
PHYSICAL REVIEW B VOLUME 47, NUMBER 8 15 FEBRUARY 1993-II

Absence of spontaneous persistent current for interacting fermions
in a one-dimensional mesoscopic ring
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We address the issue of whether a system of interacting electrons confined to a one-dimensional
ring can sustain a spontaneous persistent current in the absence of an externally applied flux. The
current-current coupling between electrons, describing radiative back-action efFects, is exactly treated
in the formalism of quantum electrodynamics, where the electrons interact via the exchange of virtual
photons. In addition, the instantaneous screened Coulomb potential is taken into account using the
Luttinger liquid model including finite-size parity effects. The partition function is calculated exactly,
with the result that the system does not possess a spontaneous persistent current. We show that,
in the presence of an external flux, the amplitude of the (conventional) persistent current is reduced
by quantum fluctuations of the internal transverse electromagnetic field. These corrections can be
expressed in terms of the self-induction of the ring and are shown to be of first and higher order in
the small dimensionless parameter nvz/c, where n is the fine-structure constant and vF the Fermi
velocity renormalized through Coulomb interactions.

I. INTRODUCTION

Persistent currents in mesoscopic normal metal rings
have recently received much attention, in the light of
the experimental observations of this phenomenon. ~

The pioneering work of Ref. 3 pointed out that a one-
dimensional disordered metal ring threaded by an exter-
nal flux has a Bloch-like energy spectrum which is peri-
odic with the flux quantum Po = hc/e. For a metal ring
which is small enough so that the electrons maintain suf-
ficient phase coherence after traveling around the ring, a
persistent current was predicted. While the description
of electrons confined to a mesoscopic ring bears similar-
ities with earlier works dealing with flux quantization in
macroscopic superconducting rings by Byers and Yang, 4

Bloch, s and Gunter and Imry, the persistent currents in
normal metal rings differ in nature from their supercon-
ducting counterparts: a superconducting ring can trap
flux, i.e. , the current continues to flow in the absence of
an externally applied magnetic flux. Nevertheless, in gen-
eral the ground state of a superconducting system, in the
absence of an externally applied flux, has no spontaneous
persistent current, and therefore satisfies time reversal
symmetry. It has been pointed out, however, ' that a
superconducting ring with a Josephson junction contain-
ing magnetic impurities (a so-called vr junction) may have
a ground state with a spontaneous persistent current. It
is therefore natural to conjecture that such spontaneous
persistent currents exist also in normal metals. The pur-
pose of the present paper is to address the question of
whether a spontaneous persistent current can occur in
mesoscopic normal metal rings. This phenomenon, if at
all possible, should arise from the zero-point motion of
the internal electromagnetic field coupling the electrons
of the metallic ring.

The possibility for spontaneous time reversal sym-

metry breaking in mesoscopic rings has recently been
pointed out by Wohlleben et at. In this proposal, the
electrons are assumed to interact with each other only
via the flux that they create on each other by circulat-
ing around the ring. Using a phenomenological model
to describe this situation, Wohlleben et al. argue that
it is possible for an ideal metallic ring to exhibit a mag-
netic phase transition to a low temperature state with a
persistent current in the absence of an externally applied
field.

There is reason to doubt whether this description is
appropriate: after all, electrons interact with each other
via the exchange of virtual photons, the vector parti-
cles of the electromagnetic interaction. While the phe-
nomenological model of Ref. 9 contains the ingredients
leading to spontaneous persistent currents, a question of
this importance should be addressed from first princi-
ples. In particular, one has to describe the back-action
of an electric current on itself: the current around the
ring is affected by the flux created by this same current a
moment earlier. The principal question then is whether
this retarded back-action effect, expressed in terms of
a current-current interaction, can lead to a spontaneous
persistent current. We note in passing that this back-
action effect is in analogy with the self-energy problem
of the electron, which arises in classical and quantum
electrodynamics. It is the goal of the present investiga-
tion to study the thermodynamic properties of a system
of No spinless fermions constrained to move on a one-
dimensional mesoscopic ring, coupled to an internal elec-
tromagnetic field. This radiation field possesses its own
dynamics described by the Maxwell equations and effec-
tively mediates the interaction between electrons, which,
in the Coulomb gauge, leads to instantaneous density-
density (Coulomb) interactions as well as to retarded
current-current interactions. Reference 9 gives an effec-
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tive description of the latter interaction, and neglects the
former. As we shall see, our result does not support the
prediction of Ref. 9 in one-dimensional systems, since we
find that the ground state of an assembly of interact-
ing fermions confined to a one-dimensional ring does not
sustain a persistent current by itself. At any time in the
following calculation, the short range repulsive interac-
tion which models the density-density interaction can be
switched to zero for comparison with Ref. 9.

The question whether there exists a spontaneous per-
sistent current is related to the stability of the free energy
F of the interacting fermions as a function of flux. As
in magnetic systems, the symmetry of the Hamiltonian
implies that the state with zero external flux gives a van-
ishing persistent current J(P = 0) = 0. Whether this sit-
uation corresponds to the actual ground state of the sys-
tem, i.e. , whether I" is minimal, is a different issue. This
issue should be addressed by probing the system with an
external force so as to explore the phase space away from
this zero-current state and find a possible ground state
which is current carrying and has lower energy. For this
purpose we switch on an external flux P,„t, calculate the
"conventional" persistent current and consider then the
limit of vanishing flux:

BFJ = —c lim (I)
o ~4'ext

If J does not vanish in this limit then there is a sponta-
neous persistent current which breaks time reversal sym-
metry. This approach is clearly analogous to that of
a magnetic phase transition in ferromagnets, where the
magnetization is probed by a vanishing external magnetic
field. Unlike there, however, we cannot perform the ther-
modynamic limit of the whole expression given in Eq. (l)
before we let the external field go to zero, since the persis-
tent current is a mesoseopic effect and as such vanishes
for large system size (even exponentially fast for finite
temperatures, see below). Nevertheless, we still can per-
form the thermodynamic limit at appropriate places, i.e. ,
replace sums by integrals when evaluating finite-size cor-
rections. This replacement interchanges vanishing field
limit with thermodynamic limit and could result in possi-
ble ground state minima with persistent currents, if such
a situation exists at all. However, it will turn out that
this interchange of the thermodynamic limit and zero ex-
ternal field limit does not cause or even indicate a phase
transition and thus has no consequence on the persistent
current. We should also emphasize that our calculation is
not restricted to small values of external flux. Moreover,
everything said above applies equally well to every other
zero of the current with respect to the external flux.

In quantum electrodynamics, the Coulomb repulsion
between electrons follows naturally from the elimination
of the scalar potential that influences the electrons. The
remaining problem we are dealing with is therefore that
of correlated electrons coupled to a vector potential, de-
scribing retardation effects. Restricting our considera-
tions to a one-dimensional ring embedded into a three-
dimensional space, we shall make use of the Luttinger
liquid description for the matter degrees of freedom. i
This description was recently applied and extended by

one of us to study persistent currents for interacting
electrons in the presence of an externally applied flux. i2

This Luttinger liquid approach takes the instantaneous
short-ranged interaction between the electrons into ac-
count and, moreover, incorporates the topological effects
associated with the even or odd number of electrons oc-
cupying the ring. For simplicity the spin of the electrons
is neglected.

Another aspect of our treatment is to take proper ac-
count of the cylindrical symmetry of the system: an elec-
tron circulating around the ring will couple to the az-
imuthal electromagnetic modes on the ring. These elec-
tromagnetic modes, however, exist also outside and, in
particular, inside the circumference of the ring. This
situation adds to the complexity of our problem, since
usually one deals with the Cartesian representation of
the electromagnetic field being enclosed in a box with
periodic boundary conditions. In contrast, the cylindri-
cal symmetry of the problem imposes, e.g. , that the 4-
vector potential vanishes on the boundaries of a (large)
cylinder of radius B which encloses the mesoscopic ring
concentrically (see Fig. 1). Note that this proper ac-
count of the geometry of the problem goes beyond the
standard assumption of a Cartesian system closed upon
itself in one direction —the typical geometry used so as to
"mimic" a ring. This difference is illustrated for a two-
dimensional world in Fig. 2: In the cylindrical geometry,
the 4-vector potential does also exist inside the circum-
ference of the ring [Fig. 2(a)], whereas this is not the case
for the Cartesian geometry with periodic boundary con-
ditions [Figs. 2(b) and 2(c)]. We note in passing that the
choice of the Cartesian geometry with periodic boundary
conditions is justified when one considers a system where

J(z

R(
I ~

I I

FIG. 1. Cylindrical geometry: we assume vanishing
boundary conditions on the surface of the cylinder of radius R
(dashed lines) which encloses the mesoscopic ring (thick line).
An electron circling the ring interacts with other electrons
Firstly via Coulomb interaction and secondly by generating a
Aux through the ring, which consequently afFects the motion
of the other electrons.
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FIG. 2. Comparison between cylindrical and Cartesian
geometry in two dimensions. (a) Cylindrical geometry: the
radial and azimuthal component of the vector potential A~
and Ap exist and vary inside and outside the perimeter of the
ring. (b) Cartesian geometry: the wire (dotted line) is located
along the x direction, on the left boundary of the rectangle.
(c) Cartesian geometry with periodic boundary conditions:
the rectangle of (b) is mapped onto the surface of a torus.
The small radius of the torus is the radius of the wire. In
this situation, the fields A, A„can never be located inside
or outside the loop.

terested here in a diferent issue spontaneous persistent
currents our method of approach also allows us to draw
conclusions about the conventional persistent current of
interacting electrons coupled to an electromagnetic en-
vironment. We find that the introduction of coupling to
an electromagnetic field slightly reduces the amplitude of
the persistent current by a factor in the exponent which
is proportional to ave/c (n is the fine-structure constant
and v$, the renormalized Fermi velocity), but does not
suppress it, in contrast to the result found in Ref. 13.
Furthermore, we show that the radiative corrections can
be expressed in terms of the classical self-inductance (per
unit length) of the ring.

The paper is organized as follows: in Sec. II, we define
the partition function of the fermions in the presence of
the intrinsic electromagnetic field which is responsible
for their interaction. Section III introduces the descrip-
tion of the interacting fermions in terms of the Luttinger
liquid in the Cartesian geometry. Since the problem re-
duces then to Gaussian functional integrals, the calcula-
tion of the partition function is carried out explicitly. The
discussion of our results is presented in Sec. IV, where
we also calculate the magnitude of the corrections intro-
duced by the fluctuations of the electromagnetic Beld.
Section V is devoted to an analogous calculation in the
cylindrical geometry. Conclusions are given in Sec. VI.

II. PRELIMINARIES

A. Functional integral formulation
of the partition function

Our starting point is the functional integral represen-
tation of the partition function for electrons coupled to
an intrinsic electromagnetic field,

both matter and field are confined to the same space di-
rnensions (provided, of course, that the curvature of the
finite system is negligible, which is typically the case in a
mesoscopic ring). However, it will turn out that for both
geometries, there is no spontaneous persistent current.
As a matter of fact, the Cartesian geometry captures
the essential physics of the problem, and no qualitatively
new information is obtained with a full account of the
cylindrical symmetry of the problem. For pedagogical
purposes, we shall first present the results for the Carte-
sian case, which are simpler in structure, rendering the
interpretation of the effects more transparent. We derive
then the analogous results for the cylindrical geometry in
a separate section. We formulate and evaluate our prob-
lem using functional integral techniques mainly in real
space (not Fourier space); this, inter alia, has the great
advantage that the discussion for the Cartesian geometry
can be adapted to the cylindrical case in an obvious way.

Finally, the effect of an external electromagnetic envi-
ronment on conventional persistent currents has been re-
cently investigated by Park and Fu, using the approach
of Caldeira and Leggett to incorporate the quantum
fiuctuations of the environment. There, it was found that
the coupling to this external field actually suppresses the
persistent current to zero. Despite the fact that we are in-

Z = DAp DA Dq @[A,Ap] exp( —S[Ap, A, q]),

(2)

where Ap (A) is the scalar (vector) potential, and the
matter degrees of freedom are described by the variable

q; the proper antisymmetrization of the fermions is left
implicit in the integration measure. The gauge fixing
functionalis is 4[Ap, A] specifies the choice of gauge for
the electromagnetic field. Note that the internal electro-
magnetic field has its own dynamics and that the par-
tition function includes the quantum Huctuations of the
matter as well as those of the field. The Euclidean ac-
tion 8 representing the coupled matter-field system can
be separated into three contributions:

S[Ap, A, q] = Si[q]+Sg[Ap, A]+Ss[Ap, A, q], (3)

where Sj is the action for the matter degrees of freedom,
i.e. , No free electrons of mass m and charge e, confined to
a one-dimensional ring of length I parallel to the 2;-axis,
along a particular boundary of the rectangular box which
constitutes the "universe" (periodic boundary conditions
are assumed in all three space directions), see Fig. 2.
Note that we are working in a canonical ensemble with
fixed particle number No. The second term, S2, is the
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action for the free electromagnetic field, and finally S3
describes the coupling between matter and field:

No p
S =)

2dq;)
dr ) (4a)

d4r(~E'+ p 'B'), (4b)

Ss = d r(iPAp+ -j A'),
C

(4c)

Using the Coulomb gauge and the periodicity in space
and imaginary time of the electromagnetic field, we ex-
press S~ in terms of the 4-vector potential:

S2 = d r( Apd Ap ——A A),
1 4

(6)8'

with E = —',"8 A —7'Ap the electric field, and B = 7' h
A the magnetic field. As we are imposing an external
flux P,„q through the ring, A' = A + A,„t contains a
constant component, 7 A,„t ——e~P,„q/L, with e~ the
"tangential" unit vector in the Cartesian geometry. In
Eq. (4b), we have included the dielectric constant e and
the permeability constant p, associated with free space.
We use the compact notation d r—:dr dr (unless stated
otherwise), with dr being the spatial volume element.
The integrations run over the four-dimensional interval
P x L x L„xL„with L~ = L fixed and P, L„,arbitrary
(eventually approaching infinity in the zero-temperature
limit and thermodynamic limit of the transverse degrees
of freedom). Finally, p is the particle density and j the
current density associated with the electrons.

In the following, we shall adopt the Coulomb (trans-
verse) gauge 7' A = 0, and take this constraint into
account by expressing the gauge fixing term as a func-
tional integral over an auxiliary field A:

C[A] = DAexp
(

i d rAV A —
[

4

1
S& ——S&+—

2
d r d r'p(r)v(r r')b(r ——r')p(r'),

where v(r —r') is the short-ranged potential.

III. PARTITION FUNCTION OF THE SYSTEM

In this section, we introduce the Luttinger liquid pic-
ture to describe a system of interacting electrons con-
fined to a ring and with coupling to the vector potential
of the internal radiation field. We follow the treatment
of Ref. 12 where such a Luttinger liquid description is
applied to a mesoscopic one-dimensional ring threaded
by an external flux.

A. Effective action for the Luttinger liquid

where 4 is the inverse Laplacian operator, and ci
is an irrelevant integration constant given by ci
[det( —6)] ~~2. The scalar product notation of Eq. (8),
where the integration over r is implicit, shall be used in
the remainder of this paper. The integration of the scalar
potential leads to a density-density coupling which, of
course, represents the Coulomb repulsion between elec-
trons. As we are working in the Coulomb gauge, this
Coulomb interaction is instantaneous. The retardation
effect due to the finite velocity of the electromagnetic
wave propagation is a higher order effect in terms of
the fine-structure constant, and it is described by the
vector potential A as discussed below. In what follows,
we replace this instantaneous Coulomb interaction by a
short-ranged repulsive potential which effectively takes
into account the screening effects between electrons. We
incorporate this screened potential into the part of the
action of Eq. (3) which contains the matter degrees of
freedom only. The action Sq given in Eq. (4a) is there-
fore modified to

with = p 6 + eh c 28' being the O'Alembertian
operator in imaginary time.

The above formulas constitute our starting point. The
calculation of the persistent current is carried out via the
evaluation of the free energy obtained from the partition
function Eq. (2).

B. Elimination of the scalar potential

Our first step is to integrate out the scalar potential
Ao. For this purpose, we consider the functional integral:

Iq [p] = DAp exp
~

dh [ (87T) Ao( A)Ao

—ipAp)
~

.

This is a Gaussian functional integral which is given by

Ig[p] =cg exp
~

—2m d r d r'p(r)( 6) (r, r')p(r') ~—
—:cg exp( —2vrp (—6) 'p), (8)

A detailed review of the Luttinger liquid
machinery goes beyond the scope of this paper.
A possible starting point of this method is a Hubbard
model, where the repulsive on site interaction replaces
the short-ranged potential v introduced in the preceding
section. To summarize briefly, this approach amounts to
a decomposition of the Fermi field operators into right
and left going excitations, which both move with the
Fermi velocity through the system. This decomposition
is a consequence of the linearization of the free energy
spectrum around the two Fermi points +k~ and is based
on the assumption that large energy fluctuations away
from the Fermi surface can be neglected. In a subse-
quent bosonization procedure, the Lagrangian of the in-
teracting electrons is then replaced by a harmonic fluid
Lagrangian expressed in terms of a real scalar bosonic
field y. This bosonic field reproduces the long wave-
length excitations (density fluctuations) of the system
which are relevant at low temperatures. The interac-
tion effects resulting from the screened Coulomb poten-
tial simply renormalize the parameters of this harmonic
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fluid. As argued by Haldaneis this Luttinger liquid ap-
proach does not depend on the microscopic details of the
model as long as we are interested in its long wavelength
properties only. In addition, it is possible to incorpo-
rate finite-size effects, carried by the zero modes of the
bosonic field (Haldane's topological excitations). These
zero modes are essential for the calculation of the con-
ventional persistent currents and their dependence on the
parity of the particle number. In light of these results, it
is now very natural to assume that if spontaneous persis-
tent currents exist at all then they should also be present
in the framework of the Luttinger liquid approach, where,
in addition, the coupling to an internal electromagnetic
vector potential is taken into account. Proceeding with
this assumption we express the electronic part of the ac-
tion, given by Si in Eq. (9) and the second term of Ss
in Eq. (4c), in terms of its corresponding Harniltonian.

I

Following Ref. 12 we then transform this Hamiltonian
into its Luttinger liquid representation. This eventually
leads to a new action, denoted by S, where now the
bosonized current density, ~m.B p(2:; r), couples to the
"tangential" x component of the total vector potential
A' (x, y = O, z = 0;r) evaluated along the ring. As a
result, the partition function of Eq. (2) can now be ex-
pressed as

Z = ci DA DA Dp exp( —S[A, A, p]),

S= d r
~

— A *A+ iAV' A
~
+ Sl.l, [y, A],4 ] 1

( 8~
(10)

where the action for the matter degrees of freedom, ex-
pressed in terms of the bosonic field p, is given by

Here the integration is limited to the imaginary time 7
and the position coordinate x along the ring. The flux
quantum is given by Pp = bcje. In Eq. (10), the mea-
sure Dy contains implicitly the sum over the spatial and
temporal winding numbers m, n, and the integers rM,
r~ (see below), which characterize the topological sector
according to the parity of the total number of electrons
Np. KM and K~ take the values 0, 1 and satisfy the fol-
lowing: vM = v J if Np is odd, rg = 1, vM = 0 (and vice
versa) if Np is even.

Note that for convenience the imaginary time has been
rescaled, w ~ v*7, so that the first two quadratic terms
of the harmonic fluid action SI,L, are both multiplied by
the same dimensionless coefficient K'. K' and v* are
Haldane's parameters, which take the value

&
and v~

(the Fermi velocity), respectively, in the limit of a free
Fermi liquid. For the Luttinger liquid, the switching
on of a repulsive interaction results in a renormalization
of these parameters. The renormalized Fermi velocity
vz is related to the Haldane parameters via the relation
vz ——v'/2K*. The rescaling of imaginary time implies
that the D'Alembertian operator must now be redefined
as

1 cAv'
pv cz (12)

+ki~~(2m+ rM), (lg)

The bosonic field p depends on the rescaled imaginary
time and the azimuthal position along the wire (x) only,
in contrast to the vector potential A which also depends
on the transverse coordinates y and z. The winding num-
bers in imaginary time and in space, n and m, enter the
boundary conditions of the bosonic field in the following
way:

p(r+ kii]9V', x+ kiL) = &p( x)r+ kp~7ln

B. Elimination of the vector potential

In preparation for the next step of the calculation,
which consists in integrating out the vector potential A,
it is convenient to keep the coupling in the form f d4rj A
as in Eq. (4c). We thus redefine the one-dimensional
matter current density associated with the boson field y
as

j(r) = e* ~(y)~(z)&-V (*;r)
2~sr

4p
(14)

To integrate out the vector potential, we must perform
the following Gaussian functional integral:

I2[Aj] = DAexp~ d r [(8x) A OA

—~'A (PA+ j)]).
The operator &* acting on A is a diagonal operator ma-

where kp, ki are arbitrary integers counting how many
times one circles the (1+1)-dimensional space-time torus.
Note that p couples only to the azimuthal component
of the vector potential A along the ring, reflecting the
locality of matter-field interaction.

In summary, the partition function of Eq. (10) de-
scribes a system of interacting fermions (treated as Lut-
tinger liquid), which in addition interacts with the trans-
verse photon field accounting for the retardation effects.
We note that, in addition to addressing the issue of spon-
taneous persistent currents, we are also in a position to
study the effect of an external electrodynamic environ-
ment on the properties of a one-dimensional electron sys-
tem. For this we simply reinterpret the radiation field as
being provided by an external fluctuating source.
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trix in Cartesian coordinates. The Gaussian integral over
the three components of the electromagnetic field A, A„
and A, yields the result

I2[A,j] = cz exp(2vr(V'A+j) ' i(&A+j)),

with c2 = (det[ —Cl']) s~2. In Cartesian coordinates,
( ') i depends only on the difFerence of coordinates,
r —r'. Using this property, the exponent in the preceding

I

equation is transformed into

S'[A, j] = 2~A 6 '-'A+4~( *-'~.j).A —2~&.

(17)

Inserting this result into the partition function Eq. (10),
and integrating by parts (with vanishing contribution
from the boundary terms), we can now perform the Gaus-
sian integral over the auxiliary field A:

DA exp( —S'[A, j])= cs exp(2vrj ~
' j —27rV'~j ( *6) 7' j~)

= cs exp( —27rj ~ D»j ~)

with the irrelevant constant cs = (det[ —6 *
])

The transverse photon propagator in Cartesian coordi-
nates is given by the standard expression

D„=—&' '[b„„—7'„V„A '],

can sustain a spontaneous persistent current in the ab-
sence of an external Aharonov-Bohm flux. We shall now
demonstrate that such a spontaneous persistent current
does not occur in our model.

where the second term in this equation accounts for the
fact that the matter current can only couple to trans-
verse photon modes (perpendicular to the direction of
the electron motion). The partition function thus ob-
tained now depends only on the matter degrees of free-
dom. The effective action associated with the partition
function therefore reads

SI.I, [&p] = 27rj D j + i nor(r~ + 2p t/po)

C. Integration of the matter field

In view of the boundary condition Eq. (13), the bosonic
field y is then written as a sum of a contribution y& which
is periodic in imaginary time and space, and a contri-
bution which is linear in these arguments to reproduce
Eq. (13). The last term in the action (20) leads to a
contribution of the form

+ d r K*(V' p) (20)
d r (V' (p) d r (7' (p„) +n

where the summation inde~ o. is restricted to the space
and time variables x and v in the remainder of this sec-
tion. We notice that the exchange of transverse virtual
photons leads to an effective current-current coupling
in the action which is now nonlocal in space and time
(due to retardation). This form is, of course, expected
as it also appears in Feynman's treatment of quantum
electrodynamics. This current-current interaction can
be viewed in the following way: if the ring carries a cur-
rent, this current produces a magnetic field (via Ampere's
law) which acts back on the system (in the form of a Aux
through the ring) and generates a current itself. The
crucial question at this point is whether this back action

xh Pv*
+(2m+ rcM)

The last term in this expression can be neglected if
we restrict ourselves to temperatures small compared to
Ti ——K*hv*/Lk~, which is determined by the energy
level spacing at the Fermi surface. Tq is of the order of
1K for the parameters of a mesoscopic gold loop used
in Ref. 2. This allows us to neglect the spatial winding
numbers, retaining only KM = m = 0.

After integration by parts in imaginary time and by
use of the above decomposition into periodic and aperi-
odic components of the field, the partition function now
becomes

Z=c4 ) Dy„exp
20!

b~O D 0 b~+ K*b~V' p„+nd2

C

(22)

where we have introduced the fine-structure constant a =
e~/hc, and the transverse "vector" b'~ has components
6'~(r) = b(y)6(z). In Eq. (22) we have introduced the
quantities

d r'bg(r')0 D (r', r)bi(r)

= dg (2:,r) 6g (r) (23a)
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2A
6g D 6g, (23b)

+in~(~z+ 2y..~/yp) l

s Os[(1+ rli + rl2)T/Tp, 'P ~/Pp + I z/2] (24)

where Os is the Jacobi theta function, the character-
istic temperature is defined by Tp = 2hvz/k~L and
the numerical factor cs = c4(det[2n/c6~8 D»B 6~ +
K*6~V's]) i~2. The integration of the periodic field thus
leads to a second correction, g2, which is given by

n2 =,~
l

6i&~D'or~. 6~+ K'6~&~
l

hPv' (2o.

(25)

We notice that the partition function describing a system
of fermions interacting with an internal electromagnetic
radiation field has precisely the same form as the parti-
tion function of conventional persistent currents in the
Luttinger liquid picture, as was calculated in Ref. 12.
The efFect of the virtual transverse-photon exchange can
therefore be absorbed in a redefinition of the character-
istic quantities describing the system such as the Fermi
velocity v~* or the temperature To. Note that g~ is of
order n and rj2 of order ns and higher. We shall compute
these corrections in the next section explicitly.

IV. DISCUSSION OF THE RESULTS

A. The issue of spontaneous persistent current

From the partition function of Eq. (24) we may now
study the stability properties of the free energy. Using
the properties of the logarithmic derivative of the Jacobi
Os function, we obtain the persistent current in the pres-
ence of an applied flux:

ekgyj ) i~ sin(27l tPgxg/Qp)
( )

sinh(t T/Tp)

where the correction factors g~ 2 have been absorbed in

the definition of Tp = (1 + rii + g2) Tp. The oscillating
sign factor accounts for the parity eEect, i.e., for the fact
that the current is diamagnetic if the number of electrons,
No, is odd, and paramagnetic otherwise. Our conclusion
is therefore

lim J(y.„,) = 0,
4ext~o

(27)

i.e. , there is no spontaneous persistent current, as J is
an analytic function of P,„t for all temperatures T ) 0,
and thus vanishes with vanishing external flux [we had
remarked earlier that J(g,„t ——0) = 0 by symmetry].
Equation (27) is no longer true at T = 0, where the

and the irrelevant prefactor is given by c4 ——cqc2c3.
Performing the Gaussian integration over the field p„,

we obtain the partition function in its final form:

+co ( LZ=cs ) expl —„,n (1+pi+ r12)

right-hand side of Eq. (26) becomes the Fourier series
representation of the sawtooth function which vanishes
at (half) integral values of P, t/Pp. As a consequence,
J(P) becomes discontinuous and, for Np odd, develops a
finite jump at P = 0 due to the double degeneracy of the
ground state. This degeneracy, however, is not caused or
affected by the presence of the radiative corrections and
is well known to occur already in the free system. 4 Thus,
this jump of Jg) at T = 0 is of no importance in the
present context. [Note moreover that in real systems the
double degeneracy is lifted by the presence of impurities,
with J(P) becoming continuous also at T = 0.] Note also
that Eq. (27) is valid for arbitrary parity of the particle
number. As long as 1+qi + r12 ) 0, which is indeed the
case as shown below, the only eKect associated with the
internal electromagnetic fields is to change the amptitude
of the (conventional) persistent current.

20!
hPv'K*Lc d r d r' D»(x, 0, 0, r;x', 0, 0, r') .

With the help of Eq. (19), the Cartesian geometry with
periodic boundary conditions allows us to write D in
the Fourier representation (suppressing the vanishing ar-
guments)

D..(x, r;x', ~') = d4k 'k. (~.—~.')
(2~)4

1 —k2/k
X x

ev*ks/c2 + (yv~) —ik~ ' (29)

where we restrict o to the variables 7, x, as in the pre-
ceding section. Note that, strictly speaking, the above
k-space integral over k~ = 27m~/L and k = 27m /Pv*
has to be interpreted as a discrete sum over n . How-
ever, the error made by replacing sums by integrals is of
negligible order for small temperatures and a micrometer-
sized ring. The transverse dimensions, L„„are ap-
proaching infinity. It is this replacement which amounts
to interchanging the thermodynamic limit with the limit
of vanishing external flux. Obviously, this interchange

B. Magnitude of the efFect

Aside from the issue of spontaneous persistent currents
which was addressed in Sec. IVA, an estimate of the
magnitude of the correction terms gq and gq is impor-
tant for the following reasons. First, we must make sure
that 1 + g~ + g2 & 0, which is required for the series
of Eq. (24) to be convergent. Note that gi 2 are obvi-
ously real quantities since all operators involved are real
and symmetric. Second, the evaluation of the correc-
tion factors provides useful information on what degree
of importance one should attribute to internal (or exter-
nal) electromagnetic fiuctuations. Are these corrections
finite, or divergent quantities? Having qi or g2 —+ +oo
would imply that the quantum fiuctuations of the electro-
magnetic field suppress the amplitude of the conventional
persistent current to zero. We shall see now that this is
not the case and that gi 2 is finite.

In Eq. (23b), rji is explicitly given by
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does not cause or indicate any phase transition here
and thus has no consequences for the persistent current.
Next, the imaginary time and space integrals in Eq. (28)
generate two Kronecker 6's constraining k = k = 0.
The first order correction therefore becomes, setting the
dielectric constant e = 1:

(3o)

1 v~ b z+ (2vr/L)2
vr c (2vr/L)2

o.p ln [L/2vrb],
2vF
'll C

(31)

and we therefore obtain a finite result for the first correc-
tion. Note that the logarithmic dependence, p. 1n[L/2vrb],
of qq in Eq. (31) has the same origin as the self-
inductance of a torus in classical electrodynamics. In-

To avoid unphysical infrared divergences, we have regu-
larized the integral of Eq. (30) by introducing a small
photon mass m, which we choose to be of the order of
27r/L, the radius of the ring. This choice is physically
motivated as will be seen shortly. Purthermore, for con-
densed matter systems, a short wavelength (ultraviolet)
cutofr can be assumed on physical grounds, appealing to
the fact that we have no pretension of describing the mi-
croscopic behavior of our system below, say, the scale
of an interatom spacing. In the context of our problem,
the short wavelength cutoff arises from the fact that the
mesoscopic ring has a finite thickness. Denoting by b the
typical radius of the wire which constitutes the ring (the
small radius of a toroidal ring with large radius a), we
therefore choose the upper bound of the integrals of Eq.
(30) to be of the order of b

The resulting integral appearing in Eq. (30) can be
performed trivially:

deed, the formula for the self-inductance M of a torus
with large radius a and small radius 6 is given by

M =
~ a(p, (ln[8a/b] —2) + p,'}

4x
a(p in[a/b] +p'}, (32)

where p,
' is the permeability of the ring, and we identify

the radius a of the ring with L/27r. For a metal ring
in vacuum with p = 1 and a large aspect ratio a )) b,
the dominant contribution comes from the term p, In[a/b),
which appears explicitly in Eq. (31).

Next, we turn to the calculation of the second correc-
tion parameter gz. We first write Eq. (25) in the Fourier
representation:

hPV*

4' LK*
d r d r'd~(r)G (r —r')d~(r')

hPV'
4~LK*

d k
d~( —k)G '(k)d~(k), (33)

where G ~(r — r') = [( a2/ )cd~8 D~~6g
+K'b~V' ] (r —r', 0, 0, & —r'), and d~(k), G (k) are
the two-dimensional Fourier transforms of d~ (r), G ~ (r).
G ~(k) is the inverse of G(k) [with G (k) = 1/G(k)],
where the latter is given by the expression

G(k. , k.) = —K'(k.'+ k.')
2Q.pv* dk„dk, k2(1 —k /k2)

(2~)2 k2 + pgve2k2/c2 + m2

(34)

Note that we encounter the same type of divergences as
in the calculation of gq. We therefore invoke the same
regularization procedure for long and short wavelengths,
leading to

G(k, k )= K*(k +k ) ——k —ln
270 c k + Ev* k /c + m

+k k p, (pev* k /c +—m) ln
k2+ 6

k2 (35)

The expression on the right-hand side of this equation is
now well behaved in the limit k~, k ~ 0. In a simi-
lar way, we calculate the Fourier transform of d~(z, 7.),
setting e = 1, with the result

4vrs~'pn b '+ m'-
d~(k, k ) = i k b(k )b'(k ) l—n

h, c m

(36)

(npvF)', , b '+m'-
in

ere ) m2

2o! v

vrc )
—1

x 1+2 ln L 2vrb
7l C

(37)

with the understanding that we set k = 0 only at the
end of the calculation. Inserting Eqs. (35) and (36) in
the Fourier representation of gz [Eq. (33)], we get the
final result, setting m = 2m/L,

Note that this correction has a sign opposite to that of
gq and can also be expressed in terms of the above self-
inductance per unit length. It is now clear that this cor-
rection is small compared to q~, as g~ is of the order of
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(ave/c) 2 (and higher). Note that F12 can be viewed as be-
ing obtained by resumming the infinite series of all higher
order corrections in a perturbation expansion in nv&/c.
Obviously, ave/c is the small parameter associated with
electromagnetic corrections. It is instructive to regroup
the contributions of qi and g2 in the following form:

1 + 2(a]av~/~c) in[1 + (rnb) s]

1 + (o.pv~/m. c) in[1 + (mb)
—s]

1 + 4(o.@vs, /n. c) ln[L/2vrb]

1 + 2(ap, vz/vrc) ln[L/2vrb]

1 + 2(acv~/vr) M
38

1 + (acv~/vr)M

where we have expressed the result as a function of the
self-inductance per unit length, M = M/L, in the last
line of Eq. (38). Note that this expression is always
positive and finite, 1 & 1 + gi + g2 & 2, regardless of the
value of the coupling constant or of the choice of the lower
and upper cutoffs (of course, a ) b): this guarantees
that the sum of Eq. (24) is well defined. We therefore
Find that the amplitude of the persistent current in the
presence of an external Hux is reduced from that of a ring
without electromagnetic efFects taken into account. In
particular, if we consider the strong coupling limit (o. ~
oo), the amplitude of the zero temperature (conventional)
persistent current is exactly half of its uncoupled value.

As discussed in Ref. 12, the renormalized Fermi veloc-
ity is not changed much by the interactions, the change
being of order unity. Thus, to get an estimate for qi 2
we consider a Au loop with (unrenormalized) Fermi ve-
locity v~ = 1.4 x 10s cm/s, giving av+/c 3.4 x 10
while ln[L/2vrb] 4.6 for an aspect ratio a/b = 100, and
the radiative corrections ili 2 can be safely neglected. As
pointed out in the Introduction, the fact that the electro-
magnetic corrections are finite leads to a difFerent conclu-
sion from that of Ref. 13, in which a vanishing persistent
current is obtained due to the fluctuations of the electro-
magnetic environment.

V. CY'LINDRICAL CEQMETRY'

In this section, we retrace the steps of Sec. III, tak-
ing full account of the cylindrical symmetry of our prob-

I

iA ('VA + j)])—,

where now the current density is defined by

(39)

j(r) = eg b(p —a)6(z)B (p(8;r) .2~sr

00
(40)

In contrast to the Cartesian geometry, we take special
care of the fact that in cylindrical coordinates, the opera
tor U* "mixes" the azimuthal and the radial components
of the vector potential A„and As. Performing this func-
tional integral in the cylindrical geometry implies finding
the inverse of the D'Alembertian operator matrix defined

by

lem, as illustrated in Fig. 1. The circumference of the
ring is given by I. = 2aa, with a the radius of the ring.
The four-dimensional volume element is now replaced by
d r = pd8dpdzdr, with 8 the azimuthal angle, and p the
radial coordinate. The current around the ring couples to
the azimuthal component of the vector potential Ag only.
Note that in the cylindrical geometry there is also a radi-
ation Field inside the ring circumference which, a priori,
could be a possible source for the creation of spontaneous
persistent currents. The following analysis, however, will
demonstrate that this is not the case.

We start the discussion of the cylindrical geometry at
the level of the Luttinger liquid partition function of Eq.
(10). This is justified as we assumed in the previous
sections that the Coulomb repulsion between electrons is
short ranged, due to screening effects. Translated into
the case of cylindrical geometry, this assumption allows
us to neglect the interaction between electrons located,
say, at opposite sides of the ring, and we only consider
the interaction between two points on a short quasi-one-
dimensional arclength of the ring. The only noticeable
change in Eq. (10) in the cylindrical geometry is the fact
that the variable x is replaced by a8, which identifies a
position along the perimeter of the ring.

As before, we need to integrate out the vector poten-
tial:

(—& —(v'p') '
G(r, r') = p x 2(v*p2) 'o]s

—2(v"p~) 'o]g' —(v'p )
0

0)
0 x6 (r —r') p', (41)

where &* is expressed in cylindrical coordinates, using
Eq. (12) and 6 = p io]~p o]~+ p 2882+82. The fac-
tors p and p' have been incorporated in the definition
of G' in anticipation of the Gaussian integration over A:
their origin is related to the volume element expressed
in cylindrical coordinates. Note that the matrix which
appears in Eq. (41) is a real, symmetric matrix and that
it can therefore be inverted. In the following, we shall do
this matrix operator inversion step formally, and express
our results in terms of the inverse operator matrix G

I

Defining by G~„(with ]a, v = p, 8, z) the elements of
the inverse, the integral of Eq. (39) becomes

I2[A, j] = cq exp( —2vrp(V'A+ j)„G„(V'A+j) p),
(42)

with the constant prefactor c2 = (det G) ~, and we use
from now on the Einstein summation convention over the
spatial indices p, and v.

The next step in the calculation is the integration of
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the auxiliary field A, which is again a Gaussian integral:

Is[p] = DA exp( —2vra A 7'„G„V' A+4vra A. 7'„G gjg)

=csexp(2+ha (V„G gjg) . 7'~ Gag%'~ (7'„G,g jg)}, (43)

with c3 = (det[a2V'&G„~V'„]) ~~3. The effective action
associated with the partition function in the cylindrical
geometry therefore reads

SII [p) = 2vra j g Dggjg +in7r(r~+ 2&ext/Wo)

d~ K'(7' p) (44)

where the index o is restricted to the variables 7, 8 in
the remainder of this section. In Eq. (44), we have in-
troduced the photon propagator in cylindrical geometry:

I

Dgg = Gg„(b„g —V'~V'„G gV'( 7'qG~g'j . (45)

Note that the structure of Eq. (44) is quite similar to
that of Eq. (20). The second term in Eq. (45) restricts
the propagator to transverse modes, as in Eq. (19).

The integration of the matter field is performed in a
way which is similar to Sec. III C: the bosonic field p is
decomposed into a contribution which is periodic in the
variables 8 and w (with respective periods 2vr and Pv*),
together with a linear contribution which gives rise to
the azimuthal and temporal winding numbers m and n in
the partition function. For sufBciently low temperatures,
only n survives, and we obtain, omitting now irrelevant
constants,

Zoc ) Dp„exp
2AG 26'~B Dggb~ + K'b~V' p„+ nd p„—n (1+ rlq) —in

~

rJ +2 K'vrL . (
C h, v* 4o)

(46)

where the two-dimensional transverse 6 function has com-
ponents 6'~(r) = b(p —a)b(z), and we have introduced the
quantities

4 aa2
d(r) =, a d r'b~(r')8 Dgg(r', r)h~(r)

= dg(8, 7.)b'g(r)
2AG

hP *K' Lb& Dggb'~,

(47a)

(47b)

in analogy with the Cartesian case. Finally, we perform
the last Gaussian integral over the periodic component
of the bosonic field p„, and get the final result:

Z oc 03[(1+ tip + g2)T/Tp. , Qe„t/pp + rg/2], (48)

with the second order correction

a'hPv* (2na'
92 dJ '

l
bJ ~ DggbJ + K*4.&e47rLK* g c

(49)

VI. SUMMARY AND CONCLUSION

In this paper, we have examined the possibility that a
one-dimensional ring could generate a spontaneous per-

As predicted, the results for the cylindrical geometry
have a form which is equivalent to the Cartesian case and
therefore lead to the same conclusions as stated before.
Since no new insight can be gained by an explicit eval-
uation of the radiative corrections, we shall not develop
this calculation further.

sistent current indicating spontaneous time reversal sym-
metry breaking. Our reasoning was that if such an effect
exists, it should arise from the electrodynamic interac-
tion between the electrons, in particular, from radiative
corrections accounting for time-retarded back-action ef-
fects. Using the framework of quantum electrodynamics,
as outlined in Ref. 11, we calculated the partition func-
tion of the coupled matter-field system, treating the in-
stantaneous interaction between fermions (the screened
Coulomb potential) in the Luttinger liquid model. With
this approach, we found that the inclusion of retarda-
tion effects amounts only to a change in the magnitude
of the conventional persistent current. As a consequence
this persistent current vanishes with vanishing external
flux threading the ring, and we therefore conclude that
there is no spontaneous persistent current for our one-
dimensional model of interacting spinless fermions. It
is well known that in one-dimensional quantum systems
there is a complete separation between charge and spin
degrees of freedom, and we therefore do not expect that
the inclusion of spin affects our conclusions found for the
spinless case in a qualitative way. Nevertheless, this issue
should be the subject of further investigation.

We relied on the Cartesian geometry to get an es-
timate for the magnitude of the correction introduced
by the retardation effects: the results for the cylindri-
cal geometry —which constitutes the "proper" way of de-
scribing the system —can be cast into the same form as
in the Cartesian case. In the computation of this correc-
tion, we stressed the importance of the size of the ring,
for removing both short and long distance divergences
inherent to the bare transverse photon propagator. As
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a consequence, the radiative corrections are finite and
can be expressed in terms of the classical self-inductance
(per unit length) of the ring. Clearly, the fact that elec-
tromagnetic corrections do not suppress the persistent
current to zero is in agreement with the experimental
situation, where a finite persistent current is measured
in the presence of an external flux.

It should be mentioned that several ingredients have
been left out of the problem. Firstly, we have assumed
the ring to be strictly one dimensional, and taking into
account several transverse channels would bring us closer
to the situation encountered in experiments. The inclu-
sion of transverse channels presents a real technical chal-
lenge in the Luttinger liquid picture, and we do not know
how to address this problem at the moment. The ef-
fect of transverse hopping between one-dimensional Hub-
bard chains is still in debate, and has been addressed
recently. 2i Nevertheless, it is reasonable to expect that a
ring with a small number of transverse channels will ef-
fectively behave like a one-dimensional system, and can
be described as a Luttinger liquid. Secondly, we have
ignored the effects associated with disorder in the ring.
This issue should be addressed separately for (conven-
tional) persistent currents of normal metal rings in the
presence of an external flux.

The fact that we can obtain the partition function of
the interacting fermions coupled to virtual electromag-
netic modes in a closed form is in itself quite remarkable.
In most problems dealing with degrees of freedom cou-
pled to a bath of oscillators, the bath coordinates are in-
tegrated out, resulting in an action for the matter degrees
of freedom with a matter-matter coupling term represent-
ing the influence of the environment. The integration of
the matter degrees of freedom using this effective action
represents in general a formidable task, because of the
complexity of this new coupling: one often resorts to a
perturbative analysis to draw some conclusions on how
the dissipative environment aKects the system. On the
contrary, the integration of the matter degrees of freedom
can be performed analytically here. This is a consequence
of the fact that we have used the Luttinger liquid machin-
ery to describe the fermions: the current operator, being
quadratic in the original fermion field operators, becomes
a quantity which is linear in the bosonic field &p. While
this technique allows one in principle to treat a more com-

plex type of problem —interacting fermions —the bosonic
excitations which are generated by this theory are them-
selves uncoupled, allowing for an exact integration of the
matter fields in the partition function. This surprising
result leads us to believe that the Luttinger liquid ap-
proach could be applied to other problems of dissipative
quantum systems, such as, for example, the coupling of
interacting fermions to phonons. This will be the subject
of a subsequent publication.

Finally, we wish to mention the observation that the
current-current coupling induced by the electromagnetic
gauge potential adds a quadratic contribution to the har-
monic Luttinger liquid action which, however, mixes spa-
tial and temporal derivatives. This radiative contribu-
tion therefore leads to a further renormalization of the
Haldane parameters K* and v', besides the renormaliza-
tion caused by the (screened) Coulomb interaction. This
renormalization does not acct our conclusion concern-
ing the absence of spontaneous persistent currents, as it
influences only the bulk properties of the system (the
persistent current is a finite-size effect). The explicit cal-
culation of this radiative renormalization [basically de-
termined by the propagator given in Eq. (35)] will be
given elsewhere. zz Consequently, even in the absence of
Coulomb interactions, the radiative corrections drive the
system away from an ordinary Fermi liquid behavior to-
wards a true Luttinger liquid state characterized, e.g. ,

by the absence of a finite Migdal jump in the momentum
distribution at the Fermi surface. This is true, no matter
how small the correction is which arises from the field
induced current-current interaction. We note that the
same effect has been found in a perturbation treatment
within the random phase approximation, s predicting a
vanishing jump at the Fermi surface even in higher di-
mensions.
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