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Electron-hybridon interaction in a quantum well
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The confinement of optical modes of vibration in a quantum well of polar material is described by a
theory involving the triple hybridization of LO, TO, and IP (interface polariton) modes, all of which
share a common frequency and in-plane wave vector. The resulting hybrids satisfy both mechanical and
electromagnetic boundary conditions. The case of a quantum well with infinitely rigid barriers is shown
to be one in which there are no interface modes allowed (including IP modes). The resulting guided-
mode patterns resemble those obtained from microscopic theory of the A1As/GaAs system. The hybrids
are shown to exhibit strong IP-induced dispersion as a function of in-plane wave vector. Each hybrid
has a scalar potential and a vector potential, neither of which is continuous at the interface. Continuity,
in this respect, is limited to the energy of coherent interaction with an electron. Quantization leads to a
new quantum —the hybridon. The electron-hybridon interaction is described for intrasubband and in-

tersubband scattering in an infinitely deep quantum well. Intrasubband scattering rates are close to
those derived using the Huang-Zhu model for the LO2 guided mode. The contribution from IP modes is
contained within the hybrids. It is emphasized that pure IP modes do not exist in GaAs. As a result of
the lack of interface modes the intrasubband rate approaches zero as the well narrows. The intersub-
band rate is also calculated.

I. INTRODUCTION

The confinement of optical modes of vibration in semi-
conductor quantum wells and its effect on the Frohlich
interaction with electrons has been the subject of some
interest and not a little controversy' in recent years. The
first model of confinement, dating back to the investiga-
tions of Fuchs and Kliewer into the vibrations of thin
ionic slabs, described confinement in terms of satisfying
electromagnetic boundary conditions and treating the
medium as an isotropic dielectric continuum (DC). This
DC model failed to satisfy mechanical boundary condi-
tions, nor did it take into account the dispersion of LO
and TO modes. A second continuum model was pro-
posed by Babiker, in which confinement of LO modes
was described in terms of hydrodynamic boundary condi-
tions and dispersion was taken into account, but it im-
plicitly agreed with the DC model as regards interface
polaritons (IP). It was clear that the DC model could not
be correct for LO modes with zero in-plane wave vectors
and hence zero tangential electric fields, but it was equal-
ly clear that the HD model violated electromagnetism
when the in-plane wave vector was nonzero. Numerical
studies of lattice dynamics ' showed that the vibration-
al patterns did not conform to the simple predictions of
either model, but Huang and Zhu (HZ) showed that guid-
ed modes could be represented by relatively simple ana-
lytic expressions which retained the odd and even parities
of the simple models, while IP modes continued to be de-
scribed in the usual way. The HZ model represented a
significant advance, but it was not a continuum theory
and nor did it describe IP components properly, and this
has led several authors recently to overestimate the
strength of interaction with electrons. "

A self-consistent continuum theory for optical modes

in nonpolar material has recently become available in
which it is shown that mechanical boundary conditions
can be satisfied by the double hybridization of LO and
TO modes both of which share the same frequency and
in-plane wave vector. ' In this picture a confined mode is
seen as a hybrid consisting of a linear combination of
plane waves with each component retaining its longitudi-
nal or transverse nature and its bulklike electric proper-
ties. Dispersion is fully taken into account and ensures
that the linear combination is unique. Here the extension
of this theory to polar material is described in some detail
and simple results are given for the scattering rates for in-
trasubband and intersubband processes in a single quan-
tum well, in which the barriers are taken to be infinitely
rigid and the potential barriers infinitely high, roughly
corresponding to the A1As/GaAs system for I -valley
electrons. The principal results are as follows.

(i) All vibrational patterns in GaAs are of the guided-
mode type. There are no interface modes, including no
IP modes. As a result, scattering rates diminish with de-
creasing well width.

(ii) The involvement of an IP component in each hy-
brid induces strong dispersion as a function of the in-
plane wave vector. It also enhances intrasubband rates
and intersubband rates.

(iii) Hybrids with small in-plane wave vectors are HD-
like; those with large in-plane wave vectors are DC-like.

(iv) Scalar and vector potentials are not continuous
across the interface, but the energy of interaction with an
electron traveling coherently with the wave is continu-
ous.

A description of the hybridization model applied to the
case of rigid interfaces is given in Sec. II. Analytic ex-
pressions are given for the relative ionic displacements of
"odd" and "even" hybrids and for the associated fields
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and scalar and vector potentials. An informal quantiza-
tion scheme is given that leads to quanta which we call
hybridons. The continuity (or, rather, discontinuity) of
potentials and the form of the electron-hybridon interac-
tion are described. Section III discusses dispersion, and
it is shown that certain hybrids mimic the conventional
IP dispersion over a limited range of in-plane wave vec-
tors, and there is a general trend with increasing in-plane
wave vectors from HD-like parity to DC-like parity. In
Sec. IV intrasubband and intersubband scattering rates
are derived ignoring all contributions from barrier modes
in the spirit of the rigid-boundary approximation. Sec-
tion V contains a brief discussion.

II. HYBRID MADES

One of the simplest conceptual systems is a single
quantum well with infinitely rigid barriers. The bound-
ary conditions to be satisfied are (a) the vanishing of all
ionic displacement u; (b) the continuity of the tangential
component of electric field, F. ; and (c) the continuity of
the normal component of electric displacement, cE„
where e(co) is the permittivity. TO modes with polariza-
tion normal to the plane of incidence satisfy these condi-
tions without hybridizing, but they do not interact with
electrons in our model and so can be ignored. Assuming
elastic isotropy, we take the x axis to be parallel to the
direction of propagation in the plane, and consider the
three types of mode with ionic displacements with x and
z components, where the z axis is perpendicular to the
plane.

A. LO mode

ikLz —ikt z i(k x —cut)

where vL is a velocity approximately equal to the velocity
of LA modes.

B. TC3 mode

ik~z —kT (k — t)
u„=kT(Ce +De )e

ikTz —kTz i(k„x —cot )

u, = —k (Ce De— )e

C. IP mode

k„z —k z i(k x —~t)
u = —ik (Fe " +Ge " )e

k —ik z I(k x —~t)
u, = —k (Fe " —Ge " )e

(7)

These components satisfy the condition for transversely
polarized waves V.u=0, and Eq. (7) is a valid approxima-
tion only in the unretarded limit (i.e., taking the speed of
light to be infinitely large). ' The associated electric fields
are'

Ex ppux~ E, = —p u„
2 2

CO COT~

Pp Po
COLO COTg

Being a transverse electromagnetic wave, there is a vector
potential M given by

These components satisfy the TO condition V.u=O. The
electric fields associated with this mode are negligible.
The dispersion relation is

co =coTo —V7.(k +kT),
where vT is a velocity approximately equal to that of TA
modes. Note that since coTo &coLo, in order for the fre-

quency to be equal to a LO frequency kT must be imagi-
nary, corresponding to a TO interface mode (Fig. 1).

ikLz —ikLz i(k x cut)—

Ex = Po"x Ez = pouz ~ po
coVo

e* =MV cg c
1

These components satisfy the LO condition V X u=O.
The electric fields associated with these displacements are
well known and given by

In the barriers, there are electric-field components
whose amplitudes decay away from the interfaces. The
dispersion relation for the IP mode and the barrier fields
is just the usual one for electromagnetic waves:

2/ 2
2=

e(co)po

where c is the velocity of light in vacuo and p, o is the per-

where e* is the effective ionic charge, M is the reduced
mass, co is the permittivity of free space, E,c, are the
high-frequency and static permittivities, and Vo is the
volume of the primitive unit cell. These fields are associ-
ated in turn with a scalar potential:

—-t~
I
I

I
I

I

I
I

I

I

I

TO

ipo( zIe +B—e )e (3)

In an approximation which assumes that the waves have
long wavelength and that the medium is elastically iso-
tropic, the dispersion relationship can be taken to be Imk Real k

Cit =(VLo VL (kx+kl ) (4) FIG. 1. Dispersion of bulk LO and TO modes.
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meability of free space. The wave vector in this case is

k =(k+k )

where k is the z component, and k = —ik in the unre-
tarded limit. The frequency is determined by the bound-
ary conditions. Conventionally these have been taken to
be purely electromagnetic, which leads to the dispersion
relation

sidered here. ) The strongest interaction will be associated
with long-wavelength LO and IP elements, the frequen-
cies of which will lie nearer to coI o than to coTo. Restrict-
ing attention to this frequency range means taking the
TO component to be an evanescent mode with
kT= —ik0, where the following frequency condition is

satisfied:

co =coLo —
ul (k +kL )

2 —1 2 + x 2 —1 2~LO+ r0 ~TO —'e (~LO 0 ~TO)
—k L

1+r0 '+e " (1 r0 —')
C

E r0)p0
(14)

(12)

where L is the well width, c, is the permittivity of the
barrier, and c, is the high-frequency permittivity of the
well. However, we assume nothing about the dispersion
of IP modes other than that of Eq. (10).

D. Hybrids

All elastic and electromagnetic boundary conditions
can be satisfied by a unique linear combination of LO,
TO, and IP modes with common frequency and the com-
mon in-plane wave vector k,

U =ULO+ UTO+ HIP

Hybrids of this type contain components which interact
electrically with electrons in a simple band. (Note that
the deformation-potential interaction will not be con-

The difference between k and k is small but finite, and
can be neglected outside of Eq. (14). The wave vector k0
is given by

~LO ~TO (UL UT)k UL L
2 2 2 2 2 2 2

k0=
VT

(15)

Those modes which interact most strongly with electrons
have frequencies equal to or near the LO branch. For
these modes k0 is a bigger wave vector than any other
and the approximation

tanhk0L = 1, (16)

where L is the well width, is valid. In what follows this
approximation is assumed to hold.

The following two mode patterns emerge from a
lengthy analysis. The first is (suppressing the time depen-
dence)

ik x sinhk0z sinhk z
u =2ik„Ae " sinkLz —

I 1 —p&ta h(nk„L /2) I sin(kLL /2) . —p&sin(kLL /2)
sinh(k0L /2) ' cosh(k L /2)

(17a)

k coshk0z
u, =2k& Ae " coskI z —

I 1 —p&ta h(nk„L /2)]sin(kLL/2)
L 0 sin(k0L /2)

k coshk„z
p, sin(kI L /2)

L cosh k„L/2

(17b)

for —L /2 «z «L /2. The parameter p& is given by

1

s [tanh(k L /2) + r ]
(18)

and the hybrid satisfies the condition

k„k
cot(kI L /2) = p &

+ [ 1 —p &
tanh( k„L /2) ]

L 0
(19)

The pattern of the second type is

k coshk0z coshk z
u„=2k Ae " coskIz —

W1
—pzcoth(k, L/2)Icos(kLL/2) . —pecos(kLL/2)

(20a)
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k, sinhkoz
u, =2ikl Ae " sinkI z+ [1—pzcoth(k„L /2) Icos(kl L /2)

L 0 sinh koL/2

k sinhk z
+ pp cos( klL /2)

sinh k, L/2
(20b)

for —L/2 ~z L/2 and

1P2=
s [coth(k„L /2)+ r ]

(21)

In each hybrid there is a scalar potential P associated
with the LO component and a vector potential A associ-
ated with the IP component. These are given below. For
the first type,

This hybrid satisfies the condition

k k„
tan(kl L /2) = — pz+ [1—pzcoth(k„L /2)]

L 0

(22)

ik x
$=2poAe " sinkI z,

2Spokx Ik xA =+ Ae "p&sin(kl L/2)
sinhk z

cosh(k„L /2)

(27a)

(27b)
The ionic displacements for the four lowest-order modes
in the limit k L ~0 are shown in Fig. 2.

In the barriers there are no ionic displacements, only
fields. These are given, for the first type, by

E =+iE,
ik„x k„[z+(L/2) ]=+2irspok Ae " e " p&sin(kl L/2),

L
z (——, (23a)

2

2ls pokx coshk z
Ae " p, sin(kl L/2)

cosh k L/2

and for the second type,
ik„x

2ipoAe —" coskl z,

(27c)

Ex = —iE,
ik„x —k„[z—(L /2) ]= —2irsp0k Ae " e p, sinkLL /2,

Lz)—
2

(23b)

0.10
0.05

U~

-ODS

-0.10

Z/L

0.2

0.2 0.4 0.6 0.8 1.0
Z/L

and for the second type by

E„=+iE,
ik x k„[z+(L/2)]

2rspok„Ae "—e " pecos(klL/2),

z (——, (24a)
L
2

E = —iE,
ik„x —k„[z—(L /2) ]

2rspok„Ae " e " — pecos(kl L /2),
Lz)
2

(24b)

CO Q)TO
2 2

2
Q)z 0 67To

(25)

In these expressions po is the charge density defined in

Eq. (2), s is the ratio of fields in the IP and LO com-
ponents, viz. ,

L01

10.
0.8

ui 06.
0.4.
0.2

02 0.4 0.6 0.8 40
Z/L

01.
„0.05 Q

05, 0 06 0 Z/L

-0.10

L03

0.1 0

1.0
u05

-0.5
1.0

1.0.

L02

0.2 a4 0.6 0.8 1.0
Z/L

L04

and r is ratio of the IP permittivity in the well to that in
the barrier, viz. ,

„0.05
ug

0.2 |I. 0.6 1.0
1/L

-0.10 ~

0.5

0.4 0.6 .e 1.0

-t. 0
2 2C~ CO COi 0
2 2

CO

CANTO

(26) FICx. 2. Relative ion displacements for the four lowest modes
in the limit k L —+0 (L =38 A, GaAs).
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—2ispokx coshk z
Ae " p2cos(ki L /2)

CO sinh k L/2

—2sppk sinhk z
Ae ' p2cos(kLL/2)

CO sinh k L /2

(28b)

(28c)

sink L
g2 k2+k2+(k2 k2)

k LL

sinhaLL
b, =(a +k) +(x —kL x L L x

kI real, (33a)

—4p, sin ( ki L /2 ) [2—p, tanh( k„L /2) ],

It may be noted that the potentials are, in general,
discontinuous at the interfaces. However, this discon-
tinuity causes no problems regarding the interaction with
an electron, as will be pointed out below. The discon-
tinuity of the scalar potential was first pointed out in con-
nection with the hydrodynamic (HD) model.

The normalization of the amplitude A is formally car-
ried out via the techniques of quantum-field theory.
Here, we adopt the informal approach of equating the en-
ergy of the hybrid with that of a simple harmonic oscilla-
tor. The energy of a particular mode, a mixture of
mechanical and electromagnetic energies, is given by

and for the second type of solution,

kL —l O.L

g2 k2+k2 (k2 k2)L x L x k IL

—4p2 cos (kL L /2)[2 —p2coth(k„L /2)] .
L

—
4p& sinh (al L /2)[2 —p&tanh(k L /2)],

(33b)

(34)

2 L/2 ~ dzcr OQU= —,'Mp2 u".u + —,'E(co) E* Edz o. ,—L /2 Vp 00

(29)

where 0. is the surface area and M is the reduced mass.
The limits on the integrals take into account that there is
no mechanical energy in the barriers, but there is elec-
tromagnetic energy associated with the evanescent fields.
Allowance has also been made for the equality of
potential- and kinetic-energy components in a traveling
wave.

Since E(p2)=0 for the LO component for all frequen-
cies, only the IP component contributes electromagnetic
energy. The ratio of electromagnetic to mechanical ener-

gy turns out to be small ~ In the well this ratio is

VPE&P& ( co cdLQ )(co coTQ )

2 2 2 2MCl) Cl)LQ(ct)LQ Cl)TQ )
(30)

which has a maximum magnitude of (p2LQ
—lpTQ)/4p2LQ,

which is very small. Very little error will be incurred by
neglecting the electromagnetic energy entirely, including
that residing in the barrier. Retention of the electromag-
netic energy poses no problems, but for simplicity we will
define the coordinate y of our equivalent oscillator solely
in terms of mechanical energy. Thus

In Eq. (33b) the solution for kl imaginary is noted for an
interface mode which has been thought to exist (but
which we show does not). Equations (33) and (34) have
been derived for simplicity with neglect of the contribu-
tion by the TO component, which is very small if, as we
have assumed, kp [Eq. (15)] is large.

E. Electron-hybridon interaction

The interaction energy involving an electron is

H= —eP+ A p,
m

(35)

where p is the momentum operator and m is the free-
electron mass. The electron-hybridon interaction is part
Frohlich-like, part electromagnetic. In the case of holes,
or electrons in noncentral valleys, it would be necessary
to include deformation-potential interactions involving
all three components, in general. This would be essential
in order to describe Raman scattering, for example.

In the barrier there is only the M p interaction. Nev-
ertheless continuity of interaction energy is guaranteed
for an electron at rest with respect to the hybrid, since
the operator p can be replaced by mv where v is the
group velocity of the electron. Thus, if A is the vector
potential in the barrier, continuity of E and s(p2)E, im-

plies that

y'= j'u*.u"'
p Vo

(31)
c2.A, = k„p+ rl),A „—,

A. „=rA, .
(36)

g 2 — X
2ND

where, for the first type of solution,

(32)

defines the amplitude 2 in terms of g, which is then
quantized in the usual way. The resultant quanta may be
termed hybridons.

Carrying out this procedure leads to

The interaction in the barrier is e(A
&

v +A „U, ) and in
the well e( —/+A U +A, U, ), which are equal when
U„=co/k„and U, =0. Although neither scalar nor vector
potential is continuous across the interface, the coherent
interaction with an electron is continuous. In other treat-
ments of the interaction, notably those using mode pat-
terns derived from microscopic theory, there is no dis-
tinction made between scalar and vector potentials, all
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potentials being regarded as scalar. However, the macro-
scopic theory developed here shows that the true situa-
tion is more subtle.

III. DISPERSION

A. (k L /2) «!r! for odd modes;

!r ( k L /2)! « 1 for even modes

For odd modes p t
-- (rs )

k
cot( k~ L /2 ) =

kg I'S
(37)

where klL =n~ with n =1,3, 5, etc. For even modes,

p2 =s and
—1

k„
tan(kI L /2) =-

kI s
(38)

To begin with, a word about nomenclature will be use-
ful. For reasons which will become clear, solutions of the
first type will be referred to as odd modes, solutions of
the second type as even modes.

Both types of mode are triple hybrids of LO, TO, and
IP waves satisfying mechanical and electromagnetic
boundary conditions at each interface. Hybridization of
LO and IP waves without TO involvement would be
sufficient were there no dispersion. If for all modes
co co+Q the parameters describing the effects of disper-
sion, s and ~, would be, respectively, unity and zero. Can-
cellation of displacement in a LO/IP hybrid would then
automatically cancel electric field and both boundary
conditions would be satisfied. But in general coWcoto,
and the presence of a TO component is thereby required.

The properties of triple hybrids can best be discussed
by focusing on the effect of varying the in-plane wave
vector k . Because we neglect all effects associated with
retardation, we cannot consistently begin with k =0.
Once k„ is finite, s & 1 and r & 0, and the mode patterns
depend upon the relative sizes of tanh(k L /2) and r and
coth(k„L/2) and r Note th. at 0&s &1 and —~ &r &0
as co approaches coTQ or co„Q. We consider various cases,
first of all assuming k L «1. Only in narrow wells can
this condition coexist with that prohibiting k to be close
to the light line.

modes" and "mechanical modes" for the odd and even
modes, respectively. In a superlattice, the long-range
fields of the odd modes could induce phase changes in ad-
jacent periods.

tanh(k, L/2)+r =0 (40)

traces a curve through the dispersion pattern of the hy-
brids, forcing odd modes to cross the even-modes disper-
sion.

There exists a corresponding effect associated with the
lower IP branch when the general condition

coth(k L/2)+r =0 (41)

is satisfied, but this time it is the even-order modes which
convert to odd order while the odd-order modes are
unaffected.

C. k„L /2 »
~ r! for odd modes;

! r ~!(k„L/2) &&1 for even modes

As k„ increases, the odd-order modes with frequencies
coinciding with the upper-branch IP modes continue to
increase in wave vector kl, and eventually they settle
near the wave vector of the next-highest-order odd modes
(Fig. 3 depicts the mode patterns). In contradiction to
that, the lower-branch IP modes force the even modes to
reduce kl and settle near kl of the next-lowest-order
even mode. Figure 4 depicts the dispersion diagram. All

B. k„L/2= —r for odd modes;
r(k„L /2) = —1 for even modes

This is the condition for an upper-branch IP mode Iin
general tanh(k, L/2)+r=0]. For odd modes p, ~ ~
and hence kl L ~n~ with n =2,4, 6, etc. In the expres-
sions for the displacements, etc. , the quantity
p&sin(kl L /2) remains finite. Thus for this special case
odd modes are forced into the parity of an IP mode. For
even modes nothing changes very much (Fig. 3). The
smallest value of k to satisfy this condition corresponds
to the situation in which the LO1 wave vector kI, and
hence frequency, coincides with the LO2 mode. The gen-
eral condition

where kIL =nm with n =2,4, 6, etc. These results ex-
plain the nomenclature. The pattern of the LO com-
ponent and its scalar potential is that predicted by HD
theory (Fig. 2). This regime has a range of validity which
is very limited for low-order modes, but increases with
decreasing well width. The condition written out explic-
itly is, with k « kI and co =~«,

"x 3

0.2 0.4 0.6 0.8 1.0
Z/L

L02

3
U» 2

1

—1

-2
-3

L01

2E UL, kL
2 2

k L«
e 1 ( ~LO ~TO )

(39)
0.7 5

0.50
Ux 0.25

-0.25
-0.50
-0.75

-05
'!.0
Z/L

Note that in the case of the odd modes the barrier fields
are substantial (p& is large) whereas in the case of the
even modes they are insignificant (p2 is very small). This
property has evoked the nomenclature of "Coulomb

FIG. 3. Relative ion displacements for the LO2 and LO3
modes when k L =3. The even-order mode shows no change,
but the LO3 mode is now the shifted LO1 mode.
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tanh(al L /2) s(1+„)
(aIL/2) (k L/2) (42)

from which it may be deduced that indeed an interface
mode is allowed. However, it is important to retain the
full dispersion expression, Eq. (19). When this is done the
solution which emerges is, for all k,

critically on this. ] For k„L ~ 1, Eqs. (40) and (41) already
extend regime III 8. As k, increases, tanhk L/2~1,
and this reduces the dependence of the parameters p, and

pz on k„. As a result, the downward shift of frequency
which the odd modes undergo as a consequence of IP-
induced dispersion reverses, but the recovery is only to-
ward the basic even-mode frequency, and the even-mode
frequency moves upward toward the original odd-mode
frequency. Corresponding processes occur in the lower
portion of the dispersion diagram. In the limit, therefore,
odd and even LO components exchange parities. Thus at
low k L, the LO component is that given by HD theory,
and at high k L it is that given by DC theory.

Modes move around in frequency but they do not ever
disappear. It is of interest to examine the possibility of
there being an interface mode in addition to the hybrids
described above, which are essentially guided modes (kI
discrete). Putting tanh(k, L /2) = 1 in the dispersion
equations suggests that the odd modes include an inter-
face mode in which kI = ial, —and Eq. (19) becomes

elusion that is consistent with there being no loss of guid-
ed modes with increasing k„. Microscopical theory
confines the maximum number of LQ hybrids to N, the
number of unit cells, and this complement is entirely
filled by guided modes, including those with frequencies
less than coro (not treated here). However, the n =0
mode, which usually manifests itself as an interface mode,
is not allowed in the case of rigid boundaries.

1/2
2
V

cosK„z, K„L=n~,
e iK.r ~ sinK„z, K„L=nm,

n =1,3, etc.

n =2,4, etc.

(44)

In the effective-mass approximation, the matrix element
quantifying the transition rate between state 1 and state 2
is

M= f f'" y,*

+A., a
'az g, dz dr (45)

IV. EI.ECTRON-HYBRIDON SCATTERING
RATES

Model scattering rates can be obtained by assuming
infinitely deep well envelope wave functions for the elec-
tron, i.e.,

nl =k (43) =6k6, (46)

This condition corresponds to co=co„o, i.e., s =1 and
r =0. Equation (17) shows that this means that u and u,
are zero for all z, and this is consistent with Eq. (33b),
which becomes 6 =0, corresponding to zero energy.
This interface mode is therefore a null mode, a con-

I

K I+k„=K 2, K„)=K 2, (47)

where 5k symbolizes the conservation of crystal momen-
tum in the plane, viz. ,

iXe
G =—f $2(z) eitig, (z) — (iK„A—+iK,Ay )P,(z)+A,

L —I /2 m* az
dz . (48)

The potentials are given in Eqs. (27) and (28).
For scattering within the lowest subband, the odd modes contribute nothing, whereas interaction with even modes

leads at threshold to

4K i sin( kl L /2 )
G„(kl ) = 2iepoA—

k (4K —k )

2K i (K„i+K 2)cos(kl L /2)

I co (4K, +k )
(49)

Here A is given by Eqs. (32) and (34), s by Eq. (25), and
pz by Eq. (21). The wave vector kI obeys the dispersion
relation of Eq. (22). For the case of narrow wells
(k L & 1), kl L =2nir, and this makes the first term in
the brackets essentially zero unless kl L =2m. , i.e., only in
the LO2 hybrid does the LO component contribute to in-
trasubband scattering in the lowest subband. This was
also the prediction of HD theory. ' In this limit
(k L /2)coth(k„L /2) =1 and cos(kl L /2) = —1, and
thus

%co8 =—'8'p
E 1

1/2 2
1 8

4 —(fico/E, ) 4+(fico/Ei )

(51a)

1/2

= —,
' Wo —,

' [1—(iiico/12E, )],
1

(51b)

I

Application of the Fermi golden rule' then leads to the
rate for an electron with energy Ace:

1 4
6& I

= —2iepp A +
4+(k L /ir )

(50)
where
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2m
1/2

1 1
(52)

and therefore, since the LO component in all "even"
modes can now participate,

1/2 2
AC&) 5 + 7T'

E 4 6
(53)

which amounts to an increase of some 30%.
For wide wells such that k L ) 1, dispersion drives the

LO2 mode to the old LO1 frequency, i.e., kLL =~. In
this limit, s = 1, r =0, pz = 1, and cos( ki L /2) = —k~ /k„,

HZ

0.5

and E& is the subband energy fi 7r /2m *L (Fig. 5).
Apart from the sign in the denominator of Eq. (51), this
rate in the limit L ~0 is the HD rate increased by a fac-
tor 9 which is exactly the rate produced by Huang-Zhu
guided modes. We may note that under the special cir-
cumstances considered here the distinction between vec-
tor and scalar potentials turns out to be irrelevant in
determining the rate. The negative sign in the denomina-
tor of Eq. (51a) arises from the normalizing factor b, ,
which in this limit (k„«kl ) is b, =kL —k . This rela-
tion rejects the reduction in mechanical energy due to
the interfering effect of the LO and IP modes.

The total rate is given by summing the contributions
derived from the IP components of other even modes.
The magnitudes of these contributions reduce with in-
creasing mode number n, being proportional to n in
this regime. Summing converts Eq. (51b) in the limit
Aco/E1 «1 to

8 16 1 l~ 2lePO 3 ~ (2j —1)[4—(2j —1) ]

j=1,3, etc.

giving for the leading term (j= 1),

(54)

Aco
o E

1

1/2 2
16 1

I +(Ace/E i )
(55)

This is the rate that is given by DC theory, "which is, in-
cidentally, close to the rate obtained using a bulk-phonon
spectrum and the momentum-conservation approxima-
tion' ' in this regime of well width where (Ace/E& ) &&1;
Vlz. ,

%co

E
1

1/2
1E

4+ (Ace/E, )
(56)

Thus our hybrid solution encompasses the results of both
of the single-mode theories. For k L «1 it reproduces
the symmetry of the HD result and for k L )) 1 it repro-
duces the DC result. This property is in line with the no-
tion that purely mechanical boundary conditions can be
approximately valid only when the tangential displace-
ment, and hence tangential field, is small, and purely elec-
tromagnetic boundary conditions can be approximately
valid only when the normal displacement is small.

It must be emphasized that Eq. (49) for the matrix ele-
ment exhausts the scattering potential of LO and IP
modes. The modes with which the electron interacts are
all guided in the sense that the wave vector of the LO
component is always constrained. Hybridization forces
this guided property on both TO and IP interface com-
ponents, with the consequence that the scattering
strength via the electric and magnetic interactions dimin-
ishes as well as becomes narrow. It also precludes addi-
tional scattering from IP modes since, in pure form, they
do not exist. Calculations which take the scattering of IP
modes to be additional to that of HZ modes appear,
therefore, to include the effects of IP scattering twice
over, and they consequently lead to an overestimate of
the scattering rate.

Turning to the intersubband rate between subbands 2
and 1, we note first that for an electron at the bottom of
subband 2 emitting a hybridon, conservation of energy
entalls that

A k„
2P1

3A ~
4L 2 (57)

'o 200
~

300

FICi. 5. Intrasubband scattering rate E', continuous curve) asso-
ciated with the LO2 mode. Also shown are the rates predicted
by the bulk, DC, HD, and HZ guided-mode models. All rates
refer to emission by an electron in the lowest subband with en-
ergy fico.

For the transition to be possible, L & (2m*co/3n A)'
(about 217 A in GaAs). When L is at its maximum,
k =0, but for narrow wells k will not be small. In
many cases of interest, therefore, the LO1 hybrid wi11
have converted to LO3. This is important since even
modes do not contribute to scattering between adjacent
subbands. For odd modes in general,
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2 4kL K,Ki cos( kL L /2)
G2& =2epo L [(K,+K, )' —k~~ ][(K,—K, )' —kL ]

sfik, p, 2K, K2[(K„,+K 2)k, —K2+K, ]sin(k~L/2)
m*co [(K2+K, ) +k„][(K2—K, ) +k ]

(58)

G2] =2epoA [ —,'+gi ]

[3—(fico/E, )]'
[12—(fire/E, ) ][4 (fire/E, )—]

(59a)

(59b)

In the same regime the normalization factor becomes

In the situation under consideration K
&

= sr/L,
Kz=2rr/L, K,=k„K 2=0, p, =s '. An approximate
analytic expression can be obtained by assuming
kL L =3' and cos(kLL /2) =0. [More accurately, we
should solve Eq. (19) for kl .]

We obtain

With gi and g2 zero the rate is just that of HD theory'
for the LO3 component. The factors g, and g2 derive
from interference effects of the IP component. Equation
(61) becomes increasingly inaccurate as the well width ap-
proaches the resonant condition [3 (fico/—E, ) =0], and
recourse must then be made to the general expression of
Eq. (58) and to the details of dispersion of the LOl hy-
brid. Figure 6 also shows the rate obtained using the
more accurate relation kl I.=2.8m. To obtain the total
rate means summing the contributions of all the odd
modes. As in the case of intrasubband scattering, this is
expected to increase the LO1 rate by about 30%, and
bring it close to the HZ rate.

b, =k +k(1—g ) (60a)

(60b)
V. DISCUSSION

The intersubband scattering rate contributed by the con-
verted LO1 hybrid is then (Fig. 6)

15co
o E 1

(1+2g, )

9+ ( 1 —
g2 )[3 —(fire!E i ) ]

(61)

In the limit of narrow wells g, ~(sr&3) ' and g2~4g, .

020—

0.1 5-

0.10

0.05

FIG. 6. Intersubband scattering rate for lowest-order mode
[continuous curves: (a) ki L =2.8', (b) ki L =3ir]. Also shown
are the total rates predicted by the HD and HZ models. (The
rate for the DC model is close to the HZ rate. ) All rates refer to
emission by an electron at the bottom of subband 2 The total
rate in the present theory is about 30%%uo above curve (a).

Perhaps the most striking conclusion that hybridon
continuum theory arrives at is that pure IP modes do not
exist in realistic systems. At first this seems to be at vari-
ance with many observations of Raman scattering.
Some of these have been from relatively thick slabs
(L & 1000 A), in which the combination of high density
of modes per unit frequency interval and IP-induced
dispersion would make it difficult to distinguish the pre-
diction of conventional IP theory from that of the theory
presented here. Only in thin wells could such a distinc-
tion be possible, and even so to distinguish between pure
IP dispersion and the IP-induced dispersion of hybrids
will need careful measurement. Nevertheless, hybrid
theory suggests that IP modes as conventionally de-
scribed simply do not exist. Their power to interact with
electrons is, however, incorporated in each hybrid, but it
is heavily modified by energy normalization, often dom-
inated by the mechanical energy of the LO components
to which they are coupled. As a result of the lack of all
interface modes in this system, the guided nature of the
hybrids ensures the weakening of the Frohlich and mag-
netic interactions as wells narrow. Only in cases where
the dispersion of LO modes is insufficient to allow hy-
bridization over the wide range of frequencies will this
conclusion need modification.

Besides linking the DC and HD theories in a synthesis,
hybrid theory has been forced to elucidate the question of
continuity of potential which HD theory has consistently
denied as being necessary, but which is still commonly as-
sumed. It turns out that neither scalar potential nor vec-
tor potential is in general continuous across an interface,
but continuity is reserved for the energy of coherent in-
teraction with an electron.

Triple hybridization is generally required for all polar
slabs whatever the mechanical boundary conditions,
though in some special circumstances double hybrids can
suffice. In nonpolar slabs, IP modes do not occur and LO
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modes do not possess long-range fields, so double hybrids
of LO/TO are adequate to satisfy mechanical boundary
conditions. In general the latter must ensure continuity
of energy How and of the relevant stress components.

Hybrid theory appears to be remarkably successful in
describing the envelopes of the vibrations predicted by
microscopic theory, in spite of involving large wave vec-
tors such as ko [see Eq. (15)j, and of course as a continu-
um theory it is more useful for describing electron
scattering. Nevertheless, real materials are elastically an-
isotropic and atomic, and these properties have been ig-
nored. Akero and Ando have pointed out that mechan-
ical boundary conditions on relative ionic displacement
do not accurately reAect the true situation at an interface,
though they may be a reasonable approximation provided
the differences between force constants and mass ratios
are small. In this respect the situation is analogous to
that for electrons, where if envelope functions are to be
matched the difference between effective masses must be
small. Reservations of this kind have to be borne in
mind, but like effective-mass theory, it is expected that
hybrid theory will find wide application.

Finally, it is important to point out that not all systems
allow hybridization of the kind discussed here to occur
over the frequency range between AT& and co„o. In A1As,
for example, LO dispersion is too weak to allow guided
LO modes to hybridize with IP modes except over the
narrow range of LO frequencies. Nevertheless IP modes
must still satisfy mechanical boundary conditions, and in
order to do this it is necessary for them to hybridize with
an LO evanescent mode belonging to the complex band
structure connecting LO and LA (longitudinal-acoustic)
branches, as well as with a TO evanescent mode. Such
hybridization can be described by the theory presented

here with the substitution kl ~~~+id, with kl at or
close to the zone boundary. Effectively, this allows IP
modes to retain their familiar mode patterns except very
near the interfaces in the frequency range between coL at
the zone boundary and AT&. This weak hybridization of
some IP modes in A1As will strengthen the interaction
with electrons in the A1As/GaAs system as wells narrow.
However, A1As is unusual in this respect; in many other
III-V systems the IP modes will suffer strong hybridiza-
tion with LO-guided modes, as discussed in this paper.
However, the more polar the material the more A1As-

type behavior will occur.
Note added in proof Sinc. e this paper was submitted,

there have been two developments which are worth a
brief mention since they provide some deepening of the
understanding of optical-mode hybridization. One is that
in ionic slabs with stress-free surfaces the LO, TO, and IP
modes are only very weakly hybridized, which means
that Fuchs-Kliewer modes remain a good approximation;
the other is that provided that only the scattering rate is
required it can now be shown that the vector potential of
the IP mode can be satisfactorily replaced by a scalarlike
potential in the unretarded limit (as is usually assumed
without proof). We hope to report on these issues short-
ly.
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