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Third-order nonlinear susceptibility of large semiconductor microcrystallites
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We show that the theory of the third-order nonlinear susceptibility of semiconductor microcrystallites
with a radius much greater than the exciton radius ("weak confinement") has big intrinsic uncertainties
due to the unknown volume dependence of the phenomenological relaxation times. These dependencies
are actually sources of another type of optical nonlinearity. The third-order susceptibility increases
strongly with the increasing radius of the microcrystallite in the range between 10 and 100 exciton Bohr
radii and approaches a we11-defined infinite radius limit.

I. INTRODUCTION

The optical properties of small semiconductor crystal-
lites were the subject of extended experimental and
theoretical investigations during the last decade. In their
pioneering theoretical work, Efros and Efros' have dis-
tinguished several confinement regimes. Of outermost in-
terest are, of course, the very small quantum dots, whose
radius is less than az —the Bohr radius of the exciton in
the bulk (strong confinement). The theoretical treat-
ments exploit here the smallness of the parameter R /a~.
Another extreme case is that of large dots, for which the
inverse parameter A, =ati /R is the small entity (weak

0

confinement). Unfortunately, no systematic expansion is
possible here, the parameter X playing effectively the role
of Planck's constant in the Schrodinger equation. Never-
theless, there is an increased experimental and
theoretical ' interest toward the nonlinear optics of
such big quantum dots. The theoretical interest was part-
ly motivated by the apparent increase as A, of the po-
larization matrix element between vacuum and the exci-
ton state predicted within the weak confinement model.
Although recent theoretical studies of Frenkel excitons
on linear chains' '" predict an enhancement only in a re-
stricted range of radii, the subject is still worthy of a de-
tailed discussion.

We would like to base our discussion on a consequent
formulation of the theory of the third-order susceptibili-
ty, in which the decay parameters (phenomenological
width) are introduced from the beginning in a consistent
manner. The formal theory is developed in Sec. II and
applied to the weak confinement model of the excitons in
a quantum dot in Sec. III. A related discussion of the
asymptotic volume dependence of the third-order suscep-
tibility and of the radiative decay is given in Sec. IV. The
last section contains several numerical examples of calcu-

lated third-order susceptibilities to illustrate the frequen-
cy dependence, dependence on the radius, and the insta-
bility against very small variations of the width parame-
ters.

II. FORMAL THEORY
OF NONLINEAR SUSCEPTIBILITY

The knowledge of the low-lying eigenvalues and wave
functions of a quantum-mechanical system with a
discrete spectrum (such as electrons and holes in a micro-
crystal) allows, in principle, the calculation of the lowest
optical nonlinearities at low temperatures. In what fol-
lows we describe here the formal theory of the third-
order nonlinear susceptibility g3.

Let us admit that the system, described by the Hamil-
tonian H, is exposed to the interaction with a classical
optical electric field in the dipole approximation accord-
ing to the electromagnetic (em), time-dependent, interac-
tion Hamiltonian

H, (t)= PE(t), — (2.1)

where P is the projection of the interband dipole operator
onto the polarization direction of the em field E.

We are, generally speaking, interested in calculating
the quantum statistical average of the polarization sup-
posed to coincide with the dipole operator P, but P has
no diagonal matrix elements between the eigenstates of H
(for example, in a semiconductor quantum dot it changes
the number of electron-hole pairs with one, while H com-
mutes with the number of electron-hole pairs) and there-
fore in thermal equilibrium its average vanishes. A non-
vanishing average value of P can only be induced by the
electromagnetic field E(t). Then, admitting that the field
is introduced at the time t =to, one has the development
in the powers of the applied field

—(P(t)) = f dt, y, (t, t, )E(t, )+f dt, f dt, f dt, y, (t, t„t„t,)E(t, )E(t, )E(t, )+
tO to tO

(2.2)
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[Even power terms are excluded, because P has the same
space-reAection property as the field E, but also explicitly
because any power of the field in this expansion is associ-
ated through the explicit form of the perturbation ac-
cording to Eq. (2.1) with the same power of the P opera-
tor, and only averages of even powers of the P operator
are nonvanishing. ] The volume of the system fl was in-
troduced for a correct definition of the susceptibilities.

The time-dependent susceptibilities g, and g3 may be
computed using perturbation theory in the Liouville
equation for the density matrix

i' p=—[H+H, (t),p] iK—[p]
~ a

(2.3)

with the initial equilibrium condition

p(to)=pa(H) . (2.4)

The "superoperator" K, acting directly on the matrix
elements of the density matrix, represents all the dissipa-
tive, irreversible processes which ensure the existence of
asymptotically stationary solutions (after an infinite time)
for harmonically oscillating fields.

A simple phenomenological "superoperator" satisfying
the requirements of (i) conserving the hermiticity, trace,
and positivity of the density matrix as well as (ii) bringing
the system back to equilibrium in the absence of the per-
turbation, is given by'

der certain conditions more general superoperators (see,
for example, Ref. 17) expressed in terms of the bath-
induced transition rates W;, between the eigenstates ~i )
and j~) of the system Hamiltonian H,

g(p, , W, , p„—W„) for i =j
I

—'g( W, &+ Wi) for i'
I

The superoperator Eq. (2.5) is just a peculiar case of this
more general class of superoperators. Its main advantage
for phenomenological applications is that it depends only
on the "single index" parameters (eigenvalues) 1, having
the interpretation of inverse lifetimes of the eigenstate
~i ). These are directly accessible experimentally through
the interpretation of the homogeneous linewidth of the
linear susceptibility. Whenever the damping mechanism
is known and a simple expression for the transition rates
is available it is, however, desirable to work with the last
more general expression giving rise to a much richer
spectrum of population decay rates. In the case of the
quantum dots the less ambitious approach seems more
appropriate, but the formalism might be developed easily
also for the more general case.

Now we proceed to obtain the formal solution of the
generalized Liouville equation. To simplify the notations
we shall introduce the superoperator (Liouvillian) L as

[I po] Tr(l p»1

2Tr I po
(2.5) L[p] —= —

~
[H p] —

~ K[p] (2.6)

where [, ] is the anticommutator and I is a positive (Her-
mitian) operator. This is the generalization of the simple
relaxation term

—(p —po)

which can be obtained if I is taken to be just the constant
A'/r. Therefore (1/fi)I is just to be interpreted as the in-
verse relaxation time operator. In what follows we shall
restrict ourselves to operators I that commute with the
Hamiltonian H.

We shall stress here an important property, ' namely,
that although formally one can develop a susceptibility
theory by a straightforward application of the time-
dependent adiabatic perturbation theory, introducing an
adiabatic factor e' in the field, the result coincides with
the introduction of a relaxation time ~ in the Liouville
equation only for the linear susceptibility, but for the
third-order susceptibility it gives wrong coefficients for
the different terms and for the damping parts of the
denominators. Beyond linear response adiabatic intro-
duction of a perturbation and relaxation are physically
and mathematically completely unequivalent. This im-
plies that in the nonlinear theory one must be very care-
ful and cannot introduce arbitrary dampings in an adia-
batically obtained formula. The damping mechanism de-
scribed by dissipative superoperators assures that all the
important general physical properties of the original
quantum-mechanical system are still conserved.

For the irreversible behavior of a quantum-mechanical
system coupled to a "thermal bath, " one may derive un-

Then it is convenient to write down the integral equa-
tion equivalent to Eqs. (2.3) and (2.4),

Tr( AL [B])=Tr(BL [A )
—) (2.8)

for any operators 3 and B. A further useful notation is
for the equilibrium average

( A )0=—Tr(poA) .

With these notations we have

L "(t —t )

y, (t, t, )= — ( [P,e ' P])0ixn

(2.9)

(2.10)

and
—1 L (2t& —

t&
—t3)

y, (t, t, , t, , t,)=,([P,e
Q(iA')

L (2f
l

t t~ )
X [P,e

LT(t —t j

X[P,e ' P]]])o

(2. 1 1)

p(t) =po+ . f dt'e " ' '[P, e " "p(t')]E(t') . (2.7)
to

This form is very adequate for iterative solutions in
powers of the field E. We give here directly the results of
the first and third iterations for the susceptibilities. They
are most conveniently expressed in terms of the trans-
posed Liouvillian L defined through the identity
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where we also took into account that L (po] =0. This
formula is actually valid also for any superoperator K.

It is important to notice that the susceptibilities are in-
variant with respect to a common choice of the time ori-
gin and therefore have only three independent time vari-
ables. It is then useful to define explicitly a susceptibility
depending only on three independent time variables

the time-dependent susceptibilities explicit [with the
choice of the superoperator Eq. (2.5)] are the following:
the introduction of the complete set of eigenstates (n ) of
H in the intermediary states (g„~n ) (n~ = 1) and the use
of the assumed diagonality of r, which enables us to
write for any operator A

I „+I„&.~L'~ ~
~ ~n &

=—„' E„E„—, +i "

(2.12) (ra),
nn n' (2.13)

and to set t0 = —~, which does not affect the expressions
since E(t) vanishes for t (to. We remark that

The important steps needed to make the formulas for

In particular, for operators for which (I 2 )o=0, the ac-
tion of the superoperator L is very simple and we may
write generally, due to the positivity of I

=—i H, ~ ——&rw& — r, ~ ——&rw& +=1 1 1

r ' ' r ' (r&,
—1 (r~& 0 (2.14)

This last equation also enables the explicit use of the exponent of the superoperator L through the same decomposi-
tion trick

L t( g )
(iH —i )(iht g (rg ) (

—iH —i )IAt+(rg ) eL t1 Tg ]

r r (2. 1 5)

The exponential of the superoperator applied on 1/I can be treated separately, but can be eliminated through other
tricks from the total expression. Special care has to be devoted to the time integration. The exponents are so that only
the negative (decaying at —oo) exponentials are surviving and therefore the convergence of all the integrations is as-
sured.

The time-dependent third-order susceptibility is important in the treatment of experiments with very short pulses. A
useful entity for the discussion of quasistationary light fields (very long laser pulses) is obtained by the introduction of
Fourier transforms,

—(P(co) ) =g ((co)E(co)+fde, fde, f den, 7t, (co, , co„co,)5(co co, co,—co, )E—(co()E—(co, )E(co,)+ (2.16)

1 1
f3(co, , co~, co3) = P,

Q(iiii) L +co, +co~+co3
P, P

L +N3

The expression of $3(co„co&,co3) is easily obtained from the previous definitions

1
P, +N2+ C03

(2.17)

Actually, only the syinmetrical part f3(co(, co2, co3)' of
g3( co (, co~, co3 ) contributes under the integral.

A different kind of experimental situation with several
beams of different frequencies may be discussed in terms
of these susceptibilities. For example, in a one-beam ex-
periment the entity

3/i(co, co, co) ~

is relevant, while in a pump and test setting the entity

6+3( cubi, cop, co r )

appears, where co~, cuT are the frequencies of the pump
and test fields, respectively. The explicit form of the

frequency-dependent susceptibility is obtained again
through the introduction of a complete set of eigenstates
of the Hamiltonian H in the intermediate states.

We did insist on the technical details related to the
theory of nonlinear susceptibilities because in the case of
the microspheres having discrete energy levels, unlike in
bulk semiconductors with continuous spectrum, this
theory is relatively well formulated, although not widely
known. The delicate point by the infinite volume limit (in
the presence of a continuous spectrum) is the fact that al-
though the whole susceptibility is an intensive entity, by
the decomposition through the intermediate states one
gets a lot of terms, each of them being proportional to the
volume or even its second power and one has to face a
very subtle cancellation mechanism.
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III. THIRD-ORDER SUSCEPTIBILITY
OF SEMICONDUCTOR MICROCRYSTALLITES

IN THE WEAK CONFINEMENT LIMIT

Let us consider here for the sake of definiteness the
pump and test case at zero temperature in a confined

electron-hole system (semiconductor quantum dot). The
polarization operator has nonvanishing matrix elements
Pp, between the vacuum and one pair ("exciton") states
as well as P,b between the one-pair and two-pair ("biexci-
ton") states. Its explicit expression has been derived in
Ref. 18,

sym
IP,pl'P, pl'

1 1 1

I, p
—i(e, —

ficop ) I,p+i (b, ficor) —I, , i (fi—cor ficop)—

1 1

I, p i (e, —fico—p) I „+is„ I „+i(e„—A'cor+ficop )

1 1

I +i (E —'fico ) r, + l E

1

I b, +i (Eb, —Rcor )
x I,p+i (e, ficor )—

1+g Pe eb be' e'P '

bee'

1 1

I,p+i(6 ficop) I p+i(e, —ficor)

I,+i (e„,—fico )

1

r, p i (e, ——ficop )

+ 1

I „. i ( e„.+ fico r —fico p)—
1 1

I, p+i (e ' ficop) I ' ie

+ 1

I, p+i (e,. ficor)—
r„—i (c„+ficor ficop

)—
Here, i =e, b runs over the exciton and biexciton states
having the energies e, and 6''j 6' E'j The dampings
are I;,= ( I, + I . ) /2, and for i Wj they represent the phe-
nomenological coherence decay rate of the ij transition
while for i =j they describe the population decay of the
state i.

The explicit set of quantum numbers characterizing
the states here abstractly denoted by the index i was not
yet specified. The eigenstates of even a single electron-
hole pair inside a rigid spherical potential well are not ex-

I

plicitly known. Nevertheless, there are some simple plau-
sible approximations often in use due to Efros and Efros. '

The cases of strong and intermediate confinements were
properly discussed in the literature and present no ambi-
guities. In what follows we are interested here only in the
case of large quantum dots, having a radius R much
bigger than the exciton Bohr radius az in the bulk semi-
conductor. Under these circumstances it is argued on
physical' as well as on mathematical grounds' that the
lowest-lying states of an electron-hole pair may be well
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%,(x„xi, )=P(x)QI „(X); (e = Ilmn I ) . (3.2)

Here x„x& are the coordinates of the electron and hole,
respectively, while x and X are their relative center-of-
mass coordinates, respectively. The ground-state wave
function of the relative motion is given by

1P(x)=
+~a,'

/xf
exp (3.3)

and that of the center-of-mass motion by

„(X)=y, „(r)r, (e, y) (r = lXI—) (3.4)

(l =0, 1,2, . . . ; m =0,+1,+2, . . . , +l; n =1,2, 3, . . . ) with
the well-known spherical functions YI (8,$).

We give here only the s-wave eigenfunctions and
eigenenergies we need for our further applications,

1 sin(nut /R)
&2m

(3.5)

Within this approximation, the energy of the electron-
hole pair state is given by the bulk exciton ground-state
energy shifted through the "quantization" of the center-
of-mass kinetic energy,

2
fZ n 77

2(m+m ) R

2

(3.6)

where E is the band gap and ER is the bulk exciton
binding energy.

At its turn, the matrix element of the polarization
operator between the vacuum and the one pair state with
quantum number e =—

I lmn I is given by

described by a product of the wave function of the
ground-state relative motion P in the bulk with that of
the confined center-of-mass motion itt&

1)n+1
ge =

~1,0~m, (Pcv
7T n

(3.10)

If, as usual, one completes this picture with the assump-
tion that all the decay parameters are equal,

5H =—'X g V" b, b, b, b, .
e, e'

(3.1 1)

At the same time an additional exchange piece in the po-
larization appears,

then one has a very simple model, which, however, has a
vanishing third-order susceptibility. Even more, it is
well known, that such a model has no optical nonlineari-
ties at all. ' '

Any deviation from this naive exciton-boson picture
may give rise to a nonvanishing third-order susceptibility.
For example, the introduction of the molecular bound
state (true biexciton) gives rise to the typical biexcitonic
nonlinearities. The corresponding polarization matrix
elements have no volumic enhancement factors and
therefore their discussion is simple. They also are not ex-
pected to give rise to strong volume-dependent effects. In
what follows we shall be concerned in more detail with
the properties of the slightly improved bosonic model in
which exchange interactions between the excitons as well
as exchange polarizations are taken into account. We
shall admit also that the decay parameters I, are not
necessarily all identical.

If one takes into account that the excitons are compos-
ite objects, then the energy of the state with two excitons
differs from the sum of the energies of the two excitons,
due to the direct and exchange Coulomb interaction of
the constituents. For large-sphere radii the exchange
contribution dominates. This effect may be considered
through an additional piece in the Hamiltonian

Po, = f dxP, „(x)
+~a,' W =X'"-,' y g. .. ,„b,'b, ,b,„+H.c. (3.12)

1 )n+1
3/2

2
(3.7)

Here p„ is the Bloch part of the interband matrix ele-
ment and the smallness parameter A, —:az/R of the weak
confinement was introduced. At first glance an
"enhancement" with k of the oscillator strength
occurs. As we shall see later, this actually has no conse-
quences.

A simple extension of these results to many-pair states
is to assume that the electron-hole pairs are ideal bosons
with the Hamiltonian within the second quantization for-
malism given by

e, e'e"

The explicit expressions of the exchange interaction ener-
gies and exchange polarizations may be found in Ref. 13.
Here we just give their expressions for the s states,

52/3 i sin(nor ) sin(n'~r )
n, n R r

&dr
g„"„„-= —7&2 i s(nn mr ) sin(n 'wr ) sin( n "err ) .

(3.13)

H =pe, b, b,

and the polarization operator given by

P =A, gg "(b, +b, )

with

(3.&)

(3.9)

It is clear that the smallness of A, makes the 6H and M'
asymptotically small. The question is then how this
smallness gets compensated through the volumic
enhancement of the bosonic polarization P IEq. (3.10)j?

An explicit algebra shows that the inclusion of 6W, to-
gether with taking into account that the decay parame-
ters are not identical, gives rise to a nonlinear susceptibil-
ity



47 THIRD-ORDER NONLINEAR SUSCEPTIBILITY OF LARGE. . . 4503

X3(~p ~p ~T)1 3 g(g g ') [V, '+i~ ( 0, r( '), ')]A (3.14)
Sma~, ,

where all the known radius dependencies were turned into explicit powers of k except for the radius dependence of the
energies e, in the expression of A. ..,

A, ,:— [F, , +G, , },(e, f—~T lr—
p )(e +V fthm)T lr„,, „)

F...=
1 1 1I, —l(e, —Aco ) r, +l( e+e, + V, ) r, +t((e + e+V, )

—fico +fico )
(3.15)

Ge, e'
~e +~e'+ ~e e' ~~T ~~P i ~(e e') e'

1

AcoT 1I 0 Ee AcOP l I pe %COT /I 0 fM)p l I p

Still open, however, is the question of the radius dependence of the decay parameters I . From Eq. (3.14) it is obvious
that either the difference of the one-exciton and two-exciton polarization decay rates vanishes at least as fast as the in-
verse volume of the dot,

CC~0, e ~(e, e'), e'

or the susceptibility is not properly defined, because obviously it will be extensive. Since our model is not a pure Hamil-
tonian one, such difticulties are not unexpected. Therefore we are compelled to admit for the consistency of the model
that

3
~0, e ~(e, e'), e' ~ Ve, e'

with y, , remaining finite when A. ~O. Then,

(3.16)

3( p p T)1: 3 g(g,"g,", ) [V, , +11,, ]A, ,
8nag e, e'

(3.17)

We remark that, even without the explicit exciton-exciton interaction energy V. .. one would obtain a nonvanishing
third-order susceptibility due to the term y. .., which in turn is also an implicit consequence of the exciton-exciton in-
teraction.

The inclusion of 6P, in turn, gives rise to another nonlinearity. Since, however, 6P is already of the order I, , the in-
clusion of a single such correction in spite of the enhanced P already gives an intensive contribution, and the inclusion
of a second power of 6P is superAuous, giving rise only to a small correction, vanishing for X~O. Omitting this correc-
tion, one can write then the second piece of the susceptibility as

+3 P P T)2 3 X g,"g, g,"g... , „B(e,e', e" )
4ma~ .. .-

where

(3.18)

and

B(e,e', e")=C(, , ),„+C(,, ), (3.19)

I (, , )0+i (e, +e '+ V flcop 1)icoT) I 0+i (e, —ficoT) I (, , ), +l(e, +e,.+ V, , e, ficoT—)- —

1 1

I, 0+i(e, —ficop) 1, 0+i(e, , —-A'coT) I (...), +i (e, , + V„. flcoT)—
1 1 1

I,() l (e, —A'cop—) I „i(e3 —e-,—") I „- i (e, —e,-+fico—T —A'cop)

1 1 1 1

I „+I(e —i)leo ) I„„—l (e —e )1 „+„l(E—fico )
' I„„—l(E—e +%co ' —i)i„co )

(3.20)
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Both pieces of the third-order susceptibility, Eqs. (3.17) and (3.18), are smooth functions of the dot radius. The
enhancement factors appearing in the unperturbed polarization were completely compensated. Whether an "explo-
sion" of the third-order susceptibility with the growth of the radius still occurs can be decided only upon the analysis of
the radius dependence of the series in the two equations, (3.17) and (3.18).

The nervous point of the theory is, however, the fact that the nonlinearity may be completely dependent on the
knowledge of a very small correction to the decay parameters, vanishing in the bulk. We shall illustrate this point later.

IV. ON THE INFINITE RADIUS LIMIT AND THE RADIATIVE RECOMBINATION IN BIG QUANTUM DOTS

After the introduction of the explicit expressions of the relevant matrix elements, the structure of the series defining
3(MP, &P, &T)1" and/'3(MP, MP, MT)2 1S given b

X3(~P& ~P&~T )1

4
Pcv 52 I dr n& n2g [sin(n, mr) sin(n. 2vrr )] A, ;cop, coT

(aBER )' 3~' 0 r R R ' (4.1)

+3(~P ~P ~T)2
&cv 28 & dr n

l
+ n&+ n3g (

—1) ' ' 'si (nn, mr) si (nn2rrr) sin(n2vrr)
( AB+R ) ~ n1 =1n2 = ln3 =1

n2 n3
(4.2)

We took here y„„=0,and for the simplicity of the discussion we ignored the energy corrections of the order k due

to the exciton-exciton interaction. The functions 3 and B in these series consist of products of energy denominators
(with the energies measured in units of ER). They are asymptotically decreasing for high n s at fixed R. [The quantized
exciton energies are given by Eq. (3.6).] At fixed n s, however, they are tending to some definite finite functions of coP

and cuT as R goes to infinity.
On the other hand, the series with constant 3 and B are well-known convergent and explicitly summable series.

Therefore it is easy to find the asymptotic expression of the susceptibility for R ~ ~,
4

lim y3(~p, —cop, coT)'~ = [
—3.816A (0, 0;cop, coT)+0.3708B(0,0, 0;cop, coT)] . (4.3)

Therefore, the unbounded enhancement of the third-
order susceptibility with the increasing radius of the
sphere (due to the volumic factors in the matrix elements)
does not take place. Nevertheless, as we shall see, numer-
ical computations show that the maxima of this limiting
susceptibility are very high in comparison to their values
at R /az =10 and the limiting behavior is achieved slowly
only above R /a~ =100.

Leaving aside the uncertainty contained in the un-
known radius dependence of the damping parameters,
one may ask whether the asymptotic expression Eq. (4.3)
can be taken into earnest? Indeed, a correct treatment of
very large microcrystals must take into account the ex-
istence of the dissociated pair states, as well as the finite-
ness of the wavelength of the electromagnetic field. This
very last aspect we shall illustrate in the example of the
direct recombination of an exciton in the microcrystal.

In the bulk the direct recombination of an exciton
without simultaneous phonon emission is forbidden by
the conservation of energy and momentum (with the ex-
ception of certain momenta, where the exciton-photon
mixing occurs) and therefore it occurs mainly through
surface or impurity states. In a quantum dot, however, a
direct radiative recombination is also allowed. Our di-
pole interaction Hamiltonian Eq. (2.1) admits from the
beginning that the wavelength of the photon is negligible
in comparison to the radius of the dot and therefore is
not suitable for the discussion of the radiative decay in

where the second quantized wave functions for the elec-
trons and holes P, h(x) as well as the creation part of the
electric-field operator

i6COkE'+ '(x) =g 2V

1/2

ate'kake (4.5)

were introduced. (The volume V here is the formal
quantization volume of the photons and has nothing to
do with the volume of the quantum dot. ) The classical
counterpart of this Hamiltonian for k ~0 coincides with
Eq. (3.1).

By applying the golden rule of quantum mechanics one
may calculate the lifetime of the one-pair state e, due to
direct radiative recombination in the dot according to

(4.6)

the limit of radii that are bigger than the wavelength of
the emitted radiation. A correct treatment must take
into account the local nature of the electromagnetic in-
teraction and the finite wavelength of the photon. There-
fore one should consider the interaction of the electrons
and holes in the quantum dot with the radiation field ac-
cording to the Hamiltonian

H, =p,„dx, x h
xE' 'x+Hc. , 44
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We shall jump over the straightforward calculations
and give only the explicit result

2 2 3pcU 2 (kR)
iria

'
[ir —(kR) ]

(4.7)

where the explicit weak confinement quantum numbers
I, rn, n of the state e were introduced, jI are Bessel func-
tions of the first kind, ir„& are their zeros, and k—:e„& /iric.

For R ~~ the argument kR goes to infinity and, for
any finite l and n, 1, vanishes faster (but not monoto-
nously) as any power of 1/R. This is in perfect agree-
ment with the before-mentioned result for unconfined ex-
citons, which of course also may be obtained from Eqs.
(4.4) and (4.6) with plane waves for the center-of-mass
motion of the exciton.

On the other hand, if the photon wavelength is still
much bigger than the radius of the sphere, i.e., kR &(1,
then one finds

V. NUMERICAL RESULTS AND DISCUSSION

32ir pcu (kR)
fiaJi (nor)

One may not, however, conclude that the decay rate is
enhanced with the radius, since kR was already assumed
to be very small.

This also shows how difficult the consideration of the
volume dependence of the decay parameters is even
within the simplest possible mechanism for the simplest
lifetime.

Except for the last figure, where a fit to experiment was
attempted, we always use a common width parameter
I =0.03E~ and a hole-electron mass ratio m& /m, =4.

The typical behavior of the single-beam third-order
susceptibility $3(co, co, —co)'" in the exciton region within
the weak confinement model of large quantum dots is il-
lustrated in Fig. 1. The numerical curves (for the real
and imaginary parts) are obtained for a dot of radius
R = 10a . The simultaneous dependence on the frequen-B
cy and the radius of the dot is shown in the three-
dimensional Figs. 2(a) and 2(b). One may see a slight
shift to the origin (E„)and an enhancement with the in-
creasing radius. This enhancement achieves (for
R ))100aii ) its asymptotic value of about six (not
represented in the figure) compared to the susceptibility
at R =10a~. The contribution of the exchange part of
the susceptibility Eq. (3.18) was found to be negligible.

3 .
On the contrary, the energy corrections of order k in the
denominators of the direct susceptibility Eq. (3.17) were
found to be important for the frequency dependence at
moderate radii R = 10az.

The pump-test third-order susceptibility $3(cop cl)p,

co )'~ as a function of the test frequency for a fixedCOT

pump frequency situated slightly below (respectively,
slightly above) the origin (E ) is given in Figs. 3(a) and
3(b). Attention should be paid to the change of scale.
Again, one may see the enhancement effect with increas-
ing radius in the three-dimensional representation (simul-
taneous test frequency and radius dependence at fixed
pump frequency ice, =0.01) of Figs. 4(a) and 4(b). The
asymptotic enhancement factor is found to be about

In this section we shall give some numerical evalua-
tions of the third-order susceptibility. The susceptibili-
ties are all normalized to

Im (x, )

10 (p„)(asE~ )

and are therefore dimensionless. Instead of the true pho-
ton energies, we use ic =(fico E, )/Eii, wh—ere E =Es
—Ez is the energy of the bulk exciton. The dot radius,
as usual, is taken in units of the exciton Bohr radius az.
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FIG. 1. The imaginary (full curve) and real (dotted curve)
parts of y3( w, w, —w)' 10 (ab E& ) /p„as a function of
w:—(A~ —E )/E& at R/a~=10.

FIG. 2. The (a) imaginary and (b) real parts of
g3(w, w, —w)' 10 ' (a&E&)'/p, „as a function of w=(A~
—E„)/E~ and R/a&.
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than 10% (bearing in mind that 51 =A, y!), one modifies
significantly the values of the susceptibility as it can be
seen in Figs. 6(a) and 6(b). These results illustrate our

b t th instability of the susceptibility theory o
e widthbig quantum dots against small variations of the wi

parameters and therefore its weak predictive character.
Nevertheless, it is instructive to fit the recently mea-

sured picosecond differential absorption data on Cu
quantum dots (R =70 A = 10aii) in a glass matrix

W

FIG. 6. The (a) imaginary and (b) real parts of
3

' 10 ( E ) /p as a function of
w = (fi~ —E )/Ez at R /a& = 15: with y, , =0 (full curves) and

y, , =0.5 Vipp ]pp (dashed curves).

A'to =3.2053 eV) with our theoretical formulas. A best
fit with a unique width parameter o I =P

I =4 meV is
represented with a dashed curve 'g.in Fi . 7. The experi-
mental curve is the oscillating one. A much better fit,
however, can be achieved with slightly different width pa-

I „.=2 meV, given by the smooth continuous curve.
We may conclude that the weak confinement theory of

the third-order susceptibility of the microcrystals is com-
pati e wi ebl 'th th experimental data, but due to its in erent
sensitivi y o't' t to small volume-dependent variations o e
width parame ers ih t t has no strong predictive character.
Small variations o ef the relaxation times that are vanis-
ing in the bulk limit act as sources of new independent
nonlinearities of the same magnitude as those due to exci-
ton exchange effects.
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