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The nonequilibrium Green-function Keldysh formalism is used to analyze resonant interband tunnel-
ing in double-barrier structures and nonresonant interband transport in polytype heterostructures of
InAs, GaSb, and AISb. The systems are modeled by a multiband tight-binding Hamiltonian that incorp-
orates mixing of electron, light-hole, and heavy-hole states. The model is solved by the real-space renor-
malization technique, which is very rapid and numerically stable for any size of the system. The large
difference in effective masses and the opposite curvature of the energy dispersion of the conduction band
in InAs and valence bands in GaSb are reflected in the transport properties. The I-V characteristics of
double-barrier structures show quite different features according to whether the well is InAs or GaSb.
For the latter case, the current intensity peaks and the peak-to-valley current ratios are much larger than
for the former case. The calculated I-¥ characteristics are generally in very good agreement with the ex-
perimental data. The density of states and the dispersion relation of the resonant states as a function of

the in-plane wave vector are also discussed.

I. INTRODUCTION

Resonant tunneling in semiconductor heterostructures
has been extensively investigated due to its potential ap-
plication in high-speed electronic devices. Recent ad-
vances in epitaxial growth made possible the fabrication
of a variety of devices, based on the polytype combina-
tion InAs/AlSb/GaSb (Refs. 1-7), which have shown
high-frequency response and peak-to-valley current ratios
larger than any previously reported for tunnel structures.
This high performance is due to an electronic transport
mechanism that, unlike the conventional GaAs/AlGaAs
double-barrier structure, involves interband tunneling be-
tween conduction- and valence-band states. The
valence-band edge of GaSb is about 0.15 eV higher in en-
ergy than the conduction-band edge of InAs.

From the theoretical point of view transport properties
in mesoscopic systems have been investigated using
different formalisms and approximations for a variety of
conditions related to temperature, external fields, dimen-
sion, disorder, and many-body interactions. Resonant
tunneling has been considered either as a scattering prob-
lem incorporating many-body effects through the calcula-
tion of the transmission matrix that implies the
knowledge of two-particle Green’s functions,® or using
the tunneling Hamiltonian formalism.” Although these
studies represent a significative contribution to the under-
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standing of tunneling where multiphonon processes are
considered, it is difficult to apply them to real systems.
These approaches treat the tunneling in an extremely
simplified way, describing the system by one state, the
resonant state, interacting with connecting leads.

Within the one-body approximation the envelope-
function formalism has been used in the study of resonant
tunneling. However, this approach provides results for
the current peak-to-valley ratio much larger than the
ones measured in real systems. Besides, it is not suitable
to treat more complex systems where band mixing is im-
portant such as the X-point tunneling in GaAs/AlGaAs
and the interband transport in polytype heterostructures,
the problem we are addressing in this paper.

Recently, multiband tight-binding models together
with the transfer-matrix approach have been applied to
resonant tunneling in GaAs/AlAs (Ref. 10) and to the in-
terband transport in some polytype heterostructures.!! In
these studies the difficulties due to the numerical instabil-
ities appearing in the transfer-matrix method'? when ap-
plied to large systems have been overcome. In both the
current density is obtained through the calculation of
transmission coefficients. The peak-to-valley current ra-
tios predicted in Ref. 10 are more realistic then the ones
obtained by the envelope-function approximation. In
Ref. 11 multiband and two-band model results are com-
pared and the band mixing between heavy and light holes
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is discussed. However no comparison with the experi-
mental results is made.

In this paper we carry through an extensive discussion
of the features of the current density-voltage (I-¥) charac-
teristics for a variety of interband transport devices and
for the first time we present realistic theoretical results
for interband resonant tunneling in double-barrier struc-
tures. The Keldysh formalism'® for nonequilibrium sys-
tems is applied to heterostructures represented in a
tight-binding basis. This approach has already been ap-
plied by the authors to study interband tunneling within
a two-band model,'* including only interactions between
the conduction and the light-hole bands. It has also been
used to study inelastic scattering processes in convention-
al resonant tunneling.!> Within the spirit of the bond-
orbital model'® the Hamiltonian parameters are obtained
from a reformulation of the Kane’s k-p model, previously
proposed!” by the authors, which takes fully into account
the interactions among the conduction band and the
heavy- and light-hole bands. To treat the nonequilibrium
situation created by the application of a finite voltage to
the heterostructures we follow the ideas proposed by
Caroli et al.'® in their study of the tunneling through in-
sulating barriers. The nonequilibrium Green functions
are calculated by the real-space renormalization tech-
nique, which has shown to be very rapid and numerically
stable for any size of the system. The Keldysh formalism
has several advantages compared to other methods. The
study of the transport properties within this formulation
requires the calculation of one-particle Green functions,
even when considering many-body effects. In other ap-
proaches the study of these effects needs the knowledge of
two-particle Green functions which are commonly more
involved to be calculated. In the independent particle sit-
uation Keldysh treatment gives exact results and in the
case of correlated systems the physical properties can be
calculated, in principle, to all orders in perturbation
theory. Moreover, unlike other methods, it provides the
occupation spectra at each point of the sample. This
gives useful information about the existence of hot elec-
trons in the system and contributes to the understanding
of the range of validity of concepts like quasi-Fermi level
and quasiequilibrium, which are used in the semi-
phenomenological approaches based on the Landauer for-
mula!® for the electrical current. The Keldysh formalism
is also suitable to study the multistability present in tun-
neling current measurements?® by treating self-
consistently the potential profile produced by the external
bias. In a situation in which many-body effects can be
neglected the Keldysh formalism is exact and gives the
same results for the I-V characteristics as the transfer-
matrix approach and the Landauer formalism. However
it gives more complete information about the transport
process.

We apply this theoretical approach to study interband
transport in polytype heterostructures composed by
InAs, AISb, and GaSb in a variety of configurations for
which experimental data is available. The InAs/GaSb
band line up is of the type II with the top of the valence
band of GaSb 0.15 eV higher than the bottom of the InAs
conduction band, leading to the possibility of interband
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transport through the interface. When a thin layer of a
large gap material such as AISb is intercalated between
them, forming a single barrier structure, electrons can
tunnel from the InAs conduction band to the GaSb
valence band resulting in interband tunneling. In both
cases in spite of the absence of any confinement, the I-V
characteristic curves present negative differential resis-
tance, which is a consequence of the opposite curvature
of the energy dispersion of the conduction and valence
bands. Resonant interband tunneling occurs when a dou-
ble barrier is formed by intercalating two AISb layers be-
tween GaSb and InAs. In this case, according to the ma-
terial in the middle the resonant states in the well are
electronlike or holelike. The I-¥ characteristic for each
of these situations presents quite distinct behavior, main-
ly due to differences in the carrier effective masses of the
materials at the well and at the electrodes. These
differences are also reflected in the density of states as a
function of the parallel wave vector k; and in the energy
dispersion relations, which are also discussed in this pa-
per. The results we obtain compare well with the experi-
mental data available.

We consider only coherent transport, neglecting any
scattering mechanisms. The band bending due to charge
accumulation is also not taken into account and the elec-
tric potential profile is assumed to be a linear interpola-
tion between the higher and the lower reservoir poten-
tials. Under these circumstances the calculation of the
current is exact.

In Sec. II we present the Keldysh formalism in the
one-body approximation and the model Hamiltonian,
which we use to describe the polytpye InAs/AlSb/GaSb
heterostructures. The results and comparison with ex-
perimental data available are presented in Sec. III. A
summary is given in Sec. IV.

II. THEORETICAL FORMALISM

A. Model Hamiltonian

The heterostructure is modeled by a Hamiltonian
represented in a tight-binding basis, which is the ade-
quate set of functions to apply the Keldysh formalism for
nonequilibrium spatially heterogeneous systems. In order
to describe interband transport processes the model
should incorporate the conduction and valence bands and
their interactions. The basis taken consists of three orbit-
als per site and spin: s states [(s=1,m ==+1)) and the
four states |(j=~§—,mj=i%)) and |(j=%,mj=i%)>, giv-
ing rise to the conduction and the heavy- and light-hole
bands, respectively. The lower spin-orbit-split band lies
too low in energy to play any significant role in transport
since the carriers involved have energies near the bottom
of the conduction band and the top of the upper valence
bands. In this basis the Hamiltonian can be written

ij '
H=3IvcHcr, 8y
a,B

where «,B stand for the orbitals and i,j for the sites,
which we consider for simplicity to be in a simple cubic
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lattice. The V,-‘;E parameters are chosen to reproduce, for
the bulk material, the Kane’s k-p Hamiltonian?! when a
Fourier space transformation is performed in (1). This
ensures that the tight-binding Hamiltonian we use repro-
duces, for the bulk, the dispersion relations of the zinc-
blend structure.

Following Ref. 22 we adopt the cylindrical approxima-
tion to Kane’s Hamiltonian and we choose the x axis
along the heterostructure growth direction and the y axis

J

where Ec is the bottom of the conduction band, Ev the
top of the valence bands, P is the Kane’s momentum ma-
trix element and y, and ¥(¥ =y,=Y;) are the Luttinger
valence-band parameters.

In order to obtain (2) by Fourier transforming the
Hamiltonian (1), it is sufficient to consider first-neighbor
hoppings only, except in the case of the matrix elements
between states |2) and |3), where second-neighbor in-
teractions have also to be considered.

Comparing the Fourier transform of (1) with (2) we ob-
tain the tight-binding matrix elements V"‘ﬁ in terms of the
Kane’s Hamiltonian parameter, which are known for the
bulk materials. These are shown in Table I and Fig. 1.

The tight-binding Hamiltonian so obtained is applied
to study a variety of heterostructure configurations. At
the interfaces, the interactions linking the two parts of
the system are taken to be the geometrical averages of
their values at the materials on each side.

Due to the in-plane translational symmetry the k,
wave vector is a good quantum number. Taking the
Fourier transform in this plane the Hamiltonian (1) can
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FIG. 1. Representation of the tight-binding hopping parame-
ters. ¥V, and V| are the first-neighbor interactions along the
heterostructure growth direction r, and the in-plane direction
r, respectively. ¥V, is the second-neighbor interaction between
states |2) and |3) defined in the text.
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along the in-plane k; wave vector (k,=0). This choice
leads to the decoupling of the 6 X6 matrix Hamiltonian
into two equivalent 3 X3 matrices; one block correspond-
ing to the set of there state [1)=|(s=1m,=1)),
2)=[(=%2m;=—1)), and [3)=(|=3m;= 3)),
and the other block corresponding to the opposite spin
set. The Hamiltonian in this shorter basis retains the full
coupling of electrons, heavy holes, and light holes and
can be written (in atomic units) as

(k2 +k?) - -
Ec+——>——  —iPlk,—ik;)/V'6 P(k,+ik))/V2
. . = 71‘7 2 2 T — . 2
iP(k,+ik)/V2 Ev— (ki+ki) V3plk,—ik)?/2 |, )
—iP(k,—ik)/V2  V3p(k,+ik /2 Ev— 7/‘ Y (k2+k2)

be written as

H=33t,0kpcicl, 3)

k” ij

where [,j stand for the layer position along the growth
direction and the matrix elements of ¢;; are the Fourier
transform of the V" along k.

B. Nonequilibrium formalism

The current circulating along a sample when finite
external bias is applied is a nonlinear response
phenomenon occurring in a system which is in nonequili-
brium. In view of the irreversible character of the tunnel-
ing current, the usual perturbation theory does not apply
and it is necessary to use a more general formalism cap-
able of treating nonequilibrium processes. We adopt Kel-
dysh!® diagrammatic perturbation, which requires the
definition of a state of zero current flow that is obtained
by partitioning the system at an arbitrary point such that
each partition (left and right) has a Fermi level defined by
Ef;, and Efg, where the difference Ef; —Efp corre-
sponds to the external applied voltage. This state is then
used to build up an infinite diagrammatic expansion tak-
ing as a perturbation the Hamiltonian that connects the
two parts of the system. The diagrammatic expansion
generated by this perturbation theory can be summed up
without further difficulties and an exact result obtained as
far as a single-particle system is concerned. The effect of
the interaction between particles (electron-electron and
electron-phonon interaction) can be incorporated in prin-
ciple in the theory using well-known approximations pro-
vided by many-body theory. However in this paper we re-
strict ourselves to an independent particle description.

In order to obtain the properties of the system it is
necessary to calculate nonequilibrium propagates which,
following Keldysh formalism, are

—iG;; (ef(t)e; (1)),
iG;f (e;(t)ef(n) .

(4a)
(4b)

tt—t)=

(t—t")=
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TABLE I. The tight-binding matrix elements. a,8=1,2,3 are the three states defined in the text. P is Kane’s momentum matrix element, v, and 7 the Luttinger parameters, and a

the lattice constant. ¢ is the diagonal matrix element. For definition of V, ¥}, and V, see Fig. 1.
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B=3
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a=2, B=1

B=3
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V=iV,

~iv,

The Fourier transforms of the diagonal elements
G; T(w) and G, ~(w) are the spectral representations of
the state of occupation of site i for electrons and holes,
respectively. The retarded and advanced Green functions
G/(t —t') and Gjj(t —t') give information on the distri-
bution of available states of the system without any refer-
ences to their occupation.

The prqpagators GJ*(w) and G/;(w) satisfy Dyson-
type equations

G H@)={[1+G"w)()]g~* (o)
X[1+3%w0)G )]}, , (5a)
Gi(0)=g/(0)+[g"2(w0)G"(w)]; . (5b)

Similar equation are satisfied by G,»j-r_(a)) and Gjj(w).
The unperturbed propagators g;;(@) correspond to two
isolated subsystems in thermodynamical equilibrium,
which are obtained by disconnecting two subsequent sites
(1 and 2 in Fig. 2) of the original system. g,-;+(w) and
g,-f “(w) are simply given by

T . , flw)

where f(w) is the Fermi distribution function.

The retarded and advanced matricial objects 37 ()
and ¥{,(w) correspond to local time one-particle self-
energies that restitute the eliminated connection between
sites 1 and 2, reestablishing the nonequilibrium situation.
In our case they are simply the hopping matrix ¢,,.

The total current crossing the sample is obtained as the
thermodynamical nonequilibrium mean value of the
current operator. This can be obtained by calculating the
probability of an electron to hop from site i to site i +1
minus the probability of having the reverse process. As
there are no sources or sinks of electrons in the system
the result is independent of the particular choice of site i.
For the Keldysh formalism this is true if the perturbation
expansion from the state for which the system is parti-
tioned is done to all orders of perturbation theory, as in
the case of the single particle system we are considering.
The choice, being a matter of convenience, is made at the

....Tgooog®®®®oooo--...

FIG. 2. Energy-band diagram of a double-barrier polytype
heterostructure with GaSb as the well and n-doped InAs as the
electrodes, under applied bias. LFE and RFE are the Fermi en-
ergies at the left and at right. The different planes of atoms are
represented as follows: full circles, InAs; open circles, A1Sb; and
crossed circles, GaSb. The current density is calculated be-
tween planes 1 and 2.
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contact between the left lead and the heterostructure in-
volving the sites 1 and 2 shown in Fig. 2. The mean value
of the current is then given by

J:%t12(<c1{0020>_<C;0C10>) 4 (6)

where sites 1 and 2 are linked by the one-particle hopping
ty,-

In order to calculate the nonequilibrium mean values
appearing in Eq. (6) we apply the formalism presented in
this section. After some algebra, using Eqgs. (5) and (6)
the total current can be obtained as

et ety

277_ % f g 11
The integration in Eq. (7) is restricted to the interval
Ef, —Efy as it is evident from Eq. (5¢). This guarantees

that the current is zero when there is no external applled
bias.

0)gH ()]G, (w)do . (7

III. GaSb-InAs-AlSb HETEROSTRUCTURES:
RESULTS AND DISCUSSIONS

We now apply the theoretical approach presented in
the last section to study polytype heterostructures consti-
tuted by InAs, GaSb, and AISb in different configurations
for which experimental data are available. In our calcu-
lations we use InAs/GaSb and GaSb/AlSb valence-band
offset values of 0.51 eV (Ref. 23) and 0.40 eV (Ref. 24),
and gap values of 0.36, 0.67, and 2.2 eV for InAs, GaSb,
and AISb, respectively. The origin of the energy scale is
taken at the top of the InAs valence band.

A. Double-barrier structures: EHE tunneling

In Fig. 2 the band structure of a double-barrier system
constituted by AlSb barriers and a GaSb well connected
to n-doped InAs electrodes is schematically illustrated.
Tunneling of electrons from one electrode to the other via
the quantized hole state of the well occurs when applied
voltage is such that a resonant-state energy in the GaSb
well coincides with the energies of the electrons in one of
the InAs electrodes. We denote this process by electron-
hole-electron (EHE) tunneling. In the inverse case where
the roles of GaSb and InAs are interchanged we call the
process a hole-electron-hole (HEH) tunneling and it will
be discussed later.

As a first example we consider an asymmetric double
barrier with the dimensions of one of the samples report-
ed in Ref. 2: 100-A GaSb well and 15-A- and 25-A AlSb
barriers. In Fig. 3 the local density of states (LDOS), cal-
culated at site 2 (Fig. 2) is shown for k” =0.00, 0.01, and
0.02 and without external bias. Throughout this paper k,
is given in units of 27 /a, where a is an average lattice pa-
rameter for the three materials and the sizes of the bar-
riers and wells are approximated since they are constitut-
ed by integer numbers of layers. For k;=0.0, over the
range of energy of interest for interband tunneling 0.36
eV =e=0.51 eV there are five resonant hole states, the
one at 0.424 eV being about ten times more intense than
the others. This is a light-hole state with a small mixing
of the s-states, as can be seen in Fig. 4 where the LDOS
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FIG. 3. Local density of states for InAs-AlSb- GaSb AlSb-
InAs double- barrier structure with no bias, d,=15 A and
d, =100 A for k;=0.00, 0.01, and 0.02. kjin units of 27 /a.

projected on the electron (S), the light-hole (LH), and the
heavy-hole (HH) states (PLDOS) is depicted for k;=0.00
and 0.01. Notice that, for clarity, the projections on the
S and HH states are amplified, respectively, by factors of
3 and 5, with respect to the LH state. The other four
states are pure HH states for k;=0.0. As the value of k|
is increased, the relative intensity of the peaks changes
and the resonances move to lower energies as a conse-
quence of the downward curvature of the energy disper-
sion in k. The mixing induced by k70 is clearly seen
in Fig. 4, which shows all resonant states with contribu-
tions from the three components, although the LH state
predominates. The energy dispersion relations for these
states show anticrossings between heavy- and light-hole
types of states, as represented in Fig. 5 for small values of
k.

”The I-V characteristics for two polarities are presented
in Fig. 6. By narrow-wide (NW) bias we mean the nar-
row barrier at the higher electric potential energy while
wide-narrow (WN) bias corresponds to the opposite situa-
tion. The Fermi energy of 50 meV, consistent with a
doping concentration of the order of 10'7/cm?, is chosen
to locate the Fermi level just below the more intense reso-
nance at 0.424 eV (Fig. 3). Due to conservation of k”, for
this Fermi energy the maximum value of k| that contrib-
utes to the current is ~0.01 and the tunneling involves
predominantly a LH state.

The peak of the I-V curve for the NW bias case occurs
at 0.04 V and has the intensity of 520 A/cm? while for
the WN bias case it appears at 0.03 V with an intensity of
150 A/cm?, 3.5 times smaller. This is expected since in
the N'W bias case as the bias is increased the wide barrier
gets lower than the narrow one, making them equivalent
at the resonance condition. This symmetric situation
maximizes tunneling. These predicted values compare
well with the data reported in Ref. 2, which shows the
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I-V characteristic for the WN bias case, at low tempera-
ture, with a peak at about 0.04 V and intensity about 110
A/cm?, six times smaller than the intensity for the NW
bias case. Also observed® are larger values for the peak-
to-valley current ratios in the WN bias case (P/V =88)
than in the NW bias case (P/N =28). An inspection of
Fig. 6 shows that our curves also present this tendency.
Although it is difficult to predict a value for P/V from
our results due to the every flat current valley, we make a
rough estimate, taking average values over some points in
the current valley obtaining approximately P/N =110,
and 70 for the WN and NW bias case, respectively, fol-
lowing the correct trend. These values are larger than
the measured ones probably because our calculations
neglect electron-phonon scattering processes that tend to
decrease the peak and to increase the valley of the I-V
curves.

The general triangular shape of the I-V characteristics
also agrees well with the experimental result and is oppo-
site to the one observed in the traditional GaAs/AlAs
double-barrier structures. The sharp increase of the
current for small voltages is due to the high density of
states at the energy for which the resonance level coin-

0.55
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10% K,

FIG. 5. Energy dispersion relation in k| for the five resonant
states shown in Fig. 3. k in units of 27/a.

cides with the Fermi level. The different effective masses
and the opposite curvature of the energy dispersion in the
GaSb well and InAs electrodes contribute also to the fast
raise. The voltage at which a maximum number of k,
values contributes to the current corresponds to the one
which aligns the well quantum level with the Fermi ener-
gy at the left electrode. The effect of the difference be-
tween the electronic effective masses of the electrodes and
the well has been discussed and observed®® for the X-
point tunneling in GaAs/AlAs double-barrier structures.

We have also considered (not shown) EHE tunneling in
an asymmetric double-barrier structure with 65 A GaSb
well for which experimental results are also reported in
Ref. 2. We find in this case the same trend as before.
The calculated current peaks for the NW bias case (290
A/cm?) and for the WN bias case (60 A/cm?) are smaller
than the ones obtained for the 100 A GaSb well. The
WN bias case presents also a larger peak-to-valley
current ratio. These features are also in agreement with
the experimental data.?

600

200 —

I~
.

0.10 0.20
Voltage (V)

FIG. 6. I-V characteristic for EHE tunneling in asymmetric
double-barrier structure with d, =15 and 25 A and d,=100 A.
The Fermi energy is 50 meV. NW bias (solid line), WN bias
(dashed line). Set text for definition of NW and WN.
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B. Double-barrier structures: HEH tunneling

The HEH tunneling, as mentioned before, occurs in
double-barrier structures constituted by AISb barriers
and a InAs well connected to p-doped GaSb electrodes.
An applied voltage that aligns the energies of the holes in
one of the electrodes with the energy of a resonant state
in the well produces tunneling of holes between the elec-
trodes via the quantized electron state of the well.

To analyze this process we consider a symmetric
double-barrier structure with a InAs well of 150 13;, for
which the I-V characteristic curve has been measured.?®
In Fig. 7 we present the LDOS calculated at the one ex-
tremity of the structure for kH =0.000, 0.005, and 0.010
and no external bias. The density of states looks quite
different from the one shown for EHE tunneling case.
The contributions from the well quantum level and from
the valence band of the electrodes are comparable.
Moreover, within the range of energy of interest, as far as
hole interband tunneling is concerned there is only one
resonance, the first confined state of the well at 0.46 eV.
The large resonance energy splittings in this well are due
to the small effective mass in InAs and to the large
InAs/AlSb conduction-band offset. Therefore, to obtain
resonant tunneling the width of the InAs well cannot be
too small. We predict the inferior limit to be about 120
10\, for which the first resonant state energy is at 0.51 eV,
which coincides with the energy at the top of the valence
band of the GaSb electrodes. On the other hand it is pos-
sible to obtain resonant tunneling in quite wide InAs
wells, which makes this structure very attractive as far as
the development of three terminal devices is concerned.

Another consequence of the small effective mass in the
well is the large shift, compared to the EHE tunneling
case, of the resonance peaks towards higher energies as
k| increases, shown in Fig. 7. For k;=0.01 the reso-
nance energy is already inside the gap region of the elec-
trodes, too high to participate in the interband tunneling.

The resonant state, for kH =0.0, is a mixture of S and
LH states as can be seen in Fig. 8, which shows the pro-
jected LDOS on the S, LH, and HH states. The mixing
for k70 with the HH state is negligible and consequent-
ly it does not appear in Fig. 8 for kK =0.01. The energy
dispersion for the resonant state as a function of k| has
an approximate parabolic shape. These features of the

0.4

rb. units)

So.2

LDOS (

FIG. 7. Local density of states for GaSb-AlSb-InAs-AlSb-
GaSb double-barrier structure with no bias, d, =15 A and
d,=150 A, for k) =0.000 (solid line), k| =0.005 (dotted line),
and k| =0.010 (dashed line) k| in units of 27 /a.
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FIG. 8. Local density of states projected on the S state (dot-
ted line), the LH state (solid line), and the HH state (dashed
line), for the same structure as in Fig. 7, for k“=0.00 and
k;=0.01. The HH state does not appear for k| =0.01 because
it has a negligible contribution.

density of states are reflected on the shape of the I-V
characteristics for the HEH tunneling. .
Figure 9 shows the I-¥ characteristic for a 150-A InAs
well and Fermi energy of 5 meV, consistent with a p-
doping concentration of about 10'”/cm? in the GaSb elec-
trodes, the same parameters used in Ref. 26. Notice that,
although the resonant state of the well is 45 meV below
the Fermi level, the current begins to rise for any finite
voltage. Moreover, it keeps monotonically increasing
after the minimum of the current density is reached.
This contribution to the current comes essentially from a
nonresonant tunneling that is comparable to the resonant
one, as can be inferred from the density of states shown
in Figs. 7 and 8. As a consequence, the HEH tunneling
presents a low peak-to-valley current ratio, as compared
to the EHE tunneling case, and the peak intensities are
much smaller. Another consequence of the existence of a
nonresonant current is that it deformates the intrinsically
asymmetric shape of the peak, reducing the large nega-
tive slope of the upper bias side of the peak. This shape
of the I-V characteristic compares quite well with the ex-
periment,?® although we find the peak position at lower
voltages. This is probably due to the distortions of the
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FIG. 9. I-V characoteristic for the HEH tunneling with
d,=15 A and d, =150 A. The Fermi energy is 5 meV.
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FIG. 10. IV charac}eristic of the HEH tunneling with
d,=1100 A and d, =15 A and Fermi energy of 2.5 meV. In the
inset the density of states for no bias, for k;;=0.0.

potential profile caused by charge accumulation, which
affects the position of the resonant state in the well and
that has been disregarded in our calculation. The intensi-
ty in Ref. 26 is reported in arbitrary units.

To illustrate the possibility of resonant HEH tunneling
in very wide quantum wells we present in Fig. 10 the I-V
characteristic of a 1100-A InAs well, with Fermi energy
of 2.5 meV. The inset shows the LDOS calculated at one
extremity of the double-barrier structure.

C. Nonresonant interband transport:
interface and single-barrier structure

The I-V characteristic for a single AlSb barrier of 27 A
interjacent between n-doped InAs and p-doped GaSb
electrodes and for the InAs/GaSb interface are presented
in Figs. 11 and 12, respectively. In the latter case the
external bias is applied over 20 layers of the material in
each side of the interface. For both cases the doping is
such as to locate the equilibrium Fermi level at 0.41 eV,
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FIG. 11. I-V characteristic for a 27 A single barrier of AlSb,
intercaled in the InAs/GaSb interface. The Fermi level (LFE)
is at 0.41 eV as shown in the inset, where the energy-band dia-
gram for no bias is illustrated.

single barrier.

50 meV above the InAs conduction-band minimum.
Since it is a nonresonant process the current density be-
gins to rise for any finite applied bias and ceases when the
top of the GaSb valence band crosses the bottom of the
InAs conduction band, at about 0.15 V. Both curves
show a sharp raise and slow decay because the values of
the density of states involved in the transport are larger
for lower bias. The peak intensity for the interface is 25
times larger than for the single barrier and it is higher
than for any other system we have analyzed, due to the
lack of a barrier. Because of the opposite curvatures of
the energy dispersion the blocking of the current is very
efficient. Therefore interfaces should present very high
peak-to-valley current ratios. The experimental results,’
however, show high peak current densities, of about 10*
A/cm?, but very low peak-to-valley current ratios. It is
argued® that the large values of the valley current are due
to inelastic scattering processes that are not efficiently
suppressed by the lack of a barrier.

IV. SUMMARY

We have studied resonant interband tunneling in
double-barrier structures constituted by a well of GaSb
(InAs) connected to electrodes of n-doped InAs (p-doped
GASDb) through AISb barriers. We have also analyzed
the nonresonant interband transport through InAs/GaSb
interface with and without an intercalating AISb barrier.

The heterostructures are modeled by a Hamiltonian
represented in a tight-binding basis of six orbitals (the
lower spin-orbit-split band is neglected) whose parame-
ters are obtained, with no fitting, from the Kane’s k-p
model. Within the cylindrical approximation adopted
the Hamiltonian decouples into two equivalent 3X3 ma-
trices. This makes the calculations much simpler and
rapid, still retaining the full coupling of electron, heavy-
and light-holes states.

The transport properties are obtained by the Keldysh
formalism, which permits an adequate treatment of the
nonequilibrium situation we are dealing with. The non-
equilibrium Green functions are calculated by the real-
space renormalization technique, which have shown to be
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very rapid and numerically stable for any size of the sys-
tem.

We have calculated the resonant interband tunneling in
double-barrier structures for two configurations: either
the carriers at the well are holes (EHE tunneling) or elec-
trons (HEH tunneling). For these cases the density of
states and the I-V characteristics show quite different
features mainly due to differences in the effective masses
of the electrons in InAs and holes in GaSb. In order to
be able to compare with experimental data we have done
calculations for structures with the same sizes as the ones
measured. In both cases the shapes of the calculated I-V
characteristics are in very good agreement with the ex-
perimental ones. The curves for EHE tunneling present a
triangular shape opposite to the one shown for the more
conventional GaAs/AlGaAs double-barrier structure.
This is due to the different sign and value of the curva-
ture of the energy dispersion relation of the hole resonant
state of the well and the conduction band of the elec-
trodes. As to the voltage and intensity of the peaks we
predict the correct trends; for the asymmetric double-
barrier structure the configuration at which the narrow
barrier is at higher electric potential presents higher in-
tensity peak and lower peak-to-valley current ratio than
the opposite configuration, as has been reported.

The I-V characteristic of the HEH tunneling shows a
resonant tunneling peak superposed to a nonresonant
contribution that appears for any finite applied voltage.
As a consequence the shape of the curve looks quite
different from the one for the EHE tunneling and also the
peak-to-valley current ratio is much smaller. Because of
the small effective mass of the conduction-band electrons
in InAs the HEH resonant tunneling can be obtained
even for quite large wells. We illustrate this calculating
the I-V characteristic for a InAs well of 1100 A. We
have also analyzed the mixing of the HH states with the
S and LH states by studying the density of states project-
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ed on these states.

As examples of nonresonant transport we have calcu-
lated the current through the Inas/GaSb interface with
and without the intercalation of a AISb barrier. As ex-
pected the current begins to increase for any applied bias
and it goes to zero as the top of the valence band of GaSb
crosses the bottom of the conduction band of InAs at
about 0.15 V.

The Keldysh method has been shown to be a very
powerful formalism to calculate the transport properties
of a system under an applied external bias. The tight-
binding representation of'the Hamiltonian allows a more
natural and better treatment of the interfaces, particular-
ly appropriate for the case of superposition of conduction
and valence bands, as opposed to the conventional
envelope-function method. The influence of many-body
effects, electron-electron, and electron-phonon interac-
tions has been neglected in this work but they can be
treated as a natural extension of our calculations, as al-
ready pointed out. The bistability, the accumulation
charge effects, and the relaxation processes are currently
being studied. We are also analyzing the effects of a mag-
netic field on the transport properties of interband de-
vices.
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