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A general scheme is established within the effective-mass approximation to calculate systematically
the excitonic energy spectra in a semiconductor quantum dot including the dielectric confinement effect.
This effect is found to appear most pronounced in the quantum-dot structure in comparison with the
quantum-well and quantum-wire structures. A formula of the lowest exciton energy in the strong
confinement regime is derived and the significance of the dielectric confinement effect is clarified. We in-
vestigate the dependence of the binding energy and the oscillator strength of the lowest-energy excitonic
state on the quantum-dot radius, the electron-to-hole mass ratio, and the dielectric-constant ratio be-
tween the quantum dot and the surrounding medium. The subband mixing effect due to the electron-
hole Coulomb interaction gives a finite oscillator strength to excitonic transitions which are forbidden in
the absence of the Coulomb interaction. This effect is shown unambiguously in the calculated excitonic
energy spectra. Furthermore, the electron-hole exchange interaction in a quantum dot is discussed. The
short-range part of the exchange energy is shown to increase in proportion to the inverse of the volume
of the quantum dot as the quantum-dot size is reduced. On the other hand, the long-range part of the
exchange energy is found to be sensitively dependent on the shape of the quantum dot. In particular, it
vanishes for the optically allowed excitonic states in a spherical quantum dot.

I. INTRODUCTION

Recently the low-dimensional semiconductor micro-
structures have been investigated extensively from the
viewpoint of fundamental physics and from the interest
for application to optical and electrical devices. The
zero-dimensional microstructures which are usually
called quantum dots or quantum boxes are now typically
realized in semiconductor microcrystallites embedded in
glasses"? (colored glass filters) and in alkali halides® and
are also fabricated by chemical methods,*> by litho-
graphic  techniques® ® and by crystal growth
methods.!®!! The linear and nonlinear optical properties
of these structures have been extensively investigated in
recent years.'>? 2% In these semiconductor microcrystal-
lites, the carriers are confined three dimensionally and
the translational symmetry is totally lost. This quantum
confinement effect changes the energy-level continuum in
the bulk material into a discrete level structure, namely,
subband structure, and leads to the enhancement of the
oscillator strength of excitons through the increased spa-
tial overlap between an electron and a hole.?”?® Another
interesting property which will be manifested in low-
dimensional structures is the dielectric confinement
effect. Semiconductor microcrystallites are usually em-
bedded within a material having a relatively small dielec-
tric constant. The electric force lines emerging from
charged particles within a semiconductor microcrystallite
pass through the surrounding medium with a smaller
dielectric constant than that of the semiconductor. Thus
the screening effect is reduced and the Coulomb interac-
tion between charged particles becomes enhanced, result-
ing in the enhancement of the exciton binding energy and
the exciton oscillator strength. This dielectric
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confinement effect was first investigated by Keldysh?® for
a layered structure. Most recently we have studied this
effect more thoroughly for the dielectric quantum-well
(DQW) structure and clarified the enhancement of the ex-
citon binding energy and the exciton oscillator strength.*°
A similar enhancement effect has been discussed for the
quantum wire structure.’’3? The dielectric confinement
effect is expected to appear more pronounced in the
quantum-dot structure than in quantum-well and
quantum-wire structures because of more probable
penetration of the electric force lines into the surround-
ing medium having a smaller dielectric constant. The
critical size which characterizes the reduction in the
dimensionality is of the order of the electron-hole separa-
tion, namely, the exciton Bohr radius. In a quantum dot
whose size is of the same order as the exciton Bohr ra-
dius, an electron and a hole composing an exciton feel the
dielectric boundary and their motions are strongly
affected. On the other hand, when the quantum-dot size
is much larger than this length scale, the situation is simi-
lar to that in the bulk medium and the dielectric
confinement effect would not be effective.

As a consequence of these two effects, namely, the
quantum confinement effect and the dielectric
confinement effect, the electron-hole exchange interaction
is also enhanced which gives the energy difference be-
tween the spin-singlet and -triplet excitons. As is well
known, the long-range part of this interaction in the bulk
material gives rise to the longitudinal-transverse (LT)
splitting energy of excitons.** However, in semiconductor
quantum dots the translational symmetry is totally absent
and the long-range part of the electron-hole exchange in-
teraction is expected to be sensitively dependent on the
size and shape of the quantum dot.
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In Sec. II, general aspects of the excitonic states in a
spherical quantum dot are investigated within the
effective-mass approximation. In Sec. III, the significant
effect of the dielectric confinement on the exciton energy
is clarified in the strong confinement regime and a new
formula for the exciton energy is presented. In Sec. IV, a
general scheme to calculate systematically the excited ex-
citonic states is presented and several lowest excitonic
states are determined by a variational method. In Secs. V
and VI, the binding energy and the oscillator strength of
the lowest exciton state are calculated as functions of the
quantum-dot radius, the electron-to-hole mass ratio, and
the dielectric-constant ratio between the semiconductor
material and the surrounding medium. In these calcula-
tions, the significance of the dielectric confinement effect
is demonstrated. In Sec. VII, the subband mixing effect
due to the electron-hole Coulomb interaction is shown
clearly in the calculated excitonic energy spectra. This
mixing effect gives a finite oscillator strength to interband
transitions which are forbidden in the absence of the
Coulomb interaction. In Sec. VIII, the electron-hole ex-
change energy in a semiconductor quantum dot is dis-
cussed. The short-range part of the exchange energy is
shown to increase in proportion to the inverse of the
volume of a quantum dot as the quantum-dot size is re-
duced. On the other hand, the long-range part of the ex-
change energy is found to be sensitively dependent on the
shape of the quantum dot and to vanish for the optically
allowed excitonic states in a spherical quantum dot.

II. EXCITONIC STATES IN SEMICONDUCTOR
QUANTUM DOTS

Here the general aspects of the ground and excited ex-
citonic states in a spherical quantum dot will be dis-
cussed. Although many authors have discussed this sub-
ject,“‘42 the effect of the dielectric confinement on the
excitonic states has not yet been clarified in detail. We
will discuss the general aspects focusing our attention on
the dielectric confinement effect. In the effective-mass
approximation the relevant Hamiltonian for an electron-
hole pair in a spherical quantum dot with radius R was
derived by Brus®” and is given as
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where r, and r, denote the coordinates of an electron and
a hole, respectively, m, and m, are their effective masses,
P, is the Legendre polynomial of the nth order, and ©,,
is the angle between 7, and r,. The dielectric constants
of the semiconductor material and the surrounding medi-
um are denoted by €, and e€,, respectively, and «, is
defined by
o« = (n+1)(e—1)
" elne+n+1)’

with e=¢€,/€,. The first two terms in (2.1) represent the

(2.2)
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kinetic energy and the third term is the direct Coulomb
interaction between an electron and a hole. The last two
terms are usually called the surface polarization energy,
which arises from the difference in the dielectric constant
between the semiconductor quantum dot and the sur-
rounding medium. The former is the self-energy of an
electron and a hole due to its own image charge, whereas
the latter is the mutual interaction energy between an
electron and a hole via image charges. The expression of
the dielectric confinement energy for an exciton is depen-
dent on the shape of the quantum dot. The expression
for a general cuboid is given in Appendix A for the sake
of reference.

In calculating the exciton-energy spectra, the boundary
conditions on the exciton wave function play an impor-
tant role. In actual samples of quantum dots, e.g., semi-
conductor microcrystallites embedded in a glass matrix,
the energy-gap difference between the semiconductor and
the surrounding medium is rather large and at the same
time the bonding characters of both materials are consid-
erably different. Thus the potential discontinuity for the
electron and the hole between the two materials is deter-
mined not only by the energy-gap difference but also by
the surface potential. At present our knowledge about
these is quite poor. Although there are a few theoretical
attempts to incorporate the finiteness of the potential bar-
rier height between the two materials,*>** we prefer to
limit our calculations within the model of infinite poten-
tial barrier for the surrounding medium without intro-
ducing indefinite parameters concerning the potential
discontinuity. Another important problem in calculating
the exciton-energy spectra is how many electron and hole
subbands are to be included in the calculation. This
problem is dependent on the quantum-dot size. In the
strong confinement regime where the subband energy
separations are much larger than the electron-hole
Coulomb interaction which is of the order of the exciton
binding energy, we may employ the simplest variational
wave function composed of only the lowest subband
states. As the quantum-dot size is increased, the energy
spacings of the quantized subbands become comparable
to or smaller than the exciton binding energy. In this re-
gime of the intermediate confinement higher subband
states are mixed into even the ground-state exciton wave
function. At the same time, the excited states with
respect to the electron-hole relative motion are also to be
included in the exciton wave functions, especially when
the excited excitonic states are concerned. In the weak
confinement regime where the quantum-dot size is much
larger than the exciton Bohr radius, the quantized sub-
bands are distributed almost continuously and the situa-
tion becomes similar to that in the bulk material. The
criterion which characterizes the regime of the intermedi-
ate confinement is typically written as

. #D #D #
min > T |~ . (2.3)
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where D =(4.49)>—(3.14)? is the difference between the
square of the first zeros of the spherical Bessel functions
Jjo and j,;, o the electron-to-hole mass ratio which is gen-
erally smaller than unity, aj the exciton Bohr radius in
the bulk material, and p the electron-hole reduced mass.
It is to be noted that the above criterion is derived under
the assumption that the wave function vanishes at the
crystallite boundary. We can estimate this criterion for
typical materials. For GaAs, o0 =0. 14 and the above cri-
terion becomes R /aj ~1.12; for CdS, 0 =0.24 and we
have R /aj~1.41. Thus the intermediate confinement
regime holds for semiconductor microcrystallites having
radii of the order of the exciton Bohr radius. In the fol-
lowing, a general scheme will be presented to calculate
the exciton-energy spectra in all the confinement regimes.

In calculating the exciton-energy spectra within the
model of infinite potential barrier for the surrounding
medium, the most suitable basis set for the one-particle
wave functions which vanish at the surface of a spherical
quantum dot is given as

¢[mj(r’6"p)=.11 k Y[m(6 @), (2.5)

R

where j; is the /th-order spherical Bessel function, k 11 is
its jth zero, and Y,,, is one of the spherical harmonics.
The exciton wave function can be constructed from a
linear combination of products of @,,; for the electron
and the hole. At the same time we must take into ac-
count the fact that the total angular momentum of an
electron-hole pair is a good quantum number because of
the spherical symmetry of the Hamiltonian. The angular
momenta of the electron, the hole, and the pair will be
denoted by /,, I, and L =1, +1,, respectively. The angu-
lar part of the exciton wave function with a total angular
momentum L and a magnetic quantum number M can be
written as

2<Ie’me’lh’mh|L’M>Y1L,,me(Qe)Y1h,m (26)

me

@),

using the Clebsch-Gordan coefficient, where ) denotes
the angular variables. As for the radial part wave func-
tion, we must include not only the lowest subband state

7(1"2}!

Dyo(r,,r,)=Cqpe
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but also the higher subband states and the excited states
concerning the electron-hole relative motion. Thus a
general exciton wave function can be written as

—areh

D p(re,r,)=Cgpe

Xz 2 <le’meylh»mh|L;M)

n Ie,lh,me
X Yle,me(ﬂe)Ylh,mh(‘Q‘h)

Xrg;,R;",’ (Forry) s 2.7

where 7, =|r, —r,|. The radial part wave function R/ (")

is a linear combination of products of spherical Bessel
functions such as
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where I, and 1, are not necessarily identical to /, and /,.
The parameters in (2.7), namely, a and {C(’” }, would be

determined variationally.

It is easy to see that the optical transition is allowed
only to the L =0 exciton states. The relevant wave func-
tion is given as

e 2 2 (le’me’lgy_melo,())

nl,m,

X ch,m (‘Q‘e )Yle,—me(‘Qh)

<b00(re,rh)=C¢e_

XrehR(") (ro,ry) - (2.9)

From the property of the Clebsch-Gordan coefficient, i.e,

(I,m,l,—m|0,0)=(—1)"""/vV2I +1, we see that
> (I,m,l,—m|0,0)Y,,,(Q,)Y, _,.(Q,)
< 3 Y, Q)Y (Q,)x<P(cosO,,), (2.10)

where ©,, is the angle between the position vectors r,
and r;,. Thus the exciton wave function for L =0 can be
written as
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In the extremely strong confinement regime, we can re-
tain only the lowest-order term in R} and can employ
the simplest wave function given as?®’

,
K92
'R

q)OO(rwrh):C(i)e _arehjo jO (2.12)
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III. DIELECTRIC CONFINEMENT EFFECT
IN THE STRONG CONFINEMENT REGIME

Before going into details of the variational calculation
of the exciton energy spectra, we will clarify the salient
features of the dielectric confinement effect in the strong
confinement regime. As mentioned in Sec. I, the dielec-
tric confinement effect appears more pronounced in the
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smaller quantum dot because of the larger opportunity
for the electric force lines between an electron and a hole
to penetrate through the surrounding medium having a
relatively smaller dielectric constant. Thus the exciton-
energy spectra in the strong confinement regime are ex-
pected to be strongly modified by this dielectric
confinement effect. Here the effect on the lowest exciton
energy will be examined in detail.

In the extremely strong confinement regime, the en-
velope function of the lowest-energy exciton state can be
given by (2.12). In order to facilitate an analytical treat-
ment, we simplify (2.12) furthermore as

D(r,,r,)=Co(1—ar, )j, Jo 3.1)

r
kO_e
'R

rp
k9—
'R

The spherical coordinates are more convenient than the
Hylleraas coordinates*’ for dealing with the surface po-
larization energy. A key relation in these coordinates is
given as

! !
1 o | r r
Fon=—r5=3 k —(rl +r2)—2—= !

Ten o [ L rit2r—1
1+2
ret 1+1
— P o
2043 1 cosO,;,)
= > Rr,,r,)P;(cosO,,) , (3.2)

1
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where r. = max(r,,r,), ¥ . = min(r,,r,), and RR,(r,,r,)
is introduced for abbreviation. Minimizing the exciton
energy with respect to @=aaj in the limit of R —0, we
find the optimum value of @ as

4 2
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where {a,} (n=0,1,2,...) are defined by (2.2). The first
term within the square brackets of (3.3) corresponds to
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the result in the absence of the dielectric confinement
effect and the second and third terms arise from the sur-
face polarization energy. The lowest exciton energy in
effective Rydberg units (Ry*) is calculated as

2 —87l,+4I,—27a _
=T 4 2173 o L _@+0k)
R T R
2 A _
=}_"2*+?+A0+(9(R) 5 (3.9)

where R =R /a}. This is a new formula for the exciton
energy in the strong confinement regime which includes
the dielectric confinement effect. In the coefficient in
front of 1/R, the first term in the numerator comes from
the electron-hole direct Coulomb interaction, whereas the
second and third terms arise from the surface polariza-
tion energy. Of course, when we put €, /€,=1, i.e., @, =0
for all n, the above expressions reproduce the previous re-
sults,*® namely,

2
@=0.498, E="T_—2312 45
R* R

(3.10)

The optimum value of & and the coefficients 4, and
A, in (3.9) are plotted in Figs. 1 and 2, respectively, as a
function of the dielectric-constant ratio €,/€,. It is seen
that the dielectric confinement has a significant effect on
the exciton energy and cannot be treated as a minor per-
turbation. Previously, when the experimental values of
the exciton energy were compared with theoretical calcu-
lations, the coefficient 4, in (3.9) was usually fixed to be
—3.572 corresponding to the case without the dielectric
confinement effect. However, Fig. 2 shows that the
coefficients 4, and A4, are sensitively dependent on the
dielectric-constant ratio. Especially for the case of a CdS
or CdSe microcrystallite embedded in silicate glasses, the
dielectric-constant ratio €,/€, is estimated to be about
3~4 and the dielectric confinement effect would be
significant. Thus it would be necessary to reexamine the
comparison of the exciton energies between experiments
and theories which was done previously.
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FIG. 1. The variational parameter aaj in the limit of R —0
is plotted as a function of the dielectric-constant ratio €,/¢€,. In
this limit the electron-to-hole mass ratio is irrelevant to the re-
sults.
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IV. VARIATIONAL CALCULATION
OF EXCITON-ENERGY SPECTRA AND
THEIR WAVE FUNCTIONS

Now that the functional form of the exciton wave func-
tion is fixed, the exciton-energy spectra can be deter-
mined by a variational calculation, namely, minimizing
the energy given by (®|H|®)/(®|®). In our case,
since the basis functions are not orthogonal to each oth-
er, we must solve a generalized eigenvalue problem.
Especially, the higher-lying energy spectra have to be
determined consecutively by imposing the orthogonality
of the wave function on all the previously obtained eigen-
states.

In the following we will calculate the energy spectra of
the optically allowed exciton states having a zero total
angular momentum (L =0). The methods of calculation
of the normalization integral and various energy com-
ponents are given in Appendix B. The variational calcu-
lation is carried out as follows. First of all, for a fixed
value of a, the minimum eigenvalue of a quadratic form
with respect to the expansion coefficients
{Cll (Te,jesTnsjn)} is determined. Then a is varied in
search of a global minimum eigenvalue.

Here we explain the orthogonalization procedure to
determine the excited excitonic states successively, al-
though a similar procedure was given concerning the
electron subband states in a quantum well under an elec-
tric field.*® Suppose we have determined n excitonic
states denoted by <I>("’(re,r,,) with p=1,2,...,n in the
ascending order of the energy and denote by ®(7,,r,) the
wave function of the excited excitonic state to be deter-
mined. We must minimize the energy of ® satisfying the
orthogonality of this state to all the lower-lying excitonic
states. The orthogonality condition (®'”’|®) =0 can be
reduced to a linear relation with respect to the expansion
coefficients {CI(:}:. (I,sjes1y5jn)} of @ which will be abbre-
viated as {c;}. Since (®|®) is a quadratic form with
respect to {c;}, this can be written as

(@|®)=3 c;M;(2a); , .1
ij
= ]
-0.3
< g
_3_
-05
5 10

&€

FIG. 2. The coefficients 4, and A4, of the lowest exciton en-
ergy as given in (3.9) are plotted as a function of the dielectric-
constant ratio €,/€,. As in Fig. 1, the electron-to-hole mass ra-
tio is irrelevant to the results.
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- where M;; is a symmetric matrix and the factor 2a comes

from the square of exp[ —ar,,] in (2.7). Similarly, the
orthogonality condition can be written as

(2?]@) =3 /" M,;(a+aP)
U

=3 R/Pc;=0, 4.2)

J

where the superscript (p) is attached to the quantities re-
lated to the pth eigenstate and R}P’ is defined by this
equation. This series of equations gives the orthogonality
conditions for the expansion coefficients {c;}. Thus the
procedure of energy minimization should be carried out
in the restricted space which is orthogonal to n pieces of
vectors {R”}(p=1,2,...,n). In the following, several
excitonic states in the lowest-energy region will be calcu-
lated. The indices of basis functions in (2.8) employed for
a typical calculation are (7,,7,)=(0,0), (1,1), (2,2), (0,1),
(1,0), (1,2), (2,1), (0,2), (2,0), and 1=j,,j, =3 and the
power n in (2.7) is taken up to 2.

V. EXCITON BINDING ENERGY

The exciton binding energy is known to increase in
low-dimensional systems because the spatial overlap be-
tween an electron and a hole is increased due to the quan-
tum confinement effect. Following this argument, we can
expect that the exciton binding energy is most strongly
enhanced in the zero-dimensional system. At the same
time, the dielectric confinement effect due to the penetra-
tion of the electric force lines into the surrounding medi-
um with a relatively small dielectric constant is also ex-
pected to be enhanced in the low-dimensional system, re-
sulting in the enhancement of the exciton binding energy.
In this section these features will be examined. First of
all, we must note the peculiarity of the zero-dimensional
system in defining the exciton binding energy. In the
quantum-well system the binding energy of an exciton
state associated with a particular pair of conduction and
valence subbands is defined in reference to the sum of
each subband energy. The sum of subband energies im-
plies the threshold above which the continuum states
concerning the electron-hole relative motion are present.
Similarly the continuum state has a well-defined meaning
in the quantum-wire system since there is at least one
spatial dimension along which carriers can move freely.
On the other hand, in the quantum-dot system where the
carriers are confined in all three dimensions the exciton
continuum state associated with a particular pair of elec-
tron and hole subbands loses its original meaning. In
fact, the electron-hole Coulomb interaction mixes many
pairs of electron and hole subbands in forming the exci-
tonic states. The continuum exciton states in a true sense
are associated with the subband states which are entirely
extended over the surrounding medium. This continuum
exciton state does not exist when a model of infinite po-
tential barrier for the surrounding medium is employed
as in this paper. Thus the definition of the exciton bind-
ing energy in the zero-dimensional system becomes rather
indefinite. However, restricting the argument to the
lowest-energy exciton, we can define reasonably the exci-
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ton binding energy in reference to the sum of energies of
the lowest electron and hole subbands, namely,

BX:<¢001(re)|He|¢001(re)>
+ <¢001(’h )|Hh |¢001("h ))—Emin >

where ¢, is the lowest-energy subband state defined in
(2.5), E,;, the lowest exciton energy obtained in Sec. IV,
and the single-particle Hamiltonian H,(i =e,h) contains
the kinetic energy and the self-energy part of the surface
polarization energy, i.e.,
#V: 2

— a
i 2R n§0

(5.1

2n
i

R

= (5.2)

2m "

Then the exciton binding energy in effective Rydberg
units (Ry*) is calculated as
2 4 2 €a

n & 2n i 02
+ > fdxx"smx E_
min ?
R flgmi 72n+1 0

us
R

By=

(5.3)

where R =R /aj. This binding energy is proportional to
1/R in the limit of R — 0 because the kinetic-energy term
which is proportional to 1/R? is subtracted. As men-
tioned above, this binding energy does not mean the ion-
ization energy to the true continuum exciton state.

The exciton binding energy is dependent on the
quantum-dot size R =R /a}, the dielectric-constant ratio
€,/€,, and the electron-to-hole mass ratio m,/m,. In
Fig. 3, the size dependence of By is shown for a fixed
value of the electron-to-hole mass ration, i.e.,
m,/m;, =0.2. The enhancement of the exciton binding
energy in the smaller crystallites is due to the increased
spatial overlap between an electron and a hole. At the
same time, the exciton binding energy increases strongly
with an increase in the dielectric-constant ratio €,/e,.
This is due to the dielectric confinement effect mentioned
in Sec. I. This effect can be seen more clearly in Fig. 4
where the exciton binding energy is plotted as a function
of the dielectric-constant ratio €;/€,. The increasing

100¢
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FIG. 3. The binding energy of the lowest exciton state is
plotted as a function of the quantum-dot radius for a few values
of the dielectric-constant ratio €,/€, with a fixed value of the
electron-to-hole mass ratio, i.e., m, /m,;, =0.2.
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FIG. 4. The binding energy of the lowest exciton state is
plotted as a function of the dielectric-constant ratio €,/¢, for a
few values of the quantum-dot radius with a fixed value of the
electron-to-hole mass ratio, i.e., m, /m; =0.2.

trend is more pronounced for the smaller crystallite.
This can be understood as a consequence of the larger op-
portunity for the electric force lines to penetrate into the
surrounding medium in the case of smaller crystallites.
The enhancement of the exciton binding energy in the
quantum-dot structure becomes more conspicuous when
compared with that for the case of a quantum well having
a thickness L, of the same order of magnitude as the
quantum-dot diameter.® Although a detailed calculation
is not yet carried out for the case of a quantum wire, we
can expect that the exciton binding energy in the
quantum-dot structure is larger than that in the
quantum-wire structure whose lateral dimensions are of
the same order as the quantum-dot diameter.

In Fig. 5 the optimized values of @=aaj in (2.11) are
shown as a function of the quantum-dot size for a few
values of the dielectric-constant ratio with a fixed value
of the electron-to-hole mass ratio, i.e., m, /m;, =0.2. The
values of @ in the limit of R —0 are 0.498, 0.686, and

€/€x=
10t 10

*
aag
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09r

08|

10 20
R/ag

FIG. 5. The optimized value of the variational parameter
aaj for the lowest exciton state is plotted as a function of the
quantum-dot radius for a few values of the dielectric-constant
ratio €, /€, with a fixed value of the electron-to-hole mass ratio,
i.e., m,/m;, =0.2.
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0.773 for €,/€,=1, 4, and 10, respectively. The decrease
of a with decreasing crystallite size implies that the
strong quantum confinement weakens the electron-hole
Coulomb interaction.

Generally speaking, the electron-hole Coulomb binding
becomes stronger for the more asymmetric combination
of the electron and hole masses. However, the depen-
dence of By on the electron-to-hole mass ratio m,/m,, is
found to be very weak and is not exhibited here. This
feature indicates that the admixture of the higher sub-
band states into the lowest-energy exciton state is rather
symmetric with respect to the subband indices; namely,
the radial components in (2.8) which have a common sub-
band index for the electron and the hole such as
jl(kj’re )j,(kjlrh) have a larger amplitude than other com-
ponents. This trend is preferred in order to increase the
electron-hole Coulomb binding due to the increased spa-
tial overlap between the electron and the hole and to
lower the exciton energy. Then the subband part of the
kinetic energy is determined primarily by the electron-
hole reduced mass and is weakly dependent on the
electron-to-hole mass ratio since the electron-hole re-
duced mass is fixed in our calculations. This is a physical
origin of the weak dependence of the exciton binding en-
ergy on the mass ratio m, /my.

VI. OSCILLATOR STRENGTH OF EXCITONIC
TRANSITION

The oscillator strength of the lowest-energy exciton
state will be examined concerning its dependence on the
quantum-dot size, the dielectric-constant ratio, and the
electron-to-hole mass ratio. The magnitude of the oscil-
lator strength is determined by the parameter a and the
coefficients of the linear combination of various subband
states in (2.8). The optically allowed exciton state is a
spin-singlet state given as

1
f(l)>: 2 (I)OO(re’rh)Vi(acteaaurha-'—a;rcﬁavrhﬁ)lo> ’

Fortp
(6.1)

where the second quantized form in the Wannier repre-
sentation is employed, a(f3) in the subscripts indicates the
spin-up(down) state, |0) represents the ground state of
the system, and ®, is given by (2.11). Then the matrix
element of the momentum operator defined by

P=3pS(a} ., . tad g, 0+ H.c. (6.2)
is calculated as
(@|P|0)=V2p0 S Dyo(rs,7,)
=w/§pc°uc;2 (RO (re,r )+ RS (r,r,)
+R® (r,r )+ -}, (6.3)

where p2 is the momentum matrix element between the
valence-band top and the conduction-band bottom at the
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I' point. The oscillator strength of the excitonic transi-
tion is defined by

1

=—— (P 2 i
fx moﬁwa |Pl0)]?, (6.4)
and is calculated as
f0|cd>2{RE)%)(rs’rs)-'—R(](;)(rs’rs)
+R®(r,r )+ - }12 (6.5
with
_ 2 02
=— R 6.6
fO moﬁwx |pcu| ( )

where mg is the free-electron mass. In the following the
excitonic transition energy #iwy will be assumed to be in-
dependent of the crystallite size because the quantum
confinement energy is usually much smaller than the
original band-gap energy. Then f, has a meaning of the
oscillator strength of the band-to-band transition at the I'
point. In Fig. 6 the dependence of the normalized oscilla-
tor strength fy /f, on the quantum-dot size is shown for
a few values of the dielectric-constant ratio €,/€, with a
fixed value of the electron-to-hole mass ratio, i.e.,
m,/m;, =0.2. In the limit of R —0, the exciton oscilla-
tor strength f, approaches f. In fact, this property can
be proved exactly as shown in Appendix D. Since f is
also the oscillator strength of the atomic transition, it is
reasonable that the limit of R — 0 corresponds to the case
of a single atom. The magnitude of the oscillator
strength is determined by two factors concerning the
electron-hole relative motion and the exciton center-of-
mass motion. The former is related to the parameter « in
(6.1), whereas the latter comes from the summation over
r, in (6.5) and is roughly proportional to the number of
unit cells contained in a quantum dot. As a result the ex-
citon oscillator strength increases with increasing crystal-
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FIG. 6. The normalized oscillator strength fy/f, for the
lowest exciton state is plotted as a function of the quantum-dot
radius for a few values of the dielectric-constant ratio €, /€, with
a fixed value of the electron-to-hole mass ratio, i.e.,
m,/m,;, =0.2.
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lite size. This increasing trend is stronger for a larger
value of the dielectric-constant ratio. This is a conse-
quence of the increased electron-hole Coulomb binding
due to the dielectric confinement effect. In order to see
this dielectric confinement effect more clearly, we plot the
exciton oscillator strength in Fig. 7 as a function of the
dielectric-constant ratio for several values of the
quantum-dot size with a fixed value of m,/m, (=0.2).
The enhancement factor of the oscillator strength is
larger than that for the case of a quantum well having a
thickness of the same magnitude as the quantum-dot di-
ameter.’® Thus we can confirm that the dielectric
confinement effect appears stronger in the lower-
dimensional structures.

On the other hand, the dependence of the oscillator
strength on the electron-to-hole mass ratio is exhibited in
Fig. 8 for several values of the quantum-dot radius with a
fixed value of the dielectric-constant ratio, i.e.,
€,/€,=4.0. This dependence is rather weak reflecting
the insensitivity of the envelope function to the mass ra-
tio as noted in Sec. V. However, for the case of
R /aj =3, the dependence is not negligible. When the
hole is heavier than the electron, the energy spacings of
the hole subbands are smaller than those of the electron
subbands. Furthermore, the subband mixing occurs
strongly in a larger crystallite. Under this situation the
off-diagonal transitions in which the quantum numbers
(1,j) of the electron and hole subbands in (2.8) are
different are easily mixed into the ground excitonic state.
This admixture decreases the exciton oscillator strength.
The decrease of the exciton oscillator strength with de-
creasing electron-to-hole mass ratio can be interpreted in
this way for the case of R /ag =3.

VII. SUBBAND MIXING DUE TO
COULOMB INTERACTION

If the Coulomb interaction between an electron and a
hole is neglected, the interband transition is allowed only
for a pair of electron and hole subbands having the same
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FIG. 7. The normalized oscillator strength f/f, for the
lowest exciton state is plotted as a function of the dielectric-
constant ratio €,;/€, for several values of the quantum-dot ra-
dius with a fixed value of the electron-to-hole mass ratio, i.e.,
m,/m,=0.2.
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FIG. 8. The normalized oscillator strength f,/f, for the
lowest exciton state is plotted as a function of the electron-to-
hole mass ratio m,/m, for several values of the quantum-dot
radius with a fixed value of the dielectric-constant ratio, i.e.,
€,/6;,=4.

angular momentum / and the same radial quantum num-
ber j defined in (2.8), because of the orthogonality of the
envelope functions for different numbers of (/,j). In the
presence of the Coulomb interaction, the subband mixing
occurs and the interband transitions between electron
and hole subbands having different numbers of (/,;) be-
come allowed. In order to see this subband mixing clear-
ly, we show in Figs. 9(a) and 9(b) the lowest part of the
exciton-energy spectra for R /aj =1 and 3, respectively,
with fixed values of €,/¢, (=4.0) and m,/m,;(=0.2).
The oscillator strength of each transition is represented
by the height of the line spectrum. The energy position
of the interband transition between an electron subband
(1,j) and a hole subband (I’,j’) in the absence of the
Coulomb interaction is depicted by a vertical bar in the
figure where the upper (lower) pair of numbers denote the
subband indices of the electron (hole). Hereafter this
transition will be denoted as (/,j)—(/’,j’). The lowest
excitonic transition is mainly composed of the
(0,1)—>(0,1) transition, although its energy position is
lowered by the exciton binding energy. The next lowest
excitonic level is considered to be composed of combina-
tion of transitions such as (0,1)—(1,1), (0,1)—(0,2),
(0,1)—(2,1), and so on. In a similar way, the third exci-
tonic level in Fig. 9(a) and the fourth excitonic level in
Fig. 9(b) can be considered to be composed mainly of the
(1,1)—(1,1) transition.

Now we will focus our attention on the second exciton-
ic level. This level represents an off-diagonal transition in
which the quantum numbers of the electron and hole sub-
bands are different and which is optically forbidden in the
absence of the Coulomb interaction. Thus the oscillator
strength of this transition gives a measure of strength of
the subband mixing due to the Coulomb interaction.
From this viewpoint, the subband mixing is considered to
be stronger for R /aj =3 than for R /aj =1, because the
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FIG. 9. Exciton energy spectra in a quantum dot are plotted
in the lowest-energy part for the radius (a) R /ag =1 and (b)
R/aj=3, with common parameters, i.e., €/€,=4 and
m,/m;, =0.2. A vertical bar indicates the energy position of an
interband transition between the electron subband (/,j) (upper
indices) and the hole subband (/’,j’) (lower indices) in the ab-
sence of the Coulomb interaction.

ratio of the oscillator strength of the second excitonic lev-
el to that of the lowest one is larger in the former case.

VIII. ELECTRON-HOLE EXCHANGE
INTERACTION IN QUANTUM-DOT STRUCTURES

It is well known that in the bulk material the electron-
hole exchange interaction contains a short-range (analyti-
cal) part and a long-range (nonanalytical) part, and that
the latter part gives rise to the longitudinal-transverse ex-
citon splitting. Both components are proportional to the
probability of the spatial overlap between an electron and
a hole. In a low-dimensional system the quantum
confinement effect generally increases the electron-hole
spatial overlap and consequently enhances the electron-
hole exchange interaction. In fact, the enhancement of
the electron-hole exchange interaction in the two-
dimensional quantum-well structure has been studied
both experimentally*”*® and theoretically.** %! As an ex-
tension of this argument, the electron-hole exchange in-
teraction is expected to be enhanced more strongly in the
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quantum-dot structure. However, the long-range part of
the exchange interaction is considered to show a different
behavior from that of the bulk material because the con-
cept of wave vector associated with the center-of-mass
motion of the exciton is completely missing due to the
three-dimensional confinement. Here we will examine
the dependence of the short-range part of the exchange
interaction on the quantum-dot size and on the
dielectric-constant ratio between the quantum dot and
the surrounding medium. Furthermore we will clarify a
peculiar feature of the long-range part of the exchange in-
teraction.

The expression of the electron-hole exchange interac-
tion in the site representation is derived in Appendix E.
Taking into account the localized nature of the Wannier
orbitals, we can assume r,=r, and r,=r, in (ES5) of the
electron-hole exchange term and approximate as

80,85128,,,1,8,1 1 V(VTIo 'O PV Tl o)) (8.1)

Ty

When we consider only a single band for both the con-
duction (v=1v'=c¢) and valence (u=pu'=v) bands, the ex-
change energy is given by

23 O*(r,,r,)¥(r,,r,)Vicr,,vrcr,,vr,)

r r'
e’e

(8.2)

for a spin-singlet exciton state. Here the spin indices in
the matrix element of V are dropped. Of course, the ex-
change energy vanishes for a spin-triplet exciton state
and this gives rise to the singlet-triplet energy splitting.
Then, following the usual procedure,33 we can separate
the short- and long-range parts of the exchange energy as

23 DX (r,,r,)R(r,, 1, )V (cr, vrcr, 08, )

Tty

N
123 O B e s, (83)
r#r, \ e Te l

with u,, =e [d’r ¢3, (r)(r—r1,)9,, (r) and n=(r,—1,)/
Ir,—r,|, where n-'n is a dyadic form and the sum over r,
in the first term is taken over a region around r, with a
dimension of the order of the lattice constant and the
sum in the second term is taken over the complementary
region. It should be noted that this kind of separation is
valid only for large crystallites. In a very small crystallite
containing as few as, e.g., a few tens of atoms, we would
have to calculate (8.2) directly.

In the calculation of the short-range exchange energy
we can put r, =r, in the first term of (8.3) and obtain

2N, 3 |®(r,, 7, )2V (cr,,vr, 07, ,07,)

=2N_V(cro,vrg;cro,vrg) S | @(r,,r )%,

Te

(8.4)

where N, is the number of unit cells contained in the
relevant region of the sum which is usually taken to be 1,
the matrix element of V is put in front of the summation
because of the translational invariance of V, and r is an
arbitrary lattice point. In order to see the enhancement
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of the short-range exchange energy in a quantum dot, it is
appropriate to compare it with the corresponding expres-
sion for the bulk material. In the latter case, the en-
velope function can be taken as

172 _ — *
e |"e ’h[/aB
iKR
e [77_(01;:)3]1/2 4 (85)

Vo

D(r,,r,)= N

where v, is the volume of a unit cell, Nv, the quantiza-
tion volume, R the exciton center-of-mass coordinate,
and K the associated wave-vector. The exchange energy
is calculated as>?

2v,

~5 Vierg,vrg;erg,vrg)
mlag)

8 A A
e e (173K Ry

(8.6
3e(af) )

where the first term is the short-range exchange energy,
the second term the long-range exchange energy arising
from the dipole-dipole interaction, €, the dielectric con-
stant of the semiconductor material, and K a unit vector
in the direction of K. Then the enhancement factor of
the short-range exchange energy in a quantum dot over
the bulk value can be estimated by

77.(0*)3
—5 S | D(r,, 7)) .
vy ¥

Il

Bexch (8.7)

It is interesting to note that this factor is different from
the enhancement factor for the exciton oscillator strength
in (6.5) which is proportional to |3, ®(r,,r,)|%. As a

consequence, the oscillator strength and the short-range
exchange energy show different behaviors as a function of
the quantum-dot size. In Fig. 10 the enhancement factor
in (8.7) is plotted as a function of the quantum-dot size
for a few values of the dielectric-constant ratio €, /€, with
a fixed value of m,/m, (=0.2). The exchange energy in-
creases as the crystallite size is decreased in a striking
contrast to the exciton oscillator strength. The enhance-
ment factor of the exchange energy in the limit of R —0
is inversely proportional to R* as shown in Appendix D.
This theoretical behavior is shown by a dashed line in the
figure. This enhancement factor cannot become
indefinitely large because the quantum-dot size cannot be
reduced smaller than a unit cell. The attainable
minimum value of (R /aj})® is of the order of vy/(aj)’.
Furthermore the finiteness of the potential barrier of the
surrounding medium leads to incomplete confinement of
carriers and reduces the spatial overlap between an elec-
tron and a hole. Thus the enhancement factor becomes
saturated at a certain level as the quantum-dot size is re-
duced. On the other hand, as the crystallite size is in-
creased, the situation becomes similar to that in the bulk
material and the enhancement factor approaches unity.
J

o(r’)

[r—r]

. ¢ 3 ’——Q(r') = ¢ 30 . —_
vV, [dr P [a*rv,v,

where Q(r) is an arbitrary vector field, we can rewrite (8.9) as

—Q(r),
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FIG. 10. The enhancement factor of the short-range part of
the electron-hole exchange energy is plotted as a function of the
quantum-dot radius for a few values of the dielectric-constant
ratio €, /€, with a fixed value of the electron-to-hole mass ratio,
i.e.,, m,/m;,=0.2. The dashed line is a theoretical curve in the
limit of strong quantum confinement.

We remark briefly that the exchange energy increases
with increasing dielectric-constant ratio due to the dielec-
tric confinement effect but the dependence is rather weak.

From the above consideration, it is found that the
short-range exchange energy in a quantum dot can be
enhanced very much over the bulk value in materials
having a large exciton Bohr radius, e.g., GaAs. On the
other hand, in materials whose exciton Bohr radius is
rather small, e.g., CuCl, the exchange energy cannot be
enhanced very much over the bulk value even in a small-
est quantum dot.

Now we will discuss the long-range part of the
electron-hole exchange energy, namely, the second term
of (8.3). In the calculation of this term the integration
over r, is carried out excluding a small region around 7,.
This prescription will be denoted by a superscript ¢ on
the integral sign. Noting the relation

3nang—38,s _ 92
ai‘aarﬁ

1

lr—r|

) (8.8)

lr—r']?

where a and B are the Cartesian components, we can
rewrite the second term of (8.3) as

,'LUL‘

D(r',r')
lr—r']

>

0

(8.9)

where the subscript e on the coordinates is omitted.
Then making use of the relation

(8.10)
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”_r| o(r,r') | . (8.11)

This expression is quite general and is applicable to any shape of the quantum dot. When the envelope function in a
spherical quantum dot is expanded as

—:22 fd3r D*(r,r gy 4Tﬂﬂuc®(r’r)+V,V,'fcd3"' F
0

o(r',r') Ed),m Y. (), (8.12)
we have
Y,m(Q)F,m(r)
dr' <I> 4 —_— 8.13
Jrar (r',r')= ””"C,% 2041 ®.13)
with
D, (r")
Fin(r) =77 fd N2, ( ’)+r’fRdr'#-. (8.14)
r r
Then (8.11) can be decomposed as
1
r %:ucu':u'uc|q)(r7r)|2+¢*(ryr)IE 2] +1 Moy VgV, VFy, (r)
,m
Py M dF,,
2(:u’cv.ar)(:u'vc'VYlm)+ wr = Ylm dar
szIm 1 dFlm
+(:u'w (:u“uc r) dr? _7 dr Ylm ’ (8.15)
f
where a, is a unit vector in the radial direction. For the Agip is given by one-third of the longitudinal-transverse

optically allowed exciton state as given in (2.11), ®(#',7") splitting energy A;; and A_, can be determined from the
in (8.12) contains only an s-like component with / =m =0 singlet-triplet splitting energy Ag;. For CuCl, A, and

. . . . 1
and (8.15) is proportional to an integral given by A., are estimated as 1.8 and 10.5 meV, respectively. 3 On
t dO3a.'a —1 , (8.16) the basis of the above arguments, we can expect that the
Fev f (3a,"a, = Du short-range exchange energy A., in a CuCl crystallite
which vanishes identically. would not be enhanced and would be of the order of 10
Consequently the long-range part of the exchange ener- meV, since the exciton Bohr radius in CuCl is of the same

gy vanishes for the optically allowed exciton state in a  order as the lattice constant. For GaAs, although A, is
spherical quantum dot. However, if the shape of the not known precisely, we can deduce that A, is about two
quantum dot deviates from the sphere, the envelope func- orders of magnitude smaller than that of CuCl because
tion in (8.12) has various components of spherical har-  the measured values of A;r (Refs. 54 and 55) and Agy
monics and (8.15) would not vanish in general. Thus the  (Ref. 55) are about two orders of magnitude smaller than
long-range part of the exchange energy is sensitively those of CuCl. The enhancement factor of the short-
dependent on the shape of the quantum dot. At the same range exchange energy in a quantum dot is proportional
time, it should be noted that the valence-band degeneracy to (ag)’/R* and is estimated to be about 300 for R =20
changes the symmetry of the envelope function and the A Thus for a GaAs quantum dot with radius about 20
long-range part of the exchange energy would remain A, the short- -range exchange energy is expected to be of
finite even in a spherical quantum dot. the order of 10 meV. Although these exchange energies

The relevant quantities in estimating the absolute are not very large compared with the quantum
values of the exchange energies are V(cry,vrg;crg,vrg) confinement energy, the excitonic level structure would

and |u,,|%. These can be estimated from the energy posi- show various interesting features reflecting the interplay
tions of the longitudinal, transverse, and spin-triplet exci- among the subband quantization, the electron-hole ex-
ton states in the bulk materials. When we introduce the = change interaction, the valence-band degeneracy, the
quantities spin-orbit interaction, and possibly the magnetic-field-
) induced subband mixing. This problem is very interest-
UO . .
x= et ) Vierg,vrg;cro,vrg) (8.17) ing but is left for future study.
B IX. SUMMARY AND DISCUSSION
8 |,uw| (8.18) A general scheme was established within the effective-

dip™ 3 elap )3 ’ mass approximation to calculate systematically the exci-
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tonic energy spectra in a semiconductor quantum dot in-
cluding the dielectric confinement effect. This effect was
shown to appear most pronounced in the quantum-dot
structure in comparison with the quantum-well and
quantum-wire structures. We clarified the significance of
the dielectric confinement effect on the exciton energy in
the strong confinement regime and pointed out the neces-
sity of reexamination of the previous comparison of the
exciton energies between experiments and theories. We
investigated the dependence of the binding energy and
the oscillator strength of the lowest-energy excitonic state
on the quantum-dot radius, the electron-to-hole mass ra-
tio, and the dielectric-constant ratio between the quan-
tum dot and the surrounding medium. The subband mix-
ing effect due to the electron-hole Coulomb interaction
was shown unambiguously in the calculated exciton ener-
gy spectra by looking at the dependence on the
quantum-dot size of the intensity ratio of the second
lowest excitonic transition to the lowest one. The
electron-hole exchange interaction in a quantum dot was
discussed for the first time. The short-range part of the
exchange energy was shown to increase in proportion to
the inverse of the volume of the quantum dot as the
quantum-dot size is reduced. On the other hand, the
long-range part of the exchange energy was found to be
sensitively dependent on the shape of the quantum dot.
Especially, it vanishes for the optically allowed excitonic
states in a spherical quantum dot.

One of the most important problems concerning the
subband mixing discussed in Sec. VII is the exciton—-LO-
phonon interaction. As noted before,’®> if the lowest-
energy exciton state is composed of a pair of the lowest
subband states of an electron and a hole, the Frohlich
coupling between the exciton and the LO phonon van-
ishes because this coupling is proportional to an integral
of the phonon mode function multiplied by the total
charge density of the electron and the hole. The same sit-
uation holds even if the excitonic state is composed of
various combinations of subband pairs as far as the sub-
band index (/,j) in (2.8) is the same for the electron and
the hole. Thus in order to estimate the strength of the
exciton—LO-phonon coupling, we must know precisely
the coefficients of linear combination in (2.8). The

_er & gl

€ n=—oco [(xe—'xhn)2+(ye—yh)2+(ze“zh)2]|/2
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exciton—-LO-phonon interaction in a quantum dot will be
discussed in detail elsewhere in conjunction with the exci-
ton relaxation processes.

Finally we will mention briefly the possibility of experi-
mental observation of the dielectric confinement effect.
In order to change systematically the dielectric-constant
ratio between the quantum-dot material and the sur-
rounding medium, it would be favorable to use colloidal
suspensions of microcrystallites because the dielectric-
constant ratio can be varied by changing the solvent.
The exciton binding energy is not easy to measure direct-
ly from the absorption spectra since it is rather difficult to
identify definitely the position of the subband energy gap.
Furthermore the absorption spectrum is inhomogeneous-
ly broadened due to the size distribution of microcrystal-
lites. A relevant means to estimate the exciton binding
energy is to measure the photoluminescence intensity as a
function of the inverse temperature. We can confirm the
dielectric confinement effect from the dependence of the
activation energy on the dielectric-constant ratio.
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APPENDIX A: DIELECTRIC CONFINEMENT
POTENTIAL IN A CUBOIDAL QUANTUM DOT

In this appendix the Coulomb interaction between an
electron and a hole in low-dimensional structures will be
summarized. The dielectric confinement effect can be in-
corporated most conveniently in terms of the image
charges induced by the difference in the dielectric con-
stant between the semiconductor material and the sur-
rounding medium.

1. Quantum well

The x axis is chosen in the direction perpendicular to
the well layers and the well thickness is 2a. The dielec-
tric confinement potential for an electron-hole pair within
the quantum well is calculated as™

o g\n\
I’

I'xh " Xhn }

§ , glnl N e?

n=-—oo |'xc_xen[ 26-l n=-—oo

(A2)

(A3)

where the subscript e (/) is attached to the quantities related to the electron (hole), €, (¢,) is the dielectric constant of
the quantum-well (barrier) material, and the prime indicates the exclusion of the # =0 term in the summation.

2. Rectangular quantum wire

The axis of the quantum wire is chosen in the z direction and the lateral dimensions in the x and y directions are
denoted by 2a and 2b. The dielectric confinement potential for an electron-hole pair within the quantum wire is calcu-

lated as
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where the prime indicates the exclusion of the /=m =0 term in the summation.

3. Cuboidal quantum dot

We consider a cuboid having the dimension of 2a, 2b, and 2c in the x, y, and z directions, respectively. The dielectric
confinement potential for an electron-hole pair within the cuboidal quantum dot is calculated as

e? i i i §|”+\m|+[ﬂ|
€1 =" m=—w n=—o [(xe_xhlmn )2+(ye_yhlmn )2+(Ze_zh1mn )2]1/2
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where the prime indicates the
!=m =n =0 term in the summation.

exclusion of the

APPENDIX B: CALCULATION OF THE
NORMALIZATION INTEGRAL AND VARIOUS
ENERGY COMPONENTS

Here we explain briefly the methods of calculation of
the normalization integral and the various energy com-
ponents associated with the L =0 exciton wave functions
given in (2.11).

1. Calculation of normalization integral, Coulomb
energy, and surface polarization energy

A typical integral appearing in the normalization in-
tegral, Coulomb energy, and surface polarization energy
has a form given as

—2ar
Jd’r, [dPrye "rs Pi(cos©,, rirf

Coeh e hle | lphln
XJn | ki 7 1 |k, 71 (R R
1, ¥
X, k,-:?h ) (B1)

where [, n, p, g, and (lj,lj,j: 1~4) are integer numbers.

Introducing the Fourier transform such that
- ik(r,—r
rle ar”h:fd3kg(")(k,a)e (re=ry) (B2)

and substituting the expansion of a plane wave in terms

y=[2la +(—1)x,,2mb+(—1)"y,,2nc +(—1)"z,] (a=e or h;l,m,n=—o00,...,00),

(A7)

of the spherical harmonics, we obtain

rhe e =(417)2f0wdk k?g'"(k,a)
X 3 jilkr,)j(kry)
=0

!
X 3 YA(Q)Y,.(Q,)
m=—1

=47 3 21+ 1)G"(r,,ry,@)P;(cosO,,), (B3)
=0

with

G}"’(re,rh,a)=f0wdk k2g'"(k,a)j,(kr,)j,(kry) .  (B4)
The explicit expression of G,"(r,,r,,a) is given in Ap-
pendix C. Then carrying out the integration over the an-

gular variables in (B1), we are left with a radial integral
given as

R R
fo drerf+2fo drhr,?+2G,(")(re’rh,2a)

1, 7n
ki:? J

ghle

e

k. la Tn
Iy R

X, Ji, 1 AL

This type of integral can be calculated numerically.
2. Calculation of the kinetic energy

In order to reduce the expression of the kinetic energy
to a tractable form, we make full use of the boundary
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condition that the envelope function vanishes at the
quantum-dot surface. In the following, the calculation of
only the electronic part of the kinetic energy will be ex-
plained because the hole part can be calculated in exactly
the same way. Applying the Gauss formula and noticing
the reality of the envelope function, we have

— [drovie= [dnv,e), (B6)

where dr=d’r,d’r), and V, is the gradient operator with
respect to the electron coordinate. The exciton envelope
function can be generally written as

(I’(re7rh):Ecigi(re’rh)Ri(|rg|’!rh|), (B7)

. —ar
where g; contains the factors such as rJ, e “, and

P,(cosO,,) and R; includes only the radial coordinates
like the function of (2.8). The essential part of the calcu-
lation can be explained by considering a typical term ap-
pearing in (B6) which is given as

de

V.g1)R +g(V.RI[(V,8,)R;+8,(V.R,)] .
(B8)

Applying the Gauss formula, we have
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de

V.8:1(V.8,)R R,
—3£182[(ViR )R, + R (ViR;)]
+3[(V.81)8,—81(V.8,)]

X[R{(V,R,)—(V,R,)R,]} . (BY)

The second integral can be carried out in the same way as
the normalization integral because the Laplacian operates
only on the radial part wave functions. The first and
third terms can be reduced furthermore as follows. We
note | that for the L =0 exciton state g; has a typical form

ofe “rlP, (cosO,,)and can be expanded as

gi(r.,ry)=3 P/(cosO,,)8"(Ir, |, |7, (B10)
7

using the relations in Appendix C. Here 9, is a function

of only the radial coordinates. Making use of the relation
d

J dﬂedﬂhgﬂ—ep,

(cosO,,) P,(cosO,,)

_9_
aQ,

_ (47)?
21 +1

where 0/3Q, stands for the derivative with respect to the
angular variables, we find

I(0+1)8, , (BI

89/ 89 1 1U+1)

2 - (1) @(2) 1
Jd(V,g(V,g,)R R,=(4) f dr,r f dryri | 3 577 o Br. r3§ e Lging) |R R, (B12)
and
Jarl(V.g8,—81(V.g)I[R(V.R,)~(V,R})R;]

(1) (2)
_ 2fR, 2[R 2 1 391 Lo o 95 oR, 9R,
L fo drer. fo drhrhzl" 20+1 | ar, ! i or, ' or, or, *

The function ${" is a linear combination of the functions
{G{"(r,,r,)}. In this way all terms in (B9) are reduced to

(B13)

to a. It is convenient to rewrite the spherical Bessel and
Hankel functions for pure imaginary arguments in terms

radial integrals. of real functions defined for n =0,1,2,. . . by*®
APPENDIX C: EXPRESSION OF G;")(r,,r;,a) n _
! " —jiix)=(2ix) T"FM(x)
Here the expression of G;"(r,,r;,a) defined by (B4) dix)" (C2)
will be presented. The integration over k can be per- d" (1) 13\ — 7 () c l+1+n
formed by a contour integral and we have, for example, d(ix )" hi e )=iH " (x) /(2ix) ’
G}_”(re,rh,a)z-:;ﬁh;”(iar>)j,(iar<) , (C1) Then we have
G-V —_1 rie FO) (0)
where ., = max(r,,r,), r . = min(r,r,), and h{" is the 1 e ry,a)= 87 R (ar,)d (ar ) (€3)
spherical Hankel function of the first kind. Then G"
can be obtained by successive differentiation with respect and
I
(n) (- re S (n (n—r) <! () (n+1-n
G (re,rh,a)zm L1 (n+1) 3 ,CH | (ar )" "ar )+5 3 , 1CH [ (ar )" “lar ) |,
> r=0 r=0
(C4)

where n 20 and ,, C, is a binomial coefficient.
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APPENDIX D: EXCITON OSCILLATOR STRENGTH
AND SHORT-RANGE EXCHANGE ENERGY IN THE LIMIT OF R —0

Here the asymptotic behaviors of the oscillator strength and the short-range electron-hole exchange energy of the
lowest-energy exciton state are examined in the limit of vanishing crystallite radius, i.e., R —0. In this limit the exciton
envelope function can be approximated by (2.12). The normalization constant is determined by

(417 3R 2 . 2.2 (0) 0
f dx xejo(xe)fo dx,x;j5(x, )Gy (x,,x,,2aR /k7)= (D1)
with " , a
GBO)(Xe’xh’a)E fo dk k m}o(kxe)jo(kxh)
_GX> ax
=—e2 [(ax>—ax<+1)eax<—(ax>+ax<+1)e ¢ <1, (D2)
8max . x .

where x . = max(x, x;), x . = min(x,,x, ), and v, is the
volume of a unit cell. In the limit of R —0, 2aR /k? ap-
proaches zero and G’ (x,,x,,2aR /k?) takes a value of
1/(4). Then we find

C o Uo(k?)3 (D3)

2R

The enhancement factor of the oscillator strength in (6.5)
is given by a square of

So(r,r) c¢210 K9 _ 2mCoR? (D4)
p 'R vo(k9)?
Substituting the expression of Cg, into (D4), we have
fx/fo=Z ®r,r)?= (DS)

Thus in the limit of R —0, the oscillator strength of the
lowest-energy exciton in a quantum dot approaches that
of the band-to-band transition in the bulk material.

On the other hand, the enhancement factor of the
short-range part of the electron-hole exchange energy is
given by (8.7) and is proportional to

E|d>rr|2—C¢2]0 ﬁ
47CiR?
—(‘k—*)—f[S(Zﬂ') 18i(47)], (D6)
Vo

where Si is the sine integral function. Substituting the ex-
pression of C, into (D6), we obtain

s, r)lz—E— [Si(2m)—1S 477)]%0.672% . (D7

Thus the short-range part of the exchange energy shows
an increase proportional to R ~3 in the limit of R —0.

APPENDIX E: ELECTRON-HOLE EXCHANGE
INTERACTION IN THE SITE REPRESENTATION

The electron-hole exchange interaction is usually de-
rived in the Bloch orbital representation. However, in
the case of quantum dot, the site or Wannier orbital rep-
resentation is more desirable because the wave vector is

[

not well defined due to the three-dimensional
confinement. Here we will derive the electron-hole ex-
change interaction in the site representation. An exciton-
ic state in the site representation is written as

|¢)7\>: 2 2 (pl}:'r,,uo(re’rh )airrea,uorh ]0> ’

vTr, HOF),

(E1)

where a(a’) is the annihilation (creation) operator in the
site representation and |[0) denotes the ground state of
the system and the eigenvalue equation for the envelope

function &% ucTesry) 18 given by
A v o
Z z {vrr,pory, | [V'T'r;,,u'a’r,: ] q)V'T',,u’cr’(re’rh )
VT r po' ’h
=6, P}, ,o(r,r,)  (E2)
with
{vrr,uor, Hv’r’r',y'o’r,: }
¥
—<01‘1wrh vrr, [H’av'rrlf ,ucrr ”0) (E3)

where (u,u’) and (v,v') stand for the indices of the
valence and conduction bands, respectively, (o,0') and
(7,7') are the spin indices of the respective band states, €,
is the excitation energy relative to the ground state of the
system, and H is the relevant Hamiltonian. The
electron-hole exchange term in (E3) is found to be
Vvrr,,u'o'ry;v'7'r,,uor, ) with the definition

V(A0 171, A0 373 A30 373, Ag0 47 4)
— 3 3.
= [a* [d*r'e},.,, r)qsxzc,z,2
¢A ’ (E4)

where ¢, , , is a Wannier orbital belonging to the A;

Wr—rs o, ()

4‘74’4

band with the spin state o; which is localized at the site
r; and V(r—r') is the Coulomb potential. Then the
electron-hole exchange energy of the A exciton state is
calculated as

2 2 2 2 (Dvr,ua(re’rh )q)ﬁ’r',,u’rf'(rc:’r};)

vTr ar !
e HOTy v'r'r, /t(rrh

XV(vrr,p'o'ryv'e'r,,uor,) . (E5)
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