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Many-body effects on the symmetric-antisyinmetric gap
in double quantum wells in strong magnetic fields

Luis Brey
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We study the effect of the electron-electron interaction on the symmetric-antisymmetric energy gap in

double quantum well systems in strong magnetic field at total filling factor v=1. We sum self-energy di-

agrams up to second order, and also we evaluate the self-energy in the GWI approximation. We find

that in the GWl approximation the symmetric-antisymmetric energy gap collapses when the charge-
density excitation develops a soft mode. Then the charge-density wave instability, which occurs in the
double quantum well system at v= 1, is accompanied by a transition to a metallic system.

I. INTRODUCTION

The two-dimensional electron-gas (2DEG) in the pres-
ence of a strong perpendicular magnetic field B exhibits
the integral' and fractional quantum Hall effects
(QHE's). The explanation of these effects requires an in-
compressible ground state, i.e., the existence of an energy
gap between the ground state and the lowest excited state
of the system. In the integer QHE this gap is due to the
quantization of the kinetic energy or to the freezing of
the electron spin by the Zeeman energy. In the fractional
QHE this gap is created by the electron-electron interac-
tion.

In recent years, there has been much interest in the
study of the evolution of the QHE states of a quasi-
2DEG when the third dimension is introduced. This de-
gree of freedom can be introduced into the system in
different ways: by means of a new periodicity (superlat-
tice) in the third direction, by growing a wide parabolic
quantum well, " or by fabricating a double quantum well
(DQW) (Ref. 5) or wide single wells.

Boebinger et al. have studied experimentally the in-
teger QHE in DQW and they have found that the pla-
teaus associated with the symmetric-to-antisymmetric
(SAS) energy gap in the DQW are destroyed when the
barrier thickness between the wells, the magnetic field, or
the electron density increases. Similar effects have been
observed in wide single wells.

For total filling factors 1 and 3, which correspond to
the SAS energy gap, calculations in the time-dependent
Hartree-Fock approximation ' (TDHFA) and in the
single-mode approximation found that the DQW system
undergoes a phase transition as the distance between the
wells increase. In the unrestricted Hartree-Fock approxi-
mation the new ground state corresponds to a correlated
Wigner crystal. ' '" Although the new correlated Wigner
crystal is expected to have an energy gap in the excitation
spectrum, this gap does not allow the existence of a pla-
teau in the Hall resistance since one might expect the
Wigner crystal to become pinned by the impurities.
Then, this phase transition could be the responsible for
the experimental lack of a Hall plateau.

In this work we study, for the case of a DQW at v= I,

many-body corrections, beyond the Hartree-Fock ap-
proximation, to the SAS energy gap. We calculate this
gap in three different approaches: second-order perturba-
tion theory, in the GS'approximation, ' and in the GS'I
approximation. ' We obtain that in the G8 I approxi-
mation the SAS energy gap (b, ) collapses as the
charge-density excitation (CDE), calculated in the
TDHFA, develops a soft mode. Then, the charge-density
wave (CDW) instability is accompanied by a disappear-
ance of the SAS energy gap and therefore by a insulator-
metal transition. This result questions the validity of the
Hartree-Fock approximation for describing the proper-
ties of the DQW system at v= I, beyond the CDW insta-
bility.

This paper is organized as follows. In Sec. II we give
expressions for the wave functions and energies in the
Hartree-Fock (HF) approximation and we describe the
random-phase approximation and the TDHFA for the
calculation of the charge-density response function. In
Sec. III we write expressions for the self-energies includ-
ing up to second-order diagrams, and we describe and
show results of the G8 and 68 I approximations for the
self-energies. In Sec. IV we give a brief summary of our
results.

II. ENERGIES, WAVE FUNCTIONS,
RESPONSE FUNCTIONS, AND CDE OF A DQW

In this section we write, for a pure DQW at filling fac-
tor v= 1, expressions for the wave functions and energies
obtained in the HF approximation. We give also expres-
sions for the charge-density response function and for the
CDE spectrum calculated in the random-phase approxi-
mation' (RPA) and in the TDHFA.

A. Energies and wave functions

We treat the electrons in the effective-mass approxima-
tion: they move with an effective mass rn* and they are
in a medium characterized by a dielectric constant e.
The barrier between the wells has a height Vb and a
thickness d&. The width of the wells is d . We take m*
and e as constants across the DQW system. In this mod-
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el the tunneling between wells is inherently included. We
take the z direction as the growth direction and assume
translational invariance in the x-y plane. The magnetic
field is applied in the z direction and we choose the Lan-
dau gauge, A=(O, Bx,O) T. hroughout this paper we will
work within the lowest Landau level, and assume all the
electrons to be in the lowest spin state, which is appropri-
ate in the strong field limit. ' For the remainder of this
work we ignore the spin variable and the Landau index of
the electrons. With these approximations the electron
wave functions take the form

(x+k I')'
exp ik y —

2 P;(z) .
21

have checked that, for the DQW systems of interest, this
is a very good approximation.

In the one-electron approximation the energies corre-
sponding to the wave functions (I) are —,'A'co, +c., and
—,'Ace, +c, . Here c,, and c, are, respectively, the energies
of the symmetric and antisymmetric states of the DQW
system and ~, =eB/I *c is the cyclotron frequency. The
energies do not depend on k, and therefore each state is
I. /2~1 times degenerated. In the one-electron approxi-
mation the SAS energy gap is 6 =c., —c,

In the Hartree-Fock approximation we have to include
exchange processes in the Hamiltonian. Assuming
translational invariance in the x -y plane, so that the ener-
gies do not depend on ky and at filling factor v=1, the
self-energies take the form'

Here L is the linear sample dimension, l is the magnetic
length l =&fic /eB, k is a discrete variable with
L /2irl possible values, i stands for symmetric (s) or an-
tisymmetric (a), and P,.(z) are the wave function of the
electrons in the z direction. For describing the motion of
the electrons in the z direction we restrict our basis of
functions to the symmetric and antisymmetric states. We

I

E, = ,' fico, +e, ——g„„(q=0),

and

E, = ,' fico, + E, —g—„„(q=0),
where

(2)

(3)

2

g~ji, i(q)= f d(kl)e " ' Jo(kql ) f dz f dz'e "' "~P, (z)P&(z)P„(z')P (z'), (4)

and Jo is a Bessel function. In obtaining Eqs. (2) and (3)
we have assumed that the shape of the wave functions do
not change when the exchange term is included in the
Hamiltonian, and that the Hartree term only represents a
shift in the energies, which can be neglected. We have
checked that in our problem, finding that these are very
good approximations. From Eqs. (2) and (3), the SAS en-
ergy gap in the HF approximation takes the form

where

~c(q) =
[ I:~"'—g..., (q)+g,...(q) j

X [6 "—g„„(q)—g„„(q)+2U„„(q)] I
'~, (7)

"=b, —g„„(q=0)+g„„(q=0) .

B. Response function and collective excitations

(b)

We treat the response function in the TDHFA, i.e., we
keep only the terms that correspond to a simple exciton
present at all times, neglecting terms with two or more
excitons present. The diagrammatic representation
of the charge-density response function is given in Fig. 1.
Note that, since the TDHFA follows from a functional
differentiation of the HF equation of motion, the use of
this approach for the response function should be accom-
panied by the use of a HF Green function. ' ' In our
case, the charge-density function, in the TDHFA, takes
the form '
gTDHFA( t q) I /2P()P()P()P()

b, "—g„„(q)+g„„(q)
X

ro —toe(q)

4'
(c)

FIG. 1. Diagrammatic representation of (a) Hartree-Fock
self-energy, (b) Green function in the Hartree-Fock approxima-
tion, (c) charge-density response function calculated in the
TDHFA, and (d) vertex corrections that appear in the TDHFA.
The thin dashed line represents the bare Coulomb interaction,
the thin solid line represents the one-electron Green function,
and the thick solid line the Hartree-Fock Green functions.



47 MANY-BODY EFFECTS ON THE SYMMETRIC-ANTISYMMETRIC. . . 4587

and

v (q)= —e
— 'I'r2

ij kl 6l qh

X f dz f dz'e

where

go
2 2 )

~RPA(q)

Diagrammatically the RPA for the response function
corresponds to neglecting the second term in Fig. 1(d),
i.e., to approaching the vertex function for the identity.

The poles of the response function, cue(q), give us the
CDE spectrum of the system. In Fig. 2 we plot the
dispersion relation of the CDE for a DQW at v= l. For
ql (1, the dispersion relation decreases with the wave
vector, developing a minimum at values ql —1.5. By in-
creasing the distance between the wells or the density of
electrons in the DQW, this minimum becomes deeper,
and for a critical distance or a critical density the dip be-
comes a soft mode, which indicates that the system un-
dergoes a phase transition.

If we calculate the response function in the RPA, i.e.,
we neglect excitonic effects in Eqs. (6) and (7), the
charge-density response function takes the form

1 — ~12/2
(z, z', q; cv)

= e ~ '
P, (z)P, (z)(h, (z')P, (z')

Since the RPA comes from a functional differentiation of
the Hartree approximation, the use of the RPA for the
calculation of the response function requires us to neglect
the exchange contributions to the self-energies. ' '

In Fig. 2 we plot the poles of the RPA charge-density
response function, coap~(q). Note that in this lower ap-
proximation the CDE spectrum does not show any
minimum as a function of the wave vector: The instabili-
ty of the DQW at v= 1 is due to the excitonic effects and,
for describing the occurrence of this instability, it is
essential to include excitonic effects in the response func-
tion.

III. SAS GAP BEYOND THE
HF APPROXIMATION

The SAS energy gap obtained in the HF approximation
is bigger than the SAS gap in the one-electron approxima-
tion. In this section we study many-body corrections to
the value of the SAS energy gap and study the behavior
of this gap when the CDW instability occurs. We use
three different approaches to calculate self-energies: (a)
the sum of second-order diagrams, (b) the GW approxi-
mation, and (c) the 6WI" approximation.

A. Calculation of second-order diagrams

In Fig. 3 the two possible second-order self-energy dia-
grams are shown. For a DQW at v= 1 the contributions
of diagrams (a) and (b) of Fig. 3 to the self-energies of the
s and a states are

/2(g)( )
ssaa

2E (2) E (2)

0.6
v=1.
B=17. T

0 4

C
bJ 0.2

2 (b)

(b)

o.a I I

2
qf

FICx. 2. Dispersion relation of the CDE for a DQW at v= l.
The solid line corresponds to the TDHFA for the collective ex-
citation, roc(q), and the dashed line corresponds to the RPA for
the collective excitation, coRpA(q). The parameters of the DQW
are d =139 A, db =28 A, Vb =250 meV, 8 =17.3 T,
m *=0.067, and m=12. 5.

FIG. 3. In (a) and (b) are shown the second-order diagrams
that contribute to the self-energy. In (c) we show the diagram-
matic representation of Dyson's equation, which has to verify
the Careen function. The thin dashed line represents the bare
Coulomb interaction, the thin solid line represents the one-
electron Green function, and the thick solid line the dressed
Green function.
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g2(a)( )
gssaag (q =0)

(12) X2(b)(m) V(q =0)
E (2) 2E (2) + (14)

&2(b)( )
V(q =0)

E 2E +co
(13)

In these expressions

e2' de dg q

and E,' ' and E,' ' are obtained from Dyson's equation
[see diagram (c) of Fig. 3]

~(2) ~HF+ y2(a)(~(2)) + y2(b)(E(2) )I I I I (16)

Here i stands for s and a. Note that X', ' depends on both
the s and the a energies. From Eqs. (11)—(16), we can
write an equation for the SAS energy gap in second order

V(q =0)—g„„(q=0)
g2nd gHF+

+2Ild

We have solved self-consistently this equation for a wide
range of magnetic fields and the barrier's width, and we
have always found that the second-order correction to
the SAS energy gap is always less than 5% of the HF
gap. The reason for this is that the interactions that ap-
pear in second order, V and g„„,tend to cancel each
other, and furthermore these second-order interactions
are much smaller than the interaction g„„ that controls
the HF SAS energy gap. Then the second-order correc-
tions to the self-energies almost do not correct the HF
SAS energy gap and do not show any strange behavior
when the CDW instability occurs.

in the screened Coulomb interaction O'. The 68' ap-
proximation has been successfully applied to metals, '

semiconductors, ' and 2DEG.
A higher approach to the self-energy can be generated

by introducing excitonic interaction in the bubbles of the
RPA free energy. The functional differentiation of this
free energy with respect to the Green function gives us
the GR'I approximation for the self-energy. In this case
the Coulomb interaction should be screened by the
TDHFA dielectric constant, it being necessary to include
the vertex function in the self-energy. The 68'I approx-
imation can be also obtained as a higher term in the series
expansion of the self-energy in the screened Coulomb in-
teraction. ' ' The GR'I approximation has been applied
to metals, ' given similar results for the 68 approxima-
tion. Also recently it has been applied to quasi-2DEG.
the 68' approximation can be obtained from the GR'I
approximation by neglecting excitonic interactions in the
vertex function I and in the charge-density response
function.

In Fig. 4 we plot the diagrammatic representation of

B. GR'and GS'I approximations

Different approximations for the self-energy operator
may be generated following an approach introduced by
Baym. ' ' Write down a free-energy functional of the
dressed Green function and the Coulomb interaction,
then generate an approximation for the self-energy by
functional differentiation of the free energy with respect
to the Green function, and compute the Green's function
self-consistently with this self-energy. This way of ob-
taining the self-energy guarantees the use of a conserving
approximation, i.e., an approximation consistent with mi-
croscopic conservation laws for particle number, energy,
and momentum.

If we use the RPA approximation for the free energy,
the functional differentiation with respect to the Green
function gives us the 68'approximation. In this approx-
imation for the self-energy the interactions in the ex-
change term are the Coulomb interaction dynamically
screened with the RPA dielectric constant. The 68'ap-
proximation was first introduced by Hedin' ' by ex-
panding the electron self-energy in a perturbation series
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FIG. 4. (a) Diagrammatic representation of the 68'I ap-
proximation for the self-energy. (b) Dynamically screened
Coulomb interaction 8. The thick solid line represents the
dressed Green function. g and I represent, respectively, the
charge-density response function and the vertex function calcu-
lated in the TDHFA.
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the 68'I approximation for the self-energy. The self-
energies have to be obtained by solving self-consistently
Dyson s equation [diagram (c) of Fig. 3]. For simplicity
in the self-consistent process we neglect the changes in

the charge-density response function and in the vertex
function due to the renormalization of the Green func-
tion. In the case of a DQW at filling factor v= 1 the self-
energy of the state i takes the form

2, "(co)= I dco'e' g e ~ ~ I dzP, (z)P (z) J dz "G (co+co')I;(q, z",co') W(z, z",q;co'), (18)

where

e 2~ e 2~8'(z, z', q, co)= e ~ ' ' + dz& dzze ' e ' g (z, z2, q;co)
g E q

(19)

I, , (q, z, co)=e ~ ' P;(z)(b;(z), (20)

I, ,(q, z, co)=e ~ ' P, (z)P, (z)
'(q) co+4

G (co) =(co E~
—i5J )—

~r = [a""—g....(q) j' —g'-. (q)

(21)

(22}

(23}

6=0+, and 6 =0+ for j =s and 0 for j =a. The ener-
gies E; are obtained from Dyson's equation

EGwr + &Gwr(EGwr) (24)

It is important to note that when integrating Eq. (18) in
frequencies the poles of the vertex function I do not con-
tribute since they correspond to zeros of the dynamically
screened Coulomb interaction O'. This is only true in

conserving approximations, when the same vertex func-
tion in the calculation of the charge-density response
function and in the GR'I" self-energy is used.

The 68' approximation for the self-energy can be ob-
tained from Eqs. (18)—(24) by changing y " by y

"by b, , and cor(q) by b, ". It is easy to obtain the fol-
lowing equation for the SAS energy gap in the GR' ap-
proximation:

2
2 —

q I
gGw gHF+ 2gO

el coRpA(q}

'2
dz dz'e ' ' , z , z , z' , z'

coRpA(q}+ ~
(25)

In Fig. 5 is plotted, as a function of the magnetic field,
the GR' SAS energy gap, 6, obtained by solving self-
consistently Eq. (25). Also the one-electron SAS energy
gap, 5, and the HF SAS energy gap, 6 ", are plotted.
We see in this figure that contrary to the semiconductor
case, ' the energy gap obtained in the 68'approxima-
tion is bigger than the HF energy gap. This is because,
although the screened exchange' part of the self-energy
tends to close the SAS energy gap, the Coulomb hole
part' is stronger and tends to open it. In any case the
correction is not very large. Also we can see that 6
does not show any anomalous behavior in the vicinity of
the CDW instability. The GW self-energies of the s and a
states have a zero imaginary part, meaning that in this
approximation the lifetimes of these states are infinity.
Similar results are obtained when we study the SAS ener-
gy gap versus the thickness of the barrier of the DQW for
a fixed magnetic field, Fig. 6.

Completely different results are obtained when we

study the SAS energy gap in the GR'I approximation,
In Fig. 5 66~" as a function of the magnetic field

is also plotted. We see that for small magnetic fields
"is practically equal to 6 "and for magnetic fields

near the CDW instability the real part of 6 "decreases
quickly and reaches a constant value just before the criti-
cal magnetic field where the CDW instability occurs.
Also just before the instability the 68'I self-energies get
an imaginary part. In Fig. 5 6 " minus its imaginary
part is also plotted; we see that this quantity goes to zero
at the critical magnetic field. Then in the GS'I approxi-
mation to the self-energy the SAS energy gap decreases
and acquires a big imaginary part before the CDW insta-
bility: The SAS energy gap collapses at the critical mag-
netic field where the CDW instability occurs. We obtain
the same results when we study the variations of 6
with respect to the thickness of the barrier db. The
reason for this behavior is the dependence of the 68'I
self-energies on the TDHFA charge-density response
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FIG. 5. Variation, as a function of the magnetic field, of the
SAS energy gap calculated in different approximations (see
text). The solid line represents the real part of the 6 " and the
dotted line corresponds to the real part of 6 "minus its imag-

0

inary part. The parameters of the DQW are d = 139 A, db =40
A, Vb =250 meV, m *=0.067, and a= 12.5. The filling factor is
always 1. The arrow indicates the critical magnetic field where
the CDW instability predicted by the TDHFA occurs.

FIG. 6. Variation, as a function of the thickness of the bar-
rier, of the SAS energy gap calculated in different approxima-
tions (see text). The solid line represents the real part of the

" and the dotted line corresponds to the real part of h~
minus its imaginary part. The parameters of the DQW are
d =139 A, Vb =250 meV, m*=0.067, B =17.3 T, and
@=12.5. The filling factor is 1. The arrow indicates the critical
thickness of the barrier where the CDW instability predicted by
the TDHFA occurs.

function. In the GR'I approximation, when the response
function g diverges, the screened Coulomb interac-
tion 8' also diverges. This dependence of the GWI self-
energies on y " produces the correlation between the
CDW instability and the collapse of the SAS energy gap.

IV. SUMMARY

We have studied the effect of the electron-electron in-
teraction on the syrnrnetric-antisymmetric energy gap of
a DQW in the presence of a strong magnetic field and a
total filling factor v=1. We have found that the SAS en-
ergy gap in the HF approximation is much bigger than
the HF SAS energy gap and that the correction of the
second-order diagrams to the HF SAS energy gap is
negligible. The GR' approximation gives an energy gap
slightly bigger than the HF SAS gap. In the G8 I ap-
proximation the SAS energy gap is smaller than the HF
SAS energy gap and collapses when the DQW system be-
comes unstable against the formation of a CDW ground
state. The CDW instability is accompanied by the clos-
ing of the SAS energy gap and the broadening of the sym-
metric and the antisymmetric states: The system behaves
as a metal rather than as an insulator. The collapse of
the SAS energy gap produces that second-order correc-
tions to the self-energies diverge [see Eqs. (11)—(14)];
therefore this result questions the validity of the unre-
stricted Hartree-Fock approximation for describing the

properties of the DQW at v= 1 after the CDW instabili-
ty. Then the character of the new ground state after
these instabilities is not clear. It is possible that, in DQW
systems with little tunneling between wells, after the van-
ishing of the SAS energy gap, a new phase with a gap
produced entirely by many-body effects could appear.

In this work we have not included the effect of impuri-
ties. We assume that in the experimental high-mobility
DQW systems the electron-impurity interaction is very
weak and can be treated as a second-order effect. '

Our analysis offers no explanation for the disagreement
between the experimental activation energies and the
theoretical value of the SAS energy gap. In the presence
of disorder, the activation energy can be related to the
minimum in the collective excitations and a theory in-
cluding the interaction of the charge-density excitations
and the impurities should be required.
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