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Semiclassical analysis of spectral correlations in mesoscopic systems
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We consider the recently developed semiclassical analysis of the quantum-mechanical spectral form
factor, which may be expressed in terms of classically definable properties. When applied to electrons
whose classical behavior is diffusive, the results of earlier quantum-mechanical perturbative derivations,
which were developed under a different set of assumptions, are reproduced. The comparison between
the two derivations shows that the result depends not on their specific details, but to a large extent on the
principle of quantum coherent superposition, and on the generality of the notion of diffusion. The con-
nection with classical properties facilitates application to many physical situations.

I. INTRODUCTION

One of the important properties of a disordered meso-
scopic sample, in which quantum effects are to be stud-
ied, is the spectral correlation function. This quantity
has been studied by Altshuler and Shklovskii' (henceforth
AS), for noninteracting electrons, using the perturbative,
diagrammatic method. In this work we rederive and ex-
tend their results, using the semiclassical method. We
consider the problem of an electron in a disordered metal,
and extend the results, e.g. , to the case of an applied mag-
netic field. We assume that the elastic mean free path of
the electron in the metal, l, is large relative to the Fermi
wavelength, kFl )) 1 (recall that kF ccfi ').

For orientation purposes, the results for the spectral
form factor K(t) (Fourier transform of the correlation
function) are sketched in Fig. 1. Three distinct regimes
are identified on the time axis: the quantum regime, the
ergodic regime, and the diffusive regime. The quantum
regime covers times later than the Heisenberg time tH,
which corresponds to the inverse level spacing. The er-
godic regime covers times earlier than tH but later than
the ergodic time t„=L /D, which is the time required
for the diffusive motion to fill all of the available phase
space, for a sample of linear dimension L and diffusion
constant D (t„ is the inverse of the Thouless energy
AD/L ). The diffusive regime extends from t„down to
the mean free time ~. Corresponding regimes can also be
identified on the energy axis. As can be seen in the figure,
the results for the ergodic and quantum regimes, includ-
ing the crossover between them, are described well by the
theory of random matrices (the applicability of random
matrix results to disordered mesoscopic systems has been
proved by Efetov, using field-theoretic techniques). In
the present work we will be interested in the deviations
from the random matrix ensemble results, which occur
for times around the ergodic time t,„s and earlier (we will
also briefiy discuss the results for the ergodic regime). As
we shall see, the semiclassical method will allow us to
derive results for such times for any classically chaotic
system, but here we concentrate on the application to
diffusive systems. We do not discuss the problem of An-

derson localization, i.e., we will always consider samples
that are smaller than the localization length, if localiza-
tion occurs [this is equivalent to requiring t„«tH (Ref.
4)]. We also neglect interactions such as electron-
electron interactions, except for the allowance of a self-
consistent potential.

The semiclassical method has been developed by
Gutzwiller, Berry, and others for classically chaotic sys-
tems. The applicability of random matrix results for such
systems in the ergodic regime has been proved, by using
a sum rule due to Hannay and Ozorio de Almeida. Re-
cently, Dittrich and Smilansky generalized this result to
a special case of a diffusive system (the kicked rotor).
Consequently, the semiclass cal expressions for a general
chaotic system were derived, and applications to specific
systems are now being studied (Refs. 9, 10, and the
present paper). Note that in this work we use the term
"semiclassical approximation" in the strict sense, imply-
ing a stationary phase integration around classical paths

diffusive ergodic quantum
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FICx. 1. Sketch of the spectral form factor as a function of
time. Full line, orthogonal random matrix ensemble result;
dashed lines, modification of random matrix results for classi-
cally diffusive systems in N dimensions. The three different time
regimes are indicated, and the transition times between them
are identified: the Heisenberg time tH -A/6 (inverse level spac-
ing) and the ergodic time t„~-L /D (inverse Thouless energy).
The low end of the diffusive regime, the mean free time ~, is also
indicated. Both axes are logarithmic, and the case of time-
reversal symmetric systems is presented.
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that are completely specified by their initial position and
momentum. Our approach thus differs not only from the
perturbative method but also from the approach of
Chakravarty and Schmid, " in which only the motion be-
tween the scatterers is treated semiclassically, and the im-
purities are taken as isotropic pointlike scatterers. The
work of Chakravarty and Schmid deals with weak locali-
zation, and all of these approaches can also be usefully
applied to the problem of universal conductance fluctua-
tions, ' but in the present work we limit the discussion to
the spectral form factor. This two-level statistic directly
determines many physical thermodynamic and transport
properties of the sample (e.g. , a contribution to the con-
ductivity and its fluctuations, " and to the orbital mag-
netic response' ' ), in the noninteracting electron pic-
ture.

In the following section we present the semiclassical
formula for the spectral form factor. We attempt to in-
clude enough details (some in the Appendix) to make the
presentation coherent and self-contained, as this work is
intended mainly for researchers in solid-state physics,
who may be unaware of the developments in the field of
semiclassical quantization of chaotic systems. ' ' In the
third section we apply the result to a diffusing electron
and recover the results of AS, including some effects of,
e.g., magnetic fields. The fourth section compares the
present work with the perturbative approach of AS, both
qualitatively and quantitatively, revealing significant im-
plications for both approaches. In the fifth section we
compare our theory with numerical simulations, which
are performed for a periodically time-dependent system,
and thus refer to the correlations of quasienergy levels.
In the last section we conclude and identify some topics
for future research.

II. SEMICLASSICAL ANALYSIS
OF THE SPECTRAL FORM FACTOR

In classical mechanics, all dynamical systems can be
categorized as belonging to the groups of "integrable" or
"nonintegrable" systems. The nonintegrable systems can
be further characterized as "chaotic, " "ergodic, " "mix-
ing, " and so on. The first distinction, between integrable
and nonintegrable systems, is also of central importance
when dealing with their quantization. For integrable sys-
tems, a full set of good quantum numbers (constants of
motion) exists, and the spectrum is given by a smooth
function evaluated at integer values of its arguments.
This results in a lack of correlations between levels of
nearby energies, and the two-level form factor is a con-
stant (the semiclassical treatment of the integrable case is
also included in Ref. 6).

For nonintegrable systems analyzing the spectrum it-
self is a very hard task, but its statistical properties may
be usefully studied. This was recognized by Bohigas,
Giannonni, and Schmit, ' who demonstrated the applica-
bility of random matrix ensembles for some properties of
such spectra (these ensembles were initially introduced by
Wigner and Dyson as models for nonintegrable systems
with very many degrees of freedom). More recently it has
been shown that some information about spectral correla-

tions in "completely nonintegrable systems" (those with
all orbits unstable, see below) can be obtained semiclassi-
cally. In the present section we discuss the general form
of this semiclassical relationship (Sec. IID). It follows
directly from three statements which we first recall (Secs.
II A —II C).

A. Representation of the density of states
by Gutzwiller's sum

We shall consider the density of states

d(e)= +5(e e—„)

and its Fourier transform

1 —iet/A
—i e„ t /fi

d(t) = de d(e)e '"~"= g e
2~% 2~%

terms of the propagator G (x,x ', t )—i e„ t/fi=g„g„*(x)g„(x')e " (note that we use this
definition for both negative and positive times), the latter
can be written as

d(e)= g A, (e)e
J

(4)

where j is an orbit index, and A, S are the amplitude
and action of that orbit; see below.

In chaotic systems, the paths belonging to an orbit j
and to an energy e form a closed curve in phase space.
The different paths belonging to the same orbit share the
same period, T.(e), and differ only in their starting point
along the orbit (or conversely by translation in time).
This is exactly where our assumption of chaotic behavior
enters: we assume that all periodic paths of energy e

d(t)= f dx G(x, x, t) .
1

2vrA

Since the propagator can be approximated by a sum over
classical paths, this formula enabled Cxutzwiller to ap-
proximate the density of states in a similar fashion. Note
that the semiclassical expression is accurate only if the
potential is smooth on the scale of a typical wavelength.
As discussed in Sec. IV, this should not be considered a
serious limitation (at least within our context).

The averaged density of states (one state per Planck
cell) is given by the shortest classical paths (those that
take no time to go from x to x). The fluctuations in the
spectral density are given by the paths that follow period-
ic orbits. We shall distinguish between periodic paths,
which may be identified by a starting point in phase space
and a period T after which the system returns to the same
point in phase space, and periodic orbits which are con-
tinuous families of such periodic paths (all the periodic
paths included in one orbit share a similar geometry).
The fluctuating part of the density of states is written as a
discrete sum over the periodic orbits, with each term in
the sum representing the contribution of all the paths in-
cluded in that orbit (and their vicinity). Ignoring the
averaged density of states, one gets an expression of the
form
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form one-dimensional curves (orbits) and are thus unsta-
ble. It is well known that if the phase space contains even
a single stable path, it will also contain orbits which are
sheets of higher dimension. ' ' ' In the extreme case of
integrable systems, all the periodic paths form N-
dimensional tori in phase space, where X is the dimen-
sionality or the number of degrees of freedom of the sys-
tem. For this reason, we assume X) 1 (all time-
independent systems with one degree of freedom are in-
tegrable).

By explicitly evaluating (using the stationary phase ap-
proximation) the contribution to Feynman's path integral
from the vicinity of these unstable orbits, Gutzwiller, '
obtained the following explicit semiclassical expressions
for the amplitudes and phases. The phase for an orbit j is
( I /R times) the classical action integral

S, ( e ) = II)p dq, (5)

where the integral is taken around the periodic orbit in
phase space. In the following, we will use the important
property of this classical action, that its derivative gives
the period of the orbit

dS =T (e) .
de

The amplitude is given by

The derivation of this expression is brieAy discussed in
the Appendix. The matrix M is called the monodromy
matrix, and describes the stability of the orbit. For long
orbits, the factor ~det(M I)~ may be—simply approxi-

il„T.
mated by e ', with A, a sum of positive Lyapunov
exponent(s) characterizing the orbit. ' ' ' The other
factor appearing, T', originates from the integral over
space, and gives simply the length of the classical closed
orbit in phase space (measured by the time taken to
traverse it). The orbit j may be a repeated orbit, which
means that its paths circulate m Wl times around a
primitive orbit which we denote by j (m is called the re-
petition number). We have S =m S, T =m. T',

rn.
M =M'', and v. =m v-. , and m can take any integer
value except zero. Note that A - is not defined here as
positive: we include in it a phase factor of
exp( —i av /2), where v is the (integer) Maslov in-
dex. ' ' ' ' The amplitude 2 is due to the Gaussian in-
tegral around the stationary phase (classical) path.

The domain of validity of the above semiclassical ex-
pressions [Eqs. (4)—(7)] is not completely known. In
principle, they may fail whenever two (or more) orbits ap-
pear too near to each other, and nonquadratic terms in
the action become important. It may also fail in applica-
tions in which extreme accuracy is needed, and higher-
order terms in fi are important. Both problems may be
expected to become more severe for longer and longer or-
bits.

At first sight, it seems that the exponential sensitivities
characteristic of chaotic behavior lead, already at times
of order 1n(1/fi) (the Ehrenfest time) to a spreading of

any initially minimal wave packet so as to cover the
whole available phase space. Conversely, the number of
periodic orbits proliferates exponentially, and so if each
of them is considered to occupy a phase-space volume
proportional to a positive power of A, they will have to
coalesce at times of the order of 1n(1/fi). This argument
is, in fact, too crude. When the trace of the propagator is
expressed as an integral over phase space, the contribu-
tions of different periodic orbits turn out to be additive,
so the stationary phase method can be safely applied even
when the regions of integration for different orbits over-
lap. There is also numerical evidence that times of order
1n(1/A') do not signal the breakdown of the semiclassical
method, but only of near classical behavior. In fact, the
results of the present paper give an additional indication
that the semiclassical argumentation remains valid for
much longer times.

More serious problems arise concerning much longer
orbits, with times longer than the inverse of a typical lev-
el spacing -A'/b, (b, =(d ) ', and (d ) is an averaged
density of states). This time is referred to as the Heisen-
berg time tH, since it is connected to the mean level spac-
ing by Heisenberg's uncertainty relationship. For such
long times, it is clear that the propagator must behave
quasiperiodically, with the individual eigenstates and
eigenenergies showing up, and it is not clear if (and how)
the semiclassical method can reproduce this behavior.
This problem will be discussed in future work.

Another problem which must be overcome is that
Gutzwiller's sum is absolutely divergent, and in the ab-
sence of a well-defined ordering of the periodic orbit
terms, cannot be considered to have a well-defined limit
at all. In this paper we will generally avoid this problem
by introducing Gaussian averaging over small ranges in
energy e, which will regain convergence by giving, in
every term of the sum, an extra factor which is exponen-
tially small in T (a long time cuto6;. r&-fi/y, was used
also in Ref. 1). Eventually we will use convergent expres-
sions containing information about spectral correlations,
for which only orbits of lengths smaller than the Heisen-
berg time contribute.

The resolution of these problems (e.g. , by a ressuma-
tion of the divergent series) is a central theme in current
quantum chaos research. For the purposes of the
present work, we shall simply define a time tsc, up to
which we shall assume that the semiclassical approxima-
tion is valid. Beyond that time we assume that the
higher-order corrections become of the same order of the
results themselves (we discuss here the generic case, and
ignore special systems that have an exact semiclassical
representation ). For the purposes of the present work
we will assume that tsc is larger than the ergodic time

g
This is a natural assumption for smal 1 fi, because t sc

may be expected to grow as a power of A ', while t„ is
A' independent (we thus assume that tsc is much larger
than the Ehrenfest time, which grows only logarithmical-
ly in A and remains much smaller than t„ in most
mesoscopic systems). As a result of the comparison with
the perturbative method in Sec. IV, we will be able to
shed some light on the situation in the context of the
present application.
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B. Berry's formula for the spectral form factor

Consider the spectral correlation function

K(E,e) =d E+—d E——E E'

2 2

Often this function is averaged over a range in E or over
an ensemble to yield a smooth dependence which
represents the spectral correlations in a statistical sense
(in our notation the averaging will be implicit as ex-
plained below). Since this function has two energy vari-
ables, one of them may be transformed to yield a quantity
with a well-defined energy and time, called the two-level
form factor (our definition differs from Ref. 2 by a sign

I

and an additive constant), or simply the spectral form
factor:

K(E, t)= deK(E, e)e
1

2mB

As K(E,e) is real and symmetric in e, K(E, t ) is also real
and symmetric in t, and we shall henceforth restrict at-
tention to positive values of t. Because of the bilinearity
of K in d(e), it contains information about two point
correlations of the spectrum, and one may obtain from it
two point statistics, such as the spectral rigidity.

By inserting the semiclassical approximation for d(e)
in the above Fourier transform, and noting that all fac-
tors are slowly varying except for the phase
SJ —S(E—)+ T (E )e/2, Berry obtained

K(E, d E —z,z/g ~ ((& + T, E/2)/r + (zS„T„~/2)/ft z(g. —
g& )/g= g AJ Az,'e ' " 5[t —

—,'(TJ+T(, )] .
k jk

(10)

The Taylor expansion of the phase implies a restriction to
small values of e (for example, we shall be interested in
values of E proportional to positive powers of A'). Alter-
natively, we may consider the resulting E as averaged
over a small range ht in the time variable. Although Eq.
(10) is sufficient for our purposes, we note that each term
here has a rapidly varying phase, and thus all terms with

~ T/
—

T& ~

)R/EE may be discarded by averaging over a
small range hE in energy.

Following Berry, we wish to obtain the "classical" ap-
proximation for this expression, by assuming that the
contributions to the sum with j different from k have ran-
domly varying phases, and will vanish upon averaging.
The assumption here is that there is no correlation be-
tween S and the other S&'s, and that the averaging is
over a wide enough range to render the Auctuating
terms negligible. Such correlations will exist when
different orbits are related to one another by some sym-
metry, as discussed below. The ranges of validity of the
"classical" approximation of K(t) are similar in many as-
pects to those mentioned above for the semiclassical ex-
pressions for d(e): for times shorter than the Ehrenfest
time, fi is small enough so that all the factors
exp[i(S, —S(, )/fi] have random phases and may thus be
considered small; for later times, due to the proliferation
of the orbits, there are many terms with Sj —SI, -A, but
they may still be ignored if a lack of correlations is as-
sumed (at least in an ensemble-averaged sense); for even
longer times, t ))tH, the behavior changes, and the "clas-
sical" approximation fails. Note that, as will become
clear below from the comparison with the random matrix
results, we have independent evidence that the "classical"
approximation is valid throughout the ergodic regime, up
to times of the order of tH. This statement is independent
of the inaccuracy of the off-diagonal (jWk ) terms, which
becomes large for times later than tsc (tsc may in princi-
ple be smaller or larger than tH).

For systems without any symmetry, omitting jWk
terms gives just the diagonal part of the sum:

We shall see later that this expression allows for some
coherent quantum interference, and therefore we keep
the quotes in calling it "classical. " The appearance of

~ AJ ~
here (and A& A& above) motivates us to refer to this

quantity as a "quantum probability to perform periodic
motion. "

For time-reversal symmetric systems, the result is
modified, since for each orbit j there is another one j
which is its time reverse and has an identical amplitude
and phase. Thus the off-diagonal terms with k =j con-
tribute the same amount as the diagonal terms with k =j,
and the result is doubled:

(12)

(the superscript T stands for time-reversal symmetry).
This is a result of coherent quantum interference between
pairs of orbits, and the resulting factor of 2 is very famil-
iar by now.

We mention one additional example of symmetry,
which arises for systems with spatial periodicity, in which
each orbit j has many replicas with the same geometry
and the same amplitudes and phases, which are simply
displaced by a lattice vector (an example is discussed in
Ref. 8). If the system consists of L periods (and periodic
boundary conditions are assumed), then the total result
will be L times larger, because for each orbit j there are
L —1 off-diagonal contributions equal to the diagonal one
(another way of stating this is that each family of L repli-
ca orbits contributes coherently, ~ L ). This should
reconstruct the correlations between levels in such sys-
tems, which are known to have highly correlated spectral
bands. We shall not discuss such systems further in the
present work.
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C. Generalization of Hannay
and Ozorio de Almeida's sum rule

The "classical" sum appearing above has been calculat-
ed by Hannay and Ozorio de Almeida (subsequently re-
ferred to as HO), for ergodic systems. The derivation is
based on carefully identifying the classical counterparts
of the quantity which we have called the "quantum prob-
ability to perform periodic motion, " and its contribution
from each specific closed orbit. Originally, the property
of ergodicity (or more exactly, the principle of uniformity
that HO present) was used to calculate the "classical"
sum. In this subsection we rephrase part of their deriva-
tion in a manner that will enable us (in the next subsec-
tion) to evaluate the sum for a general chaotic system, in
terms of the classical probability to perform periodic
motion in that system.

For classical motion, if a system starts at a specific
point in phase space ro, and evolves for a time t, it will
reach a new point, denoted by r, (ro). It is convenient
(especially for ensemble-averaging purposes) to define the
distribution function for the system in phase space as
5 (r r, ), —and on the energy hypersurface as
5 '(r r, ). The la—st 5 function is only defined on a
certain energy surface, and is undefined if H(r)WH(r, )

(we have 5 (r r, )=5 '(—r r, )5—[H(r) H(ro)]).—
Since r is a phase-space coordinate, I", =ro implies period-
ic motion of period t. The averaged classical probability
density to perform periodic motion of period t at an ener-

gy E is thus given by evaluating the above distribution
function at r =ro and averaging over the energy hyper-
surface:

p(t)= dQ osII&o — 5' ' o—

(13)

where the energy dependence of p(t) is implicit, and
dQ/dE= J d ro5[H(ro) E] is the "ar—ea" of the ener-

gy hypersurface [the dimensions of p(t) are that of a
probability density per unit hypersurface area]. It is clear
that the integral in Eq. (13) has a contribution from every
point which lies on a periodic orbit of period t, and we
define the contribution of the entire periodic orbit j by

P (E, t ) =f d ro5[H(ro) E]5 '(ro —r—, ), (14)
J

where I . is the region in phase space near the orbit j
(this integral is dimensionless, and will vanish if T Wt).
We call this the classical probability to perform periodic
motion along the orbit j (these probabilities are simply re-
lated to HO's intensities).

A direct evaluation of this quantity may be performed
(see, e.g. , Ref. 17), and is included in the Appendix for
completeness. It gives

P (E,t)=5(t —T. )T idet(M. —I)i (15)

where again T is the period of the orbit, M- is its mono-
dromy matrix, and j refers to the primitive orbit corre-
sponding to j. The factors appearing here are easily
understandable —the T-. represents the "number" of

different paths that start at different points around the
periodic orbit, and the monodromy matrix represents its
stability. The appearance of the same matrix deter-
minant (and the same period) as in the result for
Gutzwiller's amplitude [Eq. (7)] will play a crucial role in
the following.

D. The relationship between the spectral form factor
and the classical probability for periodic motion

and comparing this with HO's classical probability for
each orbit, Eq. (15), gives

K(E, t)= g ', P, (E,t}=, p(t) .
dn

(Z~R)' ' (z~irt)' dE
(17}

In the last step we have neglected the contribution of or-
bits with high repetition numbers ( i TJ i

W TJ ), which is
justified due to the exponential proliferation of primitive
orbits. The factor of t between the quantum and classi-
cal result has its origin in the constructive interference of
the "t periodic paths" that belong to the same "family, "
denoted here by the periodic orbit j (recall that the fac-
tors of 2~% originate in the definition of the Fourier
transform, and the dQIdE factor is due to the definition
of the averaging over an energy surface). These paths all
have the same amplitude and phase, and therefore the
quantum result is proportional to t and the classical one
only to t. Note that each orbit contains in fact a continu-
ous infinity of different paths, and therefore one must go
into the detailed calculation above to show that indeed
they may be considered as "t different paths" with the
same amplitude and phase.

As already mentioned, in systems with time-reversal
symmetry, the result is modified, since the orbits are ar-
ranged in pairs related by time-reversal symmetry. Con-
structive interference occurs not only between the paths
within each orbit, but also between paths belonging to the
two different orbits in the same pair. As a result, the ra-
tio of the quantum to the classical result is increased by a
factor of 2:

ziti dn
(ZM)' dE

(18)

where, again, the T superscript signifies time-reversal
symmetry.

The identification of the classical probability [p(t) ] and
quantum interference (t) factors in the above semiclassi-
cal formulas [Eqs. (17) and (18)] facilitates application to
a wide range of systems. An application to a one-

The expressions for the quantum and classical contri-
butions of an orbit j to the probability to perform period-
ic motion are very similar. This enables us to reach the
main result of this section at once: Combining Berry's
formula, Eq. (11), with Gutzwiller's result for the proba-
bility amplitudes, Eq. (7), gives

K(E, t)= g i A, (E)i'5lt T, )—
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dimensional, periodically time-dependent, difFusive sys-
tem is given by Dittrich and Smilansky. Current work
includes an application to composite systems, in which
the phase space contains a few weakly interacting chaotic
regions, and to diffusion in a quasi-one-dimensional sys-
tem. ' Before the application to mesoscopic systems is
presented in the next section, we wish to recall some as-
pects of the original discussion of ergodic systems.

In the strict semiclassical limit, A~O, the separation
between nearby energy levels becomes very small (-A' ),
and the relevant times in K(t) become very large
( —R' ). Thus all classically definable times, those
which do not involve A' in any way (-A' ), become "semi-
classically small" in comparison. For chaotic systems,
the largest classically definable time is t„g, the time for
the particle to reach all points in its available phase space
(in the original works this and all earlier times were
considered as "short, " and the behavior in this regime
was considered "nongeneric, " as it depends on the classi-
cal details, such as the diffusive property). For times
longer than t„ the behavior is ergodic, and the distribu-
tion function is uniform over the energy surface
52+ '(r, —r) =1/(dA/dE). This gives p(t)
=(d0/dE) ' and accordingly K(E, t) =tl(2mB),
which results in K(e) ~ e, and a logarithmic spectral ri-
gidity (see Ref. 6). This defines the behavior of the spec-
tral correlations in the classically ergodic regime, and
agrees, as already mentioned, with the results of random
matrix theories (see Fig. 1).

It is illuminating to point out how the different classi-
cal paths contribute to these results. As we mentioned,
the determinants involved in the denominator of P.
represent the instability of the motion and increase ex-
ponentially with time, at a rate given by the positive
Lyapunov exponent(s). On the other hand, the "number"
of periodic paths of period within At of t increases ex-
ponentially as ht exp(at ), where a is called the topologi-
cal entropy of the system. The cancellation of these two
exponentials to give a constant p(t)=(dQIdE) ' is a
ramification of a result well known from classical
mechanics of closed ergodic systems, namely that the
(sum of) Lyapunov exponent(s) is equal to the topological
entropy. As mentioned above, the quantum-mechanical
probability to follow periodic motion is now obtained by
grouping these paths into (b, t /t )exp(at ) orbits of size t.
The constructive interference within each orbit gives a
factor of t, which is combined with the 1/t from the
subdivision into orbits, to give the result of K(t ) ~ t

The results given above for the spectral form factor in-
crease linearly with t, apparently without limit. For late
times, it is clear that this result is not valid, and K(t)
must approach a constant. Berry gives a detailed
mathematical proof of this statement, and calls it a
"semiclassical sum rule. " Here we will just note that for
a finite system, when t is much larger than the Heisen-
berg time tH =2vrA( d ), the form factor no longer
represents the correlations between the levels, but rather
the "shape" of each one of them. For sharp (5 function)
levels, the form factor in this quantum regime will simply
be a constant ((d )/2~%). This can be understood in
analogy to the form factor of a one-dimensional gas, in

which every atom in space represents a level in energy
(for large momenta it approaches the atomic form factor).
Such an analogy was found useful in treating random ma-
trix ensembles.

As shown by Berry, the combination of the linear in-
crease and the eventual saturation to a constant repro-
duces the results of the appropriate random matrix en-
sembles (if the form of the interpolation between these
two extremes is chosen correctly).

The result of Eqs. (17) or (18) is very powerful, even
when the limitation to early times is acknowledged, and
can provide predictions on spectral correlations for many
systems whose classical behavior is known. In the next
section we illustrate this by discussing the case of a parti-
cle whose motion is difFusive in the classical limit.

III. APPLICATION
TO A DIFFUSING ELECTRON

dQ

dE

X exp
—(x —x0)

(19)

and since this is independent of the specific starting point
r0=(x0,p0) (at least far from the boundaries), we get the
result for p(t) by simply setting r =r0 Note that the .dis-
tribution over the "angular variables" of the momenta is
given by a constant, the inverse of the free-particle densi-
ty of states (dQ„/dE) ', and will cancel out in the fol-

lowing (fl=Q„Q is the decomposition of phase-space
volume into coordinate and momenta spaces). Finally,
we find for the diffusive regime

In this paper we are interested in applying the above
semiclassical results to electrons in disordered solids. We
will use the notion of diffusion to describe all necessary
classical properties of the motion. The assumption of
diffusive behavior in a disordered mesoscopic sample ap-
pears to be an excellent assumption for a large variety of
random potentials and scatterers (for times longer than
the transport mean free time). In this section we discuss
regular and anomalous diffusion, as well as some effects
of external fields. For simplicity, we ignore the spin de-
generacy of the electrons (it can be accounted for simply
by multiplying by a factor of 2 for the spectral density,
and a factor of 4 for the spectral form factor).

For a diffusing particle in X dimensions (having X de-
grees of freedom), the probability distribution over the
phase-space energy surface is a spreading Gaussian in
real space and uniform in momenta. For long times the
electron will diffuse over the whole sample, the system
becomes ergodic, and the results discussed in the preced-
ing section are applicable. But for a diffusive mesoscopic
sample with a small but finite fi (and hence a finite wave-
length A,~ =A'/p~) and a large but finite size L, we are also
interested in times shorter than the time for diffusion
across the sample t„=L /D. For such times the distri-
bution is
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Q
K T(E, t)=

(2vrh')' (4~Dt )~~'
the earlier theoretical derivation and with numerical re-
sults.

A. Persistent currents

X 1 —X/2
(2m)'(4~D )""

We have assumed that the system obeys time-reversal
symmetry, as will happen for an electron in a nonmagnet-
ic metal at zero magnetic field. This result is identical to
that obtained by Altshuler and Shklovskii' using the less
transparent diagrammatic method (see Sec. IV). As a
function of e we have K(E,e) = —(ere) for b, & e&Ec
(ergodic regime), and K(E,e) = C~e+~2 2 for Ec & e
&A'/r (diffusive regime), where Ec =A'/t„ is the Thou-
less energy and C& is a constant that depends on the
number of dimensions.

Notice that the result is always enhanced relative to
the ergodic case, since the distribution tends to stay con-
centrated around the starting point, until such late times
as to make it evenly distributed over the whole volume.
This immediately gives us the time of transition —that
which gives (4mDt)' equal to the size of the system L
(cf. Sec. III 8 below). To find the exact form of this
crossover, all we must do is calculate the appropriate p (t)
by averaging the classical probability to return over the
volume, taking account of the boundary conditions.

The simple expression for the spectral form factor, Eq.
(20), is the principal result of this section, which we wish
to present and discuss. In this section we discuss theoret-
ical predictions for various modifications of the above,
such as by a static magnetic field, or a fractal-like
geometry. In the next sections we compare Eq. (20) with

I

An interesting application involves a magnetic field in
an Aharonov-Bohm ring geometry. The persistent
current Aowing around such a ring in thermodynamic
equilibrium is now within reach of experiments, ' ' and
was recently calculated, using the diagrammatic pertur-
bative method. We give here an alternative derivation
for two calculations, one for the typical current in the
context of the grand-canonical ensemble, ' and the other
for the averaged current in the context of the canonical
ensemble' (the remarkable paramagnetic response ob-
tained in the canonical ensemble is intimately connected
with the magnetic-field sensitivity of the spectral correla-
tions discussed in this subsection and in the next one, and
is the subject of recent increased interest ).

The persistent current in the grand-canonical ensemble
is given by I= —cMl/c)P, where P is the Aharonov-
Bohm Aux in the ring and Q is the free energy. At zero
temperature, the free energy is given by
II= f due'd&(e) (E is measured from the Fermi ener-

gy). The flux-dependent density of states is given, within
the semiclassical approach, by the sum over periodic or-
bits with an extra fiux-dependent phase, d&(e)

A exp(iS /A+i2vrn itplg~), where n is the winding
number of the orbit j, and Pa=bc /e is the flux quantum.
The average of this current I over the impurity positions
was found to be exponentially small, ' as is indeed plausi-
ble because of the random phases involved in the sum
over orbits. We now calculate the typical current, by
performing the impurity average over the square of this
current:

(21)

where the orbit j is taken at energy e and the orbit k at energy e' (the fiuxes of the two orbits, p and p', are both set
equal to the Aharonov-Bohm fiux after the derivatives are taken). Our reasoning now implies that all terms with k
different from both j and its time reverse j have wildly Auctuating phases due to the different actions, and do not con-
tribute. We use the diffusive approximation for the motion of the electrons along the length of the wire (the circumfer-
ence of the ring), assuming that the diffusive motion fills the much smaller transverse dimensions of the wire within a
time much shorter than t„. The orbits are grouped according to their winding number, and we find (using n. = —Tn, ,J
and omitting the j subscript)

(I') =c'f' deaf de'e'f" dt c'"'-""
oo oo oo „(2vrA)'

L
&4~D /t] 4D/t)

(22)
2

i4nng /go.
1 —e

40

(I ) = g sin(2mnglgo)
24 eD

&~n L

2

(23)

(L is the circumference of the ring). As usual, we have
introduced the Fourier transform of the spectral correla-
tion function, and we use the value of the diffusion con-
stant D applicable to electrons at the Fermi surface, be-
cause electrons at lower energies do not contribute
significantly. The integrals are now simply evaluated,
and for zero temperature [ 1 e d e e "' "= (fi/t ) ] the
result is

If a finite temperature or a dephasing time is introduced
the time integration is exponentially damped at values of
t greater than A/k~T or ~&, leading to a damping of the
high harmonics in this sum (recall that in any case the
time integral must be limited by the Heisenberg time tH,
because for longer times the "classical" approximation is
inapplicable).

As a result of the measurement of a nonzero ensemble-
averaged persistent current in the experiment,
modifications of the above arguments were studied. In
one case, it was argued that the main effect of the electro-
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static interaction between electrons and ions would be to
fix the number of electrons on each mesoscopic ring.
This number will also be fixed if the rings are decoupled
from the substrate. Thus, the canonical ensemble per-
sistent current was studied, ' and it was shown to be
given by I„=(—ch/2)(BIB/)(5N) . Here (5N) is the
variance of the number of particles, evaluated in the
grand-canonical ensemble, which may be written at very
low temperatures as f deaf de'K( ~(e+e'), e —e').
Only the fiux-dependent part of K(E, t ), which we denote
by K ~(E, t ), is important (there is no need to distinguish
P from P' in the intermediate stages), and therefore only
terms in which pairs of time-reversed orbits appear
(k =j ) are retained. Using the same argumentation as
above, we find

LK &(E,r)= exp
(2~A)' „ i/4rrDr 4Dt

This leads to

X cos(4~n P/go) . (24)

= g I„sin(4mnglgo)
n&0

(2&)

with I„given by

cd 4mn A
I
t

I

(2~%)' v 4~DIr

—g2L2

4D Ir I

sgn( n ) . (26)
cA
vr(bo

Again, we have considered zero temperature, and ignored
the problem of long times, which can be handled either
by introducing a dephasing time' or by acknowledging
that for times t ) tH the spectral form factor K(t) ap-
proaches a constant which is independent of P (in this
case the results of sophisticated field-theoretic ap-
proaches should be mimicked). We note that this re-
sult, valid for noninteracting electrons, is a few orders of
magnitude short of explaining the experiment.

B. Orthogonal-unitary crossover

To further illustrate the power of this approach, we
employ it here for an intuitive picture of the breaking of
time-reversal symmetry in a disordered mesoscopic sam-
ple. It is by now well known from the theory of weak-
localization corrections to the conductivity (see, e.g. , Ref.
11), that a magnetic field H breaks the symmetry between
the time-reversed paths and destroys their interference by
introducing extra phase factors. In the context of the
random matrix ensembles, this corresponds to a cross-
over from orthogonal to unitary symmetry. For any
periodic orbit j, the diagonal term in the semiclassical
sum will not be modified by a constant external magnetic
field, while the cross term with the time-reversed partner
j has an additional factor of exp(i4rra H/go), where a

(27)

where the superscript in K signifies the crossover be-
havior, and K is the result for the time-symmetric
(H=0) case. The crossover time is proportional to

LB
t -ix erg

4

))tel g
(28)

and its exact value depends on the boundary conditions,
i.e., on the shape of the sample (a specific example will be
given towards the end of this subsection). For fields so
small that LH /L ))(tH It„)'~, the field will play a role
only for very late times t ) t~, or for correlations be-
tween levels separated by much less than the mean sepa-
ration b, (Ref. 35) (this holds although the semiclassical
argumentation is not valid in this regime).

For strong fields, LH «L, the field produces more
than a flux quantum in the system (but we consider fields
not too strong, so we are still in the diffusive regime,

is the net area perpendicular to the magnetic field en-
closed by the orbit j (p, =Ha is the fiux enclosed by the
orbit). For a given magnetic field H and a given time t
(assumed much smaller than the Heisenberg time), we
must find the average value of this factor. This averaged
phase factor will be real, positive, and smaller than unity
(Chakravarty and Schmid define a "quasiprobability"
that includes it"). For short times, the typical area a
will be much smaller than the area associated with the
magnetic field LH =BOIH (LH is called the magnetic
length), and the additional factor will be approximately
unity, so that the results of the time-reversal symmetric
case are obtained. In the opposite case of long times the
results will be as for nonsymmetric systems. We are in-
terested here in times near the crossover time t, between
these two extremes. We now discuss two field regimes, in
which t occurs in the ergodic and the diffusive regimes,
respectively.

For weak fields, LH))L, and the field produces less
than a Aux quantum in the area of the system. In order
to accumulate a phase of order unity from the magnetic
field, the particle has to encircle the sample a net number
of times of order LH/L . This will happen at times
much longer than t„,for which the classical behavior is
ergodic, and the system can be considered as a quantum
dot. This is exactly the case of the crossover between the
Gaussian unitary ensemble (GUE) and the Gaussian or-
thogonal ensemble (GOE), which has recently been stud-
ied, and in the following we find results which are con-
sistent with this reference for t « tH.

For ergodic motion we may assume that each orbit re-
turns very near to its starting point many times, each
time accumulating a random contribution to its area.
The distribution of areas a will, according to the central
limit theorem, be Gaussian, with the standard deviation
proportional to L (t lt„)' . Calculating the average of
the extra factor exp(i4ma HI/0) amounts to evaluating
the Fourier transform of this distribution, which in this
case is simply a decreasing exponential. We thus find
that
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LH ))l, where l is the mean free path). In this case the
crossover occurs for times in which the motion is
diffusive (rather than ergodic), and we shall obtain a
different kind of crossover behavior that generalizes Eq.
(27) in the same sense that Eq. (20) generalizes the stan-
dard GOE results.

In the present case the central limit theorem is not
applicable, as we shall see, and we use differential
(kinetic-type) equations in order to find the distribution of
areas a . First, we generalize the notion of area to in-
clude open paths (those which start and end at different
points) by defining a = f .x dy, with the integral taken
along the path (taking the z direction along the magnetic
field; this corresponds to a choice of gauge in which the
vector potential is proportional to xy). For simplicity we
treat the two-dimensional case of motion on a surface

——D + +X
ay Ba

'2
j
(f(x,y, a, t)

=6(x —xo)6(y —yo)6(a)6(t) . (29)

This equation turns out to be separable (for the homo-
geneous case), and can therefore be easily solved (in anal-
ogy with the treatment in Ref. 11). The solution is a sum
of eigenmodes:

z =const. In analogy with the derivation of the diffusion
equation, we define a distribution for the paths starting
from (xo,yo) at time t =0 and ending at (x,y ) at time t,
with an area a, and find that this distribution obeys the
following differential equation:

y p ik a+ik (y —yo) + ~y ~yf(xya t)= g J J e ' ' ' g„* xo+ g„x+ e
277 277

—1(n, k, k )t
(30)

with the decay rate of each mode given by

I (n, k~, k, )=(2n+1)D ~k, ~, (31)

and g„equal to the normalized eigenfunctions of a quantum harmonic oscillator. Specializing to closed orbits
(x,y ) =(xo,yo) we find for the conditional distribution of the area

f(xo,yo, a, t)
p [a ~(x,y) =(xo,yo), t j

=
da f(xo,yo, a, t)

g J(~k, ~dk, /4' )exp[ik, a —(2n+1)D k, ~t]

(4irDt )

77/2Dt
1+cosh(ma /Dt )

d 1

da [1+exp( era /Dt )]— (32)

g„" ol/[x+i~(2n+1)]

X t/tKx(t)= — 1+ K r(t) .
sinh(t It„ )

(33)

The crossover time for strong fields, t, is found to be

4o LH
477.HD D D

(34)

This result is valid for two dimensions with the magnetic
field perpendicular to the sample, and also for three di-
mensions (the same derivation follows through with an
extra z dependence where needed). A schematic repre-
sentation of the crossover in the time versus magnetic-
field and the energy versus magnetic-field planes is given
in Fig. 2.

In deriving the result [Eq. (33)] we have taken the

where we have used
+c.c. = 1/[1+ exp( —x ) ]——,'.

In order to find the behavior of the spectral form fac-
tor, we must now average the factor exp(i 4rtaH/Po) over
the above distribution, or in other words restrict our at-
tention to the k, = 4mH/$0 comp—one.nt. We find in
this case a different form of crossover:

infinite volume approach, and ignored the boundary con-
ditions, as appropriate for strong fields. In principle it is
possible to restore the zero current boundary conditions
on the spatial boundary, to choose a specific value of
k, ~H (as in Ref. 11), and to solve Eq. (29) without tak-
ing the strong field approximation. For long times all but
the mode with minimal I wi11 decay, and for a zero field,
k, =0, this mode will be simply a constant (as a function
of space) and will not decay, I o=0. For weak fields we

may assume by symmetry I o(k, ) ~ k„which implies a
Gaussian distribution for the areas. We thus regain the
simple crossover result for weak fields [Eq. (27)] without
invoking the central limit theorem. For specific
geometries we may also calculate the proportionality con-
stant in Eq. (28), by evaluating I (k, ) for small k, in per-
turbation theory. This turns out to be simple for
geometries in which it is possible to find a gauge in which
the component of the vector potential perpendicular to
the boundaries vanishes (this component appears in the
boundary conditions ). A simple example is that of a
circular disk, which gives t. =L~/27T. DR, where R is
the radius of the disk (this is the example used to give the
numerical coefficient for Fig. 2).
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near the percolation threshold. In the general case, the
distribution function spreads to a distance r in a time
t ~r '", where d, is called the effective dimensionality
of the random walk (the Fickian value is d, =2). As-
suming that the distribution fills the volume s =r more
or less uniformly, with df the fractal dimensionality, the
expression for p (t) becomes

s s s s s I

d /drwp(t) ~t (35)

s s s I s I s
I
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For quantum-mechanical propagation in this geometry,
we will have

1 —d /dK(t)

100 =

/
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/
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FIG. 2. The regions of approximate orthogonal and unitary
symmetry and the crossover regions separating them, in the
time —magnetic-field plane for the spectral form factor (a), and
in the energy —magnetic-field plane for the spectral correlation
function (b). The dashed lines denote t„and t„, and the mag-
netic field, time, and energy have been normalized by
Ho= A /Po, t,„s=A /D, and Ec=fiD/A (A is the area of the
sample, which is taken as a disk; see the text).

In this subsection, we have developed the results for
only one type of crossover, the breaking of time-reversal
symmetry (a generalization of the GOE to GUE cross-
over). This was done in analogy to the averaging over the
same field-induced phase factors in the context of weak
localization by Chakravarty and Schmid. " A very simi-
lar derivation would apply to other crossovers, involving
symplectic symmetry (GSE). In fact, the results of
Chakravarty and Schmid include these cases too (sym-
metry breaking by spin-orbit and spin-Rip scattering).

The different forms of crossover were considered
within the diagrammatic approach already by Altshuler
and Shklovskii. ' Their results were derived by develop-
ing differential equations for the components of their dia-
grams ("diffuson" and "cooperon"), and our equation
[Eq. (29)] and results are analogous (instead of crossover
times for a given magnetic field they estimated crossover
magnetic fields for a given energy, ' they did not consider
the detailed forms of the crossovers). The present deriva-
tion may help to clarify the physics, by supplying an ad-
ditional intuitive viewpoint.

C. Anomalous di8'usion

The result for the form factor has an interesting depen-
dence on the time [Eq. (20)], which changes from a posi-
tive power for low dimensionality to a negative power for
N )2. It is also possible to have a fractional dimension
in classical diffusion, as happens for electrons diffusing in
a fractal geometry, such as in a metal-insulator alloy

At later times, when the radius of the region covered by
the spreading distribution function becomes larger than
the correlation length g, the results reduce to the previ-
ous case K(t) ~ t '

Another case of classical, anomalous diffusion is, e.g. ,
when local fields are present, which make the diffusion
asymmetric. In this case there are potential barriers of
height —&R at a distance -R away from any initial
point, and diffusion across such barriers takes an ex-
ponentially long time (it is estimated by the use of Ar-
rhenius factors as in thermal activation). This leads to an
(R ) ~ ln (t) behavior, which can again be inserted into
the expressions above, yielding the appropriate K.

Note that anomalous diffusion arises in different cases
as a classical or a quantum-mechanical effect. Since our
analysis was semiclassical and relates to classical paths,
we claim applicability only to the former type of cases. It
would be interesting if a generalization to the quantum
anomalous diffusion, e.g. , near the metal-insulator transi-
tion, would be possible. As the assumptions leading to
Eq. (20) were not checked under the circumstances of
anomalous diffusion, it would be of interest to check nu-
merically whether our predictions are indeed confirmed.
Related work on the Domino Billiard is in progress. '

IV. COMPARISON
WITH THE PERTURBATIVE APPROACH

Altshuler and Shklovskii (AS, Ref. 1) have calculated
the spectral correlation function K(E,e) for an electron
in a mesoscopic sample, using standard methods of per-
turbative quantum mechanics. They consider an elec-
tron propagating in a metal and undergoing scattering by
a random impurity potential, utilizing a Feynman dia-
gram technique to enumerate the different terms in per-
turbation theory. By evaluating a certain set of diagrams
(so called "two-ladder" diagrams, with the "ladders" cor-
responding to "diffusons" or "cooperons"), they found

2
KT(E,e)= — 9t g (e+iADq +iy)

7T
(37)

where the factor s =2 is included to account for the spin
degeneracy of each level, and y is a small energy cutoff
(physically due to dephasing). This is exactly the Fourier
transform of ~t ~p(t) [Eq. (18)], for the diffusive case [the
derivative with respect to e of the (e, q) representation of
the diffusion Gaussian 29ti/(E+ifiDq ), evaluated at
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x =0; twice the real part appears because of the symme-
try with respect to t ~—t]. By using a sum over discrete
momenta applicable to a rectangular sample, rather than
an integral over q, AS were able to treat both the diffusive
( t « t„; sum = integral) and the ergodic ( t ))t„;
sum=first term) regimes.

In this section we compare some of the details of this
derivation with the present semiclassical treatment, and
show that they are indeed analogous. We are thinking
here of the standard disorder ensemble which is implied
by the diagrammatic technique: the potential consists of
a large number of similar terms, each corresponding to
an impurity centered at a point R;, with the positions R,.
averaged over the volume. We assume that the impuri-
ties are small, i.e., most of the propagation is simply free
motion between the impurities (but we do not necessarily
imply that the impurities are pointlike, which is
equivalent to assuming a Gaussian white-noise potential,
and significantly simplifies some higher-order diagrams).
The analogy is apparent once it is appreciated that, in
both the semiclassical and the perturbative approaches,
the spectral density of states may be written as a sum and
integral over contributions of different paths, where each
path is identified by a starting position and a list of im-
purities on which the path scatters before returning to
the starting point. Thus, the diagrammatic calculation is
in a sense also a calculation of the "quantum probability
to return to the starting point, " albeit in a different ap-
proximation scheme.

The equivalence of the two approaches becomes exact
when both are applied to the diffusive regime. In both
cases, the details of the approximate evaluation of the
quantum propagation are swept aside: in the semiclassi-
cal approach a diffusion Gaussian is used for the classical
probability for periodic motion; in the perturbative ap-
proach, diffusion-type equations are used to describe the
"diffuson" and "cooperon" subdiagrams. The (leading-
order) results of the two approaches become identical (as
exemplified in Sec. III B). In the following subsections we
compare the two approaches in more detail, as we find
that this is helpful in developing physical intuition re-
garding both methods of derivation.

A. Understanding the diagrams

The comparison of the diagrams with the semiclassical
method clarifies their physical meaning. The "two-
diffuson" and two-cooperon" diagrams considered by AS
are reproduced in Fig. 3, together with their representa-
tion in coordinate space. We have chosen a specific
representative of these diagrams, with seven scattering
events, considered to occur at specified points (we post-
pone the averaging over the coordinates of these impuri-
ties to a later stage). To obtain IC(e) one has to trace
over the external coordinates x and y (similar integrals
have been performed in Ref. 11). It turns out that this
integral is contributed mainly from points very close to
the straight line connecting the first and last scattering
points (e.g. , x near the line connecting 1 and 7 in the
figure). The result of the integral, to leading order in
1/(kzl ), is proportional to a single Green function con-

( /
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( y /

(
/

( /

/
(

(b)

FIG. 3. Companson of Altshuler and Shklovskij. 's two-
diffuson (a) and two-cooperon (b) diagrams with their spatial
representation (c). A representative of the diagrams with seven
scattering points has been chosen. The trace over the momenta
p and k transforms into an integration of the coordinates x and
y over space. After the integration the "triangles" near these
points [the triangles (1,x, 7) and (3,y, 4) in the figure] collapse
to form straight lines, i.e., a closed orbit is obtained (see text).

necting these two scattering points, with the constant of
proportionality measuring the length of that segment of
the closed orbit (in terms of the wavelength). We thus
find that, qualitatively, these diagrams describe two
closed electron paths that follow the same closed orbit,
although they start at different points. Both diagrams
correspond to the same periodic orbit, and only the direc-
tion of propagation (the arrows) is not identical with the
calculation of Sec. II because there we took the complex
conjugate of one of the density-of-states factors. The dia-
grams of Fig. 3, unlike the semiclassical calculation, do
not contain the contribution in which the starting point
of both paths occurs between the same pair of scattering
events (this contribution, which corresponds to diagrams
with a single ladder, is small in the difFusive regime).

The analogy with the semiclassical derivation thus
yields a physically intuitive way to identify the diagrams
which give the leading contribution to the spectral form
factor. The analogy naturally generalizes to the extra
"two-cooperon diagram" that is included for time-
reversal symmetric cases —the two-electron paths corre-
spond there to scattering off the same list of scatterers in
opposite order. The development of physical intuition as
to the meaning of the diagrams in terms of paths which
the electrons can follow is an idea which has been pur-
sued for some time, especially in the context of weak lo-
calization. " ' Here we have reversed the usual ap-
proach, and presented the semiclassical derivation as the
starting point. Whereas in this subsection we have ex-
ploited the similarities of the two derivations, in the next
subsection we focus on the differences between them.
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B. Comparison and generalization of the derivations

The analogy described above leads naturally to the
question whether the contribution of each specific orbit is
indeed quantitatively identical within the two approxima-
tion schemes. This comparison immediately runs into
difhculty, because of the very different nature of the
description of each scattering event, and the different
types of scattering potential for which the two approxi-
mations are valid. In fact, a preliminary stage in the ap-
plication of the diagrammatic method to a specific type of
impurity is the modelling of the scattering by low-order
perturbation with respect to an appropriate pseudopoten-
tial (which is usually different from the real potential).
The analogous stage for the application of the semiclassi-
cal method would involve the construction of a different
pseudopotential, such that, e.g., the physical size of each
pseudoimpurity would be equal to the quantum scatter-
ing cross section of the real impurity.

We thus find that the two different methods that led us
in equivalent ways to the result discussed in this work
[Eqs. (20) and (37)] were actually both based on the fol-
lowing three ingredients:

(i) A pseudopotential is chosen so as to reproduce the
desired cross section, and hence the desired mean free
path and diffusion constant.

(ii) Enough free motion between the scattering events is
presumed (kFl ))1), so that the orbits connecting these
events are discrete and well separated.

(iii) Constructive interference between paths belonging
to the same orbit, or to pairs of orbits related by symme-
try, is allowed for.

We expect our result to hold for any situation in which
the above conditions are met (for instance, in a crystal,
where the motion between scatterers is that of a Bloch
electron).

The above claims of generality raise again the question
of the domain of validity of the semiclassical result [Eq.
(17)] and the application to diffusive systems [Eq. (20)].
As we have seen, for short times the semiclassical repre-
sentation should be accurate (in fact, the pseudopotential
is constructed so as to make it accurate), and therefore
we expect the domain of validity to extend from A/E for
the semiclassical Eqs. (17), (18), and from r for the
diffusive Eq. (20). For late times, the validity of the semi-
classical derivation is unclear, but here the perturbative
method provides an answer. It is found that evaluation
of additional, higher-order, diagrams leads to corrections
which become significant as the Heisenberg time tII is ap-
proached. These additional diagrams correspond to the
two-electron paths following orbits that are not identical,
and deviate from one another at least over a short seg-
ment. Thus, we find that the failure of the leading-order
diagrammatic result at times near tH is due to the same

type of "classical" approximation (omission of "off-
diagonal" terms) as was introduced in the semiclassical
approach. By analogy, we may therefore expect the semi-
classical results to hold all the way up to times of order
tH, exactly as we expected on general grounds (due to the

known leveling off of the form factor). This relies on the
generality of the above three conditions, and does not
necessarily imply the validity of the semiclassical expres-
sions for the amplitude of a specific long orbit, Eq. (7).

V. APPLICATION TO PERIODICALLY DRIVEN
SYSTEMS AND A NUMERICAL TEST

In this section we wish to present numerical evidence
to support the results for a diffusive electron, Eq. (20).
For this purpose, we must choose a discretized system.
There are two natural systems to consider: Anderson's
model and the kicked rotor. We prefer to use the
kicked rotor because it avoids the problem of a finite
bandwidth, and the resulting band edges, which make the
appropriate averaging less well defined. Nevertheless, we
modify the kicked rotor, making it more similar to the
Anderson model as explained below (see also Ref. 47), so
that the averaging is a random potential averaging as in
the case of an electron (the extra r dependence of the
kicked rotor and the appearance of replica orbits are also
avoided by this modification). The price paid is that the
classical behavior of our system is now defined only in an
ensemble-averaged sense (as in the Anderson model). Be-
fore presenting the specific system and the simulation re-
sults, we present an introduction including the basic
definitions, for the sake of completeness.

A. The quasienergy spectral correlations

We consider the case of systems with periodically
time-dependent Hamiltonians, and defer the discussion of
the necessary use of a finite basis to the next subsection
(both periodicity and finiteness were discussed by Dit-
trich and Smilansky ). As a prototype of such a system
we can think of a free particle driven by a periodic exter-
nal field. Such systems do not conserve energy, and so
there is no need to distinguish between different energy
hypersurfaces —for chaotic behavior the whole of phase
space is filled. We can use the eigenvalues and eigenvec-
tors of the evolution operator for one period, as a substi-
tute for the spectrum and states in the energy preserving
case. Within such a stroboscopic approach, the time
variable is discretized as t =n ~, where ~ is the period of
the system (it is analogous to the mean free time, which
was denoted by r in the earlier sections). The evolution
operator becomes

q(a)= +5 (a —a&),
k

(39)

where the 6 function is defined to be 2m. periodic. The
Fourier transform is then discrete:

G(x,y;n)= g4k(x)e " Ok(y),
k

where +k are the eigenvectors of the one-step evolution
operator, and aI, are the corresponding eigenphases (the
eigenvalues are pure phases). These phases play the role
of the eigenenergies in a time-independent system, but are
defined only up to an arbitrary multiple of 2~. They are
referred to as quasienergies. It is natural to define a
"quasienergy spectral density" as
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q(n)= ge
27T k

J dx G(x, x;n ) = g A (n)e
J

(40)

K(A, a)=q A+ —
q A ——

2 2
(41)

where the last equation represents a semiclassical approx-
imation as a sum over periodic orbits. Each periodic
path is given by a starting point in phase space, and the
list of n —1 points which corresponds to the motion of
the system along n —1 field periods (assuming the system
returns to the starting point after the nth period). A
periodic orbit is given in the chaotic case by the ordered
list of n points without specifying the starting point. In
the integrable case the orbits form continuous curves or
tori. Because of the additional freedom given by the lack
of energy conservation, there is no restriction toiV ) 1 for
time-dependent chaotic systems.

The quasienergy spectral correlation function is then
defined as

(we use sin instead of the more customary cos in order to
avoid some unnecessary phases in the matrix elements).
Physically, it corresponds to a rotator of unit moment of
inertia, where I9 is its angular position, l is its angular
momentum, k is the kicking strength, and ~ is the time
interval between successive kicks (1 and k are measured
in units of A', and ~ is measured in units of the natural
basic frequency of the quantized rotor, which is —1 lfi).
Classically, the evolution during each period yields a
mapping from (0„,&l„) to (0„+i,wl„+i), which depends
on the single parameter K,i =rk (the factor r appears so
that time is measured here with respect to the kicking
period). The system behaves as a perturbed rotator for
K,&

«1, and exhibits chaotic diffusion in l space for
E,i )) 1 (because successive values of 0 become uncorre-
lated). For generic values of r, this diffusion is
suppressed quantum mechanically, and Anderson-like lo-
calization in l space is observed, with a localization
length g~ k (in the present paper we will consider only
cases in which the localization is not relevant because the
size of the system is smaller, L + g).

The quantum evolution operator for one period is

and its Fourier transform is U =exp( —ik sin(0) )exp ——zl
2

(4&)

IC( An)= J dae ' "K(A,a)
2K 0 which in the l (angular momentum) representation reads

= g q(n+m )q *(n —m )e'

This leads after averaging over 0 & 3 ~ 2~ to

(42) l
UI i

=Ji i (k)exp ——rl
2

(46)

E(n)=~q(n)~ =np(n) (43)

B. The modi6ed kicked rotor

One specific example of a periodically time-dependent
Hamiltonian is that of the kicked rotor, which reads

lz
H(I, 0)=—+k sin(0) + 5(t n~)—

2
(44)

(note that the first equality is an exact relationship; cf.
Ref. 27). We have introduced the semiclassical approxi-
mation in the last equality, in analogy with Eq. (17), as-
suming that p ( n ) is normalized appropriately. The factor
of n again arises from interference within each orbit, but
here the orbits are indeed a set of n discrete paths, so
there is no problem with the continuous t parameter (this
interference has been noted already in Ref. 8).

Again, for a time symmetric evolution the interference
of time-reversed paths introduces a further factor of 2
(except for special cases such as n =2, when the path
coincides with its time reverse).

As a result of our definition of the averaging of
g(A, n ) over all A's and without averaging over n's,
E(n) is equal to the absolute square of a well-defined
q(n). The ensemble distribution of this quantity, q(n),
will generally be a Gaussian centered at the origin of the
complex plane (compare with Ref. 28). This implies large
fiuctuations in K(n), with the standard deviation equal to
the mean (such fiuctuations are indeed obtained in the
simulations to be presented below).

(Ji &(k)= f exp[ik sin(0) i(l ——l')0]d0/2~ is the
Bessel function). This evolution is easy to simulate nu-
merically because the operator has factors which are di-
agonal in either l or 0 space, and the transformation be-
tween these two representations of the state vector can be
quickly effected by use of fast-Fourier-transform (FFT)
algorithms (in the discrete case).

For the purpose of numerical simulation, we must
choose a finite discrete basis, and in order to observe
diffusion we must work in angular momentum space. Us-
ing the Fourier-transform technique implies periodic
boundary conditions for this "sample of l space" (in fact,
the matrix elements are now given by a discrete sum ap-
proximation of the Bessel function integrals). The pic-
ture becomes analogous to a "time-dependent tight-
binding model, " in which each site corresponds to a value
of l, and the system is periodically perturbed by a "kick"
that may shift a particle to a nearby site (mixes the values
of the wave function on nearby sites). The quasienergy
values of the individual sites P&

=~l /2
l=1, . . . , I., may be considered as pseudorandom, and
in this work we take them as completely random

P& E [0,2']. As mentioned above, we have thus modified
the kicked rotor system, and made it more similar to the
Anderson model.

The use of a random distribution of P& enables the
definition of an "ensemble-averaged classical behavior"
for this "kicked tight-binding model. " Introducing ran-
dom, uncorrelated site quasienergies implies a complete
"dephasing" in the I basis at each time step (obviously
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this "dephasing" is due to the averaging, and no inelastic
scattering is implied). In a sense, this is the opposite of
the semiclassical limit, where small A would lead to a
smooth dependence of P, on l. It enables the definition of
"quantum paths" and corresponding probabilities, in
complete analogy with the semiclassical analysis: we
define j, a "quantum periodic path" of length n to consist
of an ordered list of n discrete sites in the l basis,j=

I l„l2, . . . , l„]. The corresponding amplitude is
AJ =g," &Jt I (k), and the "action" is S~ =g;Pl,
with /o and l„ identified. We find that the representation
of the quantum probability amplitude to perform period-
ic motion as a sum over paths, q(n)=g~&jexp(i&J), is
exact. %'e are led to define the "classical evolution" of an
initial distribution 61 I into an eventual distribution

6I I after n steps, in a way such that the path j is fol-
n

lowed with a probability p =ii, ~J& I (k)~ (at least in
i i —

1

an ensemble-averaged sense). The connection
K(n) =np(n) will now follow by noting that the n paths
that are related to each other by a cyclic permutation of
the [I, ] have identical amplitudes and phases, and natu-
rally form an "orbit" (the factor of 2 for the time-reversal
symmetric cases will also follow).

Note that here the only questionable step is the omis-
sion of off-diagonal terms in the orbit sum. This step may
be justified by claiming that the correlations should be
small if the site quasienergies are uncorrelated, and the
kicking parameter k is large (this corresponds to the re-
quirement of a large mean free path kFl ))1). Neverthe-
less, since the form factor cannot increase without limit,
it is clear that subtle correlations in the off-diagonal
terms will amount to an important contribution to K(n),
for times n ) n * with n * denoting the appropriate
"Heisenberg time" (or a shorter time in the case of locali-
zation).

We have thus defined the "classical evolution" as a
random walk on the lattice of l sites, with the probability
of jumping b, l sites at each step given by ~J&1(k)~ .
One may check that this evolution is "uni-
tary, " g~l ~J&&(k)~ =1, and that after a short time it
results in diffusion, with a constant of
D=(1 /2r)g& All ~JtI(k)~ =k /4r. For large values of
E,I this is identical with the classical diffusion constant
(for smaller values of K,&

deviations due to some residual
correlations in the generally chaotic behavior exist ).
The fact that the analysis of this problem leads to the
same result, K(n)=np(n) —&n for both the semiclassical
and the quantum eases, is' a striking example of the gen-
erality alluded to in the preceding section.

The results for K(n) in our one-dimensional discrete
system are shown in Fig. 4. It is seen that the averaged
K(n) follows the theoretical result of Eq. (43). We note
that the factor p (n) was calculated from a classical simu-
lation based on the exact form of the quantum kick,
~J&~(k)~ (and not from a diffusion equation approxima-
tion), the symmetry factor 2 was corrected for the first
few steps to exclude self-symmetric paths, and the n fac-
tor was replaced by the full CxOE form factor so that the
saturation of the results at large n would be accounted for

1.0—
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njL

I
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FIG. 4. Results of simulation of a one-dimensional, time
periodic, diA'usive system: The averaged K(n) (continuous line)
from 230 realizations of a 128-site modified kicked rotor, with a
kicking strength of k =8. The results clearly follow the present
theory (dashed line), which is also compared here with the GUE
random matrix result or the p(n)=const case (dotted line).
Both axes are scaled by the number of sites in the system.

which is diagonal in the (two-dimensional) Fourier-
transform representation (8&,8z). Note that here the fact
that we chose random site quasienergies becomes impor-
tant, because if we were to use the separable form de-
pending on I, and l2 separately, the problem would
separate into two one-dimensional kicked rotors (of
course there are other ways to overcome this ). It is
hard to visualize the corresponding classical system, al-
though the Hamiltonian can easily be written. The
modified finite discrete quantum system is best considered
simply as a tight-binding two-dimensional array, with a
periodically time-dependent Hamiltonian. The analysis

(at least in their general form). All of these modifications
would be irrelevant for a larger system, which would
show just t'~ behavior [Eq. (20)] for times up to the er-
godic time, and linear ( ~ t ) behavior between the ergodic
time and the Heisenberg time n * (in the case presented in
Fig. 4 the last range is vanishingly short, but it will ap-
pear in the next example). We have chosen the parame-
ters k = 8 (the kicking strength) and L = 128 (the number
of sites in the mesh) so as to conform with the require-
ments k )) 1 (this is analogous to kzl ))1) and k «L -g
(diffusive, nonlocalized behavior). By repeating the cal-
culations with different values of I. and k, we have
checked that the localization, which is margina1 here
since L -g, has no infiuence on the results plotted [al-
though it does inhuence other properties which are more
sensitive than K(n)].

We have also performed simulations for a two-
dimensional system, for which K-const for early times.
This system is obtained by simply taking the above
modified kicked rotor, and doubling the number of de-
grees of freedom. It consists of a two-dimensional (I„lz)
array of random quasienergy sites, kicked by the operator

exp [ ik [sin( 8& ) +si—n( 82) ]],
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FIG. 5. Simulation results for a two-dimensional 16X 16 sys-

tem, averaged over 60 realizations, with kicking parameter
k =2. Notation as in Fig. 4.

of the "quantum paths" may be carried out in this case
too.

The numerical results, for a kicking strength k =2 and
system size of L XL = 16 X 16 sites, are presented in Fig.
5. Here too we have attempted, within the limitations of
computation resources, to choose parameters such that
I ((k ((L (g [here g is exponential in k (Ref. 49)]. The
agreement between theory and simulation in the two-
dimensional case is also good, and presumably could be
improved by having better statistics and larger values of
the kicking parameter k, i.e., larger systems.

VI. CONCLUSION AND FUTURE RESEARCH

We have discussed the connection between the spectral
form factor, which determines several important physical
quantities in mesoscopic samples, and the classical proba-
bility to perform periodic motion. Our main result is that
the spectral form factor is proportional to t times the
classical probability to perform periodic motion, with the
factor of t resulting from adding the quantum amplitudes,
rather than the classical probabilities, of the "t periodic
paths" that constitute an orbit. This result has an ex-
tremely wide range of applicability: it can be used for
any specific geometry and potential, provided only that
the classical motion is chaotic. This contrasts with the
diagrammatic approach, in which the averaging over the
positions of the impurities is an essential element from
the outset (in both approaches there is also a limitation
on the type of potential for which an individual scattering
event is approximated well, but this limitation can be re-
laxed in both cases by the use of different pseudopoten-
tials). We point out that the classical probability to re-
turn to the starting point, which plays a crucial role in
the well-known weak-localization correction to the con-
ductivity, ""' is similar to the classical probability for
periodic motion used here. Although in principle the
former is contributed to by any path that returns to its
initial position, while the latter requires that the path re-
turn also to its initial momentum, the difference between
the two often becomes a simple constant factor upon

averaging over the sample or the ensemble.
Another important ingredient is the diffusive behavior

of the probability to perform periodic motion. We claim
that both the interference and the diffusion are very gen-
eral phenomena, and therefore our results should hold in-
dependent of the details of the scattering potential, and in
some cases even the size of A' (as long as the disorder is
weak, kFl ))1, and there are no Anderson-localization
effects). The availability of different derivations of the
same result not only supports its generality, but also pro-
vides additional physical insight. For example, we have
given a physically motivated argument for the choice of
the dominant perturbation-theory diagrams in the calcu-
lation of the spectral correlation function.

One interesting avenue for future research would be a
more thorough examination of the domains of validity,
and accuracy of this picture. At present, the only limita-
tion on the domain of validity appears to be t (tH (for a
correct treatment of times t ~ tH other approaches are
necessary, e.g. , the field theory of Ref. 3). Both the semi-
classical and the diagrammatic approaches provide tech-
niques to calculate corrections to the standard results (in-
tegration near caustics, high-order diagrams), which ap-
pear to be of a different nature. But the generality of the
results leads to the suspicion that there may exist entities
analogous to "classical paths" and their "quantum ampli-
tudes" and "classical contributions, " such that the "semi-
classical" connections that we have found would be ex-
act. Thus far we have only been able to define such
"quantum paths" in the discrete, time-periodic case (Sec.
V B).

The same situation also calls for another approach:
Imagine that the density of states d(e') is written exactly
as a sum over discrete contributions of the semiclassical
type; this immediately implies, as we have seen, that these
contributions will be correlated for late times. An ex-
ample of such an exact sum is the sum of contributions to
the path integral from different winding numbers, in the
case of the mesoscopic rings discussed above. At present,
the intricate correlations between the terms can only be
appreciated by noting that the evolution is unitary and
limited to a compact energy surface. It is desirable to de-
velop models in which these correlations can be studied
explicitly. This may also lead to a better "semiclassical"
understanding of Anderson localization, since it is possi-
ble that the same effects that cause the deviation from the
simple "classical" sum discussed in this work will also
cause the deviations implied by localization. One possi-
bility to attack this problem is through a careful compar-
ison with renormalization-technique approaches.

Finally, we return to the topic of applications to
mesoscopic systems. The formula for the spectral form
factor may be applied easily in many cases (we have dis-
cussed three applications), since all that is needed is a
knowledge of the system's classical behavior. The results
for diffusing electrons are quite general, and form a new
type of universality class (not as general as the random
matrix ensembles). Still, details of specific cases remain
to be worked out, such as the inAuence of specific
geometries and applied fields. The crossover regions be-
tween two regimes described by different random matrix
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ensembles also warrants further study (generalizations of
our Sec. III B). We have considered the application to
the single-particle spectral correlations of mesoscopic
systems, in which each electron moves in the self-
consistent field of the others, but our main result, Eq.
(18), should hold generally. An evaluation of the classical
probability to perform periodic motion, p (t), for the
many-body problem should lead to the spectral correla-
tions of the full many-particle Hamiltonian.
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APPENDIX: PERFORMING THE PHASE SPACE
INTEGRALS

In this appendix, we rederive the expression for the
classical probability associated with a periodic orbit j
[Eq. (15)], and compare it with that for the quantum am-
plitude corresponding to the same orbit [Eq. (7)].

In order to evaluate the contribution of a periodic orbit
j to the classical probability to perform periodic motion
[Eq. (14)], it will turn out to be convenient to use a coor-
dinate system which is tailored to the specific orbit j.
The 2N new phase-space coordinates include two coordi-
nates which span the periodic orbit sheet itself: the ener-
gy (or Hamiltonian) H, and the conjugate "time" variable
T, which measures the distance along the orbit in units of
the time required to traverse it. At each point of (H, T)
one may consider the transverse hyperplane, which is

I

P, (E,t)= f dQodPodTodHO
J

XS(H, —Zy~-'(Q, —
Q, )

xS~-'(P, —P, )S(T,—T, ) . (A1)

The integration over the energy coordinate Ho is trivial.
For the time evolution we can simply write T, = To+ t,
with the other coordinates remaining time independent.
We must now transform back to the original branch of
our coordinate system by using the Poincare map:

called a Poincare section. It is spanned by N —1 canoni-
cal coordinates Q and momenta P, taking the periodic or-
bit as the origin. ' This set of canonical coordinates is
chosen so that the Hamiltonian function is independent
of all of them except for H, and thus they are all con-
stants of the classical motion, except for T. The price
paid is that it is multivalued, in the sense that with the
evolution around and around a path near the periodic or-
bit, the same transverse coordinates (P, Q ) refer to
different points in phase space after each revolution. The
Poincare map F(P, Q) is defined as the transformation
from a point on a certain Poincare section to its image
generated by the Hamiltonian Aow after one revolution.
This means that the phase-space point (H, T+T,P, Q)
coincides with the point (H, T,F(P, Q)), albeit on a
different branch of the coordinate system (as above, T~ is
the orbit's period, and may depend on H). The monodro-
my matrix M is that associated with the linearized form
of the Poincare map near the periodic orbit itself. Note
that, as the transverse coordinates (P, Q ) are constants of
the motion, the Poincare map F is independent of the po-
sition along the orbit T.

Rewriting the integral of Eq. (14) in the new coordinate
system, we have

P (E,t)= f dQodPodT06 [(Qo, PO) F(QO, PO)]6(—TO+t —T —To) . (A2)

The 5 function over times becomes independent of the in-
tegration variables, and can be taken out of the integral.
The integration over To becomes a trivial integration
over a constant integrand, and gives just the size of the
integration region, T (again, j is the primitive orbit cor-
responding to j). The integration over the remaining
(2N —2)-dimensional 5 function gives just the inverse of
the determinant of the derivatives of the argument, and
so we finally find

P, (E, t)=5(t —T )T' det(M, —I)~

This is exactly Eq. (15)
We now wish to compare this derivation with that of

the quantum amplitude, Eq. (7). The standard
method' ' for deriving the amplitudes and phases of
Gutzwiller's sum involves the straightforward application
of the stationary phase approximation to the integrations
involved in Eq. (3). It is also possible to rewrite the trace
of the propagator as a phase-space integral, using either

the Wigner representation or a coherent-state represen-
tation. We will not go into the details of these deriva-
tions here, but we point out that they all share a common
feature with the classical derivation given above: the
contributions to the integral correspond to periodic or-
bits, and the integration over the length of the orbit is
singled out as an integration over a constant integrand
which simply gives the length of the integration region
T'. The explicit appearance of the monodromy matrix is
not as transparent, but can be understood intuitively in
analogy with the usual semiclassical results for the propa-
gator: the semiclassical amplitude is equal (apart from
the Maslov index) to the square root of the classical prob-
ability density.

Finally we emphasize that the "constructive interfer-
ence" of the contributions of different points on the same
periodic orbit differs from the usual notion of construc-
tive interference between a discrete set of amplitudes.
Here the contributions of different points are integrated
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over, and it is necessary to go through the detailed
derivations discussed here to see how the integrations are
separated into transverse and longitudinal (timelike)
coordinates. The comparison of these derivations pro-

vides the proof that the continuous infinity of classical
paths belonging to the orbit j can indeed be considered as
"T' di6'erent paths, " with identical actions S and ampli-
tudes

~
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