,p)=2%[Z(iv,p)+Z ) (—iv,—p)] .

The renormalized spin-wave energy o =w), is determined
by Equation d(w,p)=0 and the function (15) gives the
expectation value (a'a—y) in (13). Straightforward
algebraic calculations lead to

A(0,p)=—1z*Z (v} 4+, —ViXo (kp) (18)
k

(Vi+p Vi)

(Bizlz)wyp=~° li'}’
p

cog(ztz/J)% xt(k,p),

(19)

(B+7Z13),,=—0pzt* /D3 (v}

k

+pH7OXs (kop)

(20

Here mgzvop is the unrenormalized spin-wave energy
and the function xyI(k,p) is determined by the polariza-

bility due to the holes (bubble in Fig. 1):
o kp),

o w , Px(k)p,(k +p)
Xw(k,p)—f_wdx fo dy

oty —x+ie

The function Yy, (21) depends on the spectral density
px (k) of the hole Green’s function. It is well known'¢~ 18
that the quasiparticle spectrum of holes in quantum AF
has minima at four points k!, =(+7/2,+m/2), ie.,
there are small hole pockets around k! ;,. The summa-
tion over the filled states k =k’ ;, +k’ in (18)—(20) can be
rewritten as

2f(k)~22f(kmm+1?) . (22)

+ _
E(k,p)=x,k:p)ExX
XotP P 21)

Expanding the matrix elements in (18)-(20) for small
momentum p and |k’'| ~k,~V'8, where k, is the Fermi
momentum, one finds

Alo,p)=—Nzt?3Sp>x, (ki +k',p), (23)
ik’
(B+Z1),,
=—w)(zt? /2D 3 [(k' )V +p2/41x } (ki +E',P) ,
ik’
24
(B—Z213)p,=—05(2t2 /NI X (Kfin +K',B) , (25)

ik’

(B+yZyy),,,=—0)

2
7= (k’)2+ﬂ—]
Lk 2

XxIki,+k',p). (26)

If we keep in (15) and (16) the leading terms in spin-wave
momentum p and hole density 8§ only, we may then
neglect (B +3) (24) and B +y X (26), since the function
Xo~90. Only the combination B —X ~p8§ (25) is consider-
able at small p due to the factor 1—y, in the denomina-
tor of Eq. (19). In this approximation Eq. (16) for the re-
normalized spin-wave energy w, reads as

w,=wp(1—K,)?/(1+4,) , v2)
with
Kk, =(zt*/))11,
_zzf dxf dypx(k)py(k-i—p) -—x:z’:w;
(28)
and
A =3 [°_dx [ “dy p(F)p,(k+p )—(55’”—2)2—2.
Pt (y —x)
(29)
For the function @(8) (13) we arrive at
—k,) 121
P8)=m _IE(1+A =07 (30)

The spectral density p,(k ) in (28) and (29) can be estimat-
ed following Kane, Lee, and Read.'* In Born approxima-
tion the hole self-energy is given by

at(k,p)O(—x)

=(21)? k+p
03) (zt)}p‘,fdxpx(k PN o Ixl+o, +ie

a” (k,p)O(x)

+ )
o—(x tw,)+ie
(31)
where 6(x) is the step function and
(kP = (Vi +Vi1p = 2ViV i 47, )1 —75) 72
i(yi—yi+p) . (32)

Note that a® ~p at small p so the coupling to the short-
wavelength spin waves is important.

It is well known'# !¢ that the spectral density p, (k) has
quasiparticle-like behavior Z,8(w—§;) at small |o| <J.
Since the quasiparticle weight Z, ~J /t is small, it is clear
however that the main contributions to the polarizability
stem from the incoherent part of the spectrum due to the
motion of the hole inside a “spin-polaron.” To estimate
the incoherent part of the hole spectrum p;,..;,, We use a
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dominant-pole approximation

pw(k)zpcoh+pinc0h ’
pcoh=zk8(w_§k )9(‘]—|§k|) ’ (33)

1
pmcoh=31:0(lw|-.f)e<zr—m> ,

with
Z, =(1—33 (k) /30)g' ,
§k=ZO[EO(k)—20(k0)] » (34)

r=Im3,..,(0) .

Inserting (33) into (31) and performing calculations as in
Ref. 14 one obtains the incoherent bandwidth 2I" ~2z¢,
the quasiparticle residue Z,=~J /¢, and the effective mass
m 4 ~J for quasiparticles in a narrow coherent band.
The strong renormalization of the quasiparticle band has
its origin in a retardation effect, since the time scale
(1, ~J 1) for spins to relax is larger than the time scale
(r,~t~ ') for a hole to hop. The contribution
Pincon == 1/22t to the density of states is provided by in-
coherent motion of the “bare” hole inside the “spin pola-
ron” due to the local “string” potential.

IV. SPIN-WAVE VELOCITY
AND STAGGERED MOMENT

The approximation (33) for the density of states p (k)
leads to three different contributions to the parameters «
(28) and A (29) describing the spin-wave renormalization.
The first contribution is due to the transitions within the
narrow quasiparticle band, when both p, and p, in (28)
are replaced by p.,,. The remaining two contributions
are provided by the transitions between the incoherent
background and the quasiparticle band, and the transi-
tions within the incoherent band.

After integration in (28) with p=p_, one can obtain
for small momentum p

I, (coh)=—Z38/Jmg=~—(J /1)5 . (35)

The unusual minus sign of the fermion polarizability is
due to the fact that the Fermi velocity
vp=ko/mg~JV w8 of a quasiparticle is smaller than
the spin-wave velocity, hence the denominator of the in-
tegrand in (28) has a minus sign. Thus the transitions
within the narrow quasiparticle band actually lead to a
stiffening of the spin-wave dispersion. In other words,
the particle-hole excitation energy €,(p —h) in an inter-
mediate state (Fig. 1) is smaller than the initial spin-wave
energy and the second-order correction to the magnon
energy 8w, ~ VZ/[wg —€,(p —h)] has positive sign.

The magnon softening is provided by large energy
€(p —h)~t transitions due to the existence of the in-
coherent background p;..,, as was already noticed by
Igarashi and Fulde.!

Taking into account the sum rule

S [° dxp k=5, (36)
k — oo

which provides the negative energy cutoff of p;,.., in Eq.
(33), one can estimate the integral (28) at small p:

I, (incoh;coh)=8/¢ ,
I1, (incoh;incoh)=(8/z¢) In(zt /2J) .

(37

The renormalization constant Kp then reads as
Kk, =[—z +(zt /J)+(t/J) In(zt /2J)]6=58/8* , (38)

where

8% ~(J /zt)/

1+% In(zt /2J) ] . (39)

The renormalization constant A, (29) gives a negligible
contribution at small momentum due to the factor
(y2 +p —v¥%)in (18):

A, =(1—41p*/1)8 <<1 . 40)

The square-root concentration dependence of the spin-
wave velocity follows from (27):

v=0,(1—8/8%)7%. 41)

The spin-wave velocity vanishes at the threshold concen-
tration 8* (39) and the long-range AF order disappears.
We will see below that 8* is very close to the concentra-
tion 6, where the staggered moment becomes zero. The
value 8* depends only on the ratio t/J; e.g., for t /J =4
we obtain §* ~0.04.

Our result (41) is in agreement with numerical calcula-
tions of Ref. 10 for small § <<8*, i.e., when Eq. (41) can
be expanded. However, there is a discrepancy between
(39) and the estimation 8* ~(J /t)? obtained in Ref. 9. As
the renormalization in Ref. 9 is due to the particle-hole
excitations within the coherent narrow band only, this re-
sult is surprising in view of the fact that the Fermi veloci-
ty is smaller than the spin-wave velocity. Kuboki and
Yoshioka!® investigated the destruction of Néel order in
the so-called ¢’-J model, where t’'~J describes hopping
between next-nearest neighbors. Implicit to their calcula-
tion is also the neglect of the essential incoherent scatter-
ing on scale z. The critical concentration obtained for
this model is therefore much larger than for the 7-J model
even after inclusion of gauge fluctuations.!®

To calculate a staggered moment we need the momen-
tum dependence of the spin-wave renormalization con-
stant k, (28) at large p. For an estimate we may approxi-
mate each hole pocket by a 2D isotropic Fermi gas. The
polarizability of the low-density fermion gas usually de-
creases as (2k, /p)? for p >2ky~ V8, or in other words at
distances shorter than the average distance between fer-
mions.

Our approximation (33) for the incoherent part of spec-
tral density p;, .., ~ const prevents us from calculating the
momentum dependence of k, and w, explicitly. We be-
lieve even though the low-energy spin waves change
drastically with doping, the short-range order should be a
smooth function of doping, and large-momentum spin ex-
citations should be scaled by J as in the undoped case.
Indeed, it was revealed by neutron scattering experi-
ments* % that the spin-wave renormalization is p depen-
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dent and decreases at large p. The doping is expected to
lead only to damping of the short-wavelength spin waves
due to their decay into particle-hole pairs when the spin-
excitation spectrum at large p~1 enters into the in-
coherent particle-hole spectrum. One can estimate this
damping y ~ 6 from the imaginary part of (27) and (28).
Such damping of short-range spin waves without an
essential change of their energy has been seen, e.g., in
two-magnon Raman-scattering experiments.”’ To esti-
mate the function (30) we assume the following interpola-
tion formula for the momentum dependence of the hole
polarizability:

(p)/TI(0)=1/[1+(p /2k,)?] (42)

which decreases as p ~2 at large momentum as for a free
fermion gas.
In the approximation (42) the staggered moment reads

as

m=my(l—g), “3)

¢=~rf-(88*/'rr)”2(Kk —E.), k*=8/8*%,

0

where K, and E; are complete elliptic integrals. At
small doping

(8 <<a*):—":—(ws*/z)“z(a/a*)m : (44)
0

The staggered moment m (8) (43) vanishes at the critical
concentration

8, =8%—8%exp(—myV 7/28*%), 45)

which differs only slightly from 8* (39). This exponen-
tially small difference is an artifact of our theory based on
the linear spin-wave description and the approximation
(42). The staggered moment (43) is in qualitative agree-
ment with the numerical results obtained by Lee and
Feng® for a staggered RVB-type wave function.

V. COMPARISON WITH EXPERIMENT

The dependences of spin-wave velocity (41) and or-
dered moment (43) on the hole density and the value of
critical concentration (39) are the main predictions of our
theory and may be compared with experimental results.

(La;_,Ba,),Cu0,; The internal magnetic field
(which is just proportional to the staggered moment) was
measured by NQR method.® The theoretical formula (43)
calculated at ¢t/J=4 gives a reasonable agreement with
experiment (Fig. 2). At ¢/J =4 we have 8* =0.04 which
is comparable with the experimental value §* =0.05.3

YBa,Cu;04.,: According to experiment the AF or-
dering is not affected by doping at x <0.2, since there are
no holes in Cu(2) planes at small x.* ¢ We assume the
value x =0.15 corresponds to §=0 and x =0.41 (where
AF state breaks down) to 8=58*. Using this scale we
have good agreement of our theory with experiment (Fig.
2) and the hole density 8*=0.04 in Cu(2) planes at
x =0.41. The reduced value of spin-wave velocity
v =0.45 eV A in the doped compound (x =0.37) (Refs. 5
and 6) is also well explained theoretically (Fig. 2).

FIG. 2. Data of the ratio v /vy and m /m, as a function of
the normalized hole concentration: theory for ¢t /J =4 (dashed
and solid curves); internal field measurement (Ref. 3) of
(La,_,Ba,),CuO, (open triangles); ordered moment (Ref. 4)
(solid triangles) and spin-wave velocity (Refs. 5 and 6) (circle)
for YBa,Cu;04.., (see text).

It should be noticed, however, that the hole states do
not actually have extended character in the vicinity of the
Fermi level due to Anderson localization in a random im-
purity potential in the semiconducting phase. Our impli-
cit assumption is that the localization length is larger
than the average distance between holes (doping impuri-
ties). Good agreement of theory with experiment prob-
ably indicates that this assumption is rather reasonable in
La, ,Ba,CuO, and YBa,Cu;O¢., while our theory is
not applicable to Nd,_, Ce, CuO, perhaps due to a re-
duced localization length.

In conclusion we have shown that the strong coupling
of spin waves to charge fluctuations destroys long-range
magnetic order at very small doping levels. The main
source of spin disorder is the fast incoherent motion of
holes inside the “spin polaron” while the coherent low-
energy motion is less important. The analytical expres-
sions for the concentration dependence of the staggered
moment as well as the value of critical concentration ob-
tained in this paper seem to give a favorable description
of the experimental data for hole-doped HTSC’s.

The doping dependence of the stiffness constant and re-
lated problems are presently also under investigation by
applying projection techniques.?!
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APPENDIX

The spinless hole-spin wave Hamiltonian (8) can be de-
rived in a quite different way using the following repre-
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sentation of the ¢-J model:!!

H=T3 |t(hfh;+h]n,)(255,+1)
Gj)

+J(8:8)(1—n;)(1—n;) (A1)
Here n;=h ,»Th i h,-)r is the spinless fermion operator which
creates a hole, and S is the local pseudospin 1. The fer-
mions in (Al) describe the charge degree of freedom
while the physical spin at the singly occupied sites is ex-
pressed in terms of the pseudospin as S;(1—#;). The fac-
tor (25;5;+1) in the hopping terms is nothing but
Dirac’s spin permutation operator, so that the hole hop-
ping in (A1) is carried out in a manner which conserves
the projection of the physical spin as in the original mod-
el. The spinless fermion-pseudospin representation (A1)
introduces, however, the unphysical pseudospin degen-
eracy at sites occupied by holes. In the single-hole prob-
lem!® this extra degeneracy does not matter as the pseu-
dospin at the hole site does not interact with others.
Hence the Hamiltonian (A1) has the same partition sum
as the original ¢-J model: Z(T)=2Z,(T). However,
some kinematic interaction may emerge between holes at
finite hole density due to this unphysical degeneracy. It
is plausible, however, that the inaccuracy is not so large
at small hole density § << 1.

There is the following correspondence:

Sl =(1—18,)(25,5,+ ;|

ity
1—18,)[S;7S; +(L+SA(L+SH)h;h]
1=18,)[87 8 + (L —SH(L—SH)1h;h] .

clhejr=( (A2)
CiTlcjl =(

The momentum distribution function for physical elec-
trons n, ={n;(k)+n (k)) /2 then reads as

ne=1(1—8)— 3 e*R((5,5p +Lohihy) . (A3)
RF#0
It is easy to check that
(85,8;+nfny=(nln;) , (A4)

as the Hamiltonian (A1) has the global SU(2) invariance
in the pseudospin as well as in the physical spin sub-
spaces:

[H,zi.n,.]: [H,Egi(l—ni) =0. (AS5)
i i
Indeed the unitary transformation

U=ILu; , u;=(1—n;)+g(SU2))n; , (A6)

leaves H invariant. Performing this transformation with
g=o%and g =0 " +0 " in the expression

(k)= % Spie ~PHURIn, U (A7)

one can find the equality (A4). The following relation be-
tween n, and spinless hole momentum distribution func-

tion n} is then obtained:

ne=(1+8)/2—n} . (A8)

The relation between the Green’s functions for physical
electrons GP! and fermions G* in (A1) can be found also
by similar arguments. In the spin-disordered state with
G’°=G =G,

GP"(R,7)=—(1—18 )G —R,—7), (A9)

and in momentum space

G (k,e)=13G"p, —€)—G"(—k,—¢) . (A10)
P

It should be stressed that (A9) and (A 10) are only true in

the spin-disordered phase while the expression (A8) still

remains valid in the ordered state.

Other spinless fermion pseudospin representations for
the t-J model were proposed by Richard and Yushan-
khai?? and by Krier.”> While all approaches agree for the
antiferromagnetic ordered phase they lead to distinct for-
mulations for the spin-liquid regime. The question which
formulation is superior in the latter regime still deserves
further investigation.

To introduce the spin-wave language in the AF state
we should, however, not apply naively the Holstein-
Primakov transformation to the Hamiltonian (A1) as in
Ref. 11. If one nevertheless does it, the hopping term in
(A1) leads to the interaction of holes with two magnons,
yet one of the magnons is due to the existence of a non-
physical pseudospin at the hole site. Such an inconsisten-
cy may lead to unphysical exponents for the damping
rate of the quasiparticles at small o <J, i.e., ©> instead of
?. At first glance it seems surprising that the critical
concentration 8* obtained in Ref. 11 is very close to our
present result. Actually it is quite natural since 8* main-
ly depends on the incoherent background of the hole
spectrum on scale ¢, which is insensitive to details of the
interaction.

One possible way to obtain the correct interaction be-
tween holes and spin waves is to perform the unitary
tranggormation of the Hamiltonian (A1) on the B sublat-
tice:

u;=g(l—n;)+n;, g-+explimo,/2), jEB . (A11)
Then
H,p=t z()hi*hj[(§+s;)si++(§+s,.z)s;

ijti

+H(3=8)S +(3—S)S;"]

> [—SiSi+3(S7"S;" +5787)] (A12)

i,j ()
X(i—n;)(1—n;) .

In linear spin-wave approximation S,=1—b%b, S*=b
the Hamiltonian (A12) becomes just the same as (8) be-
cause now the extra magnon has been eliminated by the
transformation (A11).

One can obtain also the physical Green’s functions in
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AF state. In the linear spin-wave approximation
Gl4(R,7)=Gjp(R,7)=—G"—R,—7),
Giu=Gjp=0.

The same relations were obtained in Ref. 16. Therefore

(A13)

the representation (A1) leads to the same physical picture
in the AF phase as the slave-fermion description. One
can hope it can be useful in the spin-liquid phase due to
the absence of a local constraint at least at low hole dop-
ing.

*Permanent address: Kazan Physicotechnical Institute, Sibir-
sky tract 10/7, Kazan 420029, Russia.
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