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Spin-Sip excitations from Landau levels in two dimensions

J. P. Longo and C. Kallin
Department of Physics, McMaster University, Hamilton, Ontario, Canada 1.8S 4M1

(Received 9 September 1992)

Dispersion relations for the spin-Hip modes, in which an electron is both promoted from one Landau
level to the next and its spin reversed, are calculated in the time-dependent Hartree-Fock approximation
and in the generalized single-mode approximation for integer and noninteger filling factors. The energy
of these modes can be shifted substantially by electron-electron interactions at k =0. This is in contrast
to the magnetoplasma and spin-wave modes, which are not shifted at k =0. The calculated dispersion
relations are compared with the results of recent inelastic light-scattering experiments near filling factor
v= 1, and predictions are made for other filling factors.

I. INTRODUCTION

At low temperatures, and for typical densities, the in-
version layer electrons in GaAs heterojunctions are all in
the lowest subband for motion perpendicular to the inter-
face and, hence, their dynamics can be described by that
of a two-dimensional electron gas (2DEG). ' In the pres-
ence of a strong perpendicular magnetic field, B, the elec-
tronic motion is further quantized, and the density of
states for the ideal 2DEG then consists of discrete, highly
degenerate, spin-split Landau levels. Both the reduced
dimensionality and the Landau quantization of the kinet-
ic energy can lead to enhanced correlation effects due to
electron-electron interactions. Also, in the best GaAs
heterojunctions, the amount of disorder is small, making
it possible to observe correlation effects experimentally.
The fractional quantum Hall effect and possible Wigner
crystallization are striking examples of ground states sta-
bilized by correlation effects. However, the excitations
can also exhibit strong correlation effects even when the
ground state is not strongly perturbed by electron-
electron interactions, such as when a single Landau level
is fully occupied. For example, there is a large exchange
enhancement of the g factor which can be observed by
transport measurements, ' and a number of features ob-
served in cyclotron resonance experiments have been at-
tributed to the effect of electron-electron interactions on
the collective excitations of the system. More recently,
strong features in the spectra obtained by the inelastic
light-scattering methods of Pinczuk et al. have been at-
tributed to collective excitations of the 2DEG. It appears
that inelastic light-scattering techniques can probe excita-
tions that are not active in spin or cyclotron resonance
experiments, and can also probe over a wider range of
wave vectors. In particular, it has been argued that the
so-called "spin-Aip" mode, in which an electron both is
promoted from one Landau level to the next. and has its
spin reversed in the process, has been observed in these
experiments. This mode is strongly affected by
electron-electron interactions and will be the main sub-
ject of this paper.

In the presence of a strong perpendicular magnetic
field, the energy levels for an ideal 2DEG lie in discrete

Landau levels, with spacing co, =eB/m *c, the cyclotron
frequency. Within each Landau level there are two spin-
split levels, separated by co, = ~gpttB ~, the Zeeman ener-

gy. The N electron ground state has electrons in the
lowest v=N/A' levels, where the highest occupied Lan-
dau level may be only partially filled. The degeneracy of
the spin-split Landau level is A'=(eB /2trc ) A, where 3 is
the area of the sample, and 6=1. In the absence of in-
teractions, excited states can be formed by removing an
electron with spin s from Landau level n and placing it in
an empty state in Landau level n+m, with spin s+6S, .
The energy of such an excited state is mco, +6S,co, .
When interactions are included, the excited states are la-
beled by wave vector k, m, and 6S, . In the strong-field
approximation (co, ))E„where the typical Coulomb en-

ergy is E, =e /el 0, and the magnetic length is

lo = +c /eB ) the excited states occur near integer multi-
ples of co„and the dispersion relations can be written as

E„' '(k)=mco, +5S,co, +bE„' '(k), (1.1)

, 6S
where bE„' '(k) is of order E„and p is an additional
index which may be needed to distinguish between
diff'erent branches of the dispersion relation. According
to Kohn's theorem, the frequency for cyclotron reso-
nance is not affected by interactions, i.e., the only electric
dipole allowed 6S, =O (magnetoplasmon) mode at k=O
occurs at energy cu, . Kohn's theorem applies only to
translationally invariant systems; the combined effects of
disorder and electron-electron interactions can cause a
shift from co, at k=0 and so absorption can occur away
from the cyclotron frequency. However, disorder is typi-
cally very small in the heterojunctions, and does not have
a large effect on the dispersion relations at small wave
vectors. An argument similar to Kohn's shows that in a
spin rotationally invariant system the spin wave mode
(m =0, 5S, =1), which is observed in electron spin reso-
nance experiments, ' occurs at co, for k=O. (This is
Larmor's theorem. ) However, no such symmetry argu-
ment exists for an excited state in which an electron both
changes Landau level and Aips its spin. In this case, even
in the absence of disorder, the mode can have energy
different from m co, +6S,co, at k =0. These spin-Aip
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modes have been studied at integer filling factor v,' how-
ever, the effects of exchange were not treated correctly. "
In the simplest case, when the Fermi level lies between
the two spin-split levels in the lowest Landau level, the
shift at k =0, which is substantial, is equal to the
difference in exchange self-energy between an electron
with spin s= —,

' in the first excited Landau level, and an
electron with s = —

—,
' in the lowest Landau level. In this

paper, we consider the spin-Aip modes at other filling fac-
tors, including noninteger v, and find in these cases that
b,E„' '(k=—O) can be shifted from zero by Coulomb in-
teractions.

Dispersion relations have been calculated previously
for the magnetoplasmon modes (5S, =0) near co, for in-
teger filling using a diagrammatic approach, which is
equivalent to the time-dependent Hartree-Fock approxi-
mation. ' These approximations are essentially exact in
the strong-field limit for integer filling factor, but they ig-
nore important correlations between the electrons in the
partially filled Landau level when used for noninteger
filling factors. ' An approximation which can include the
correlations within the partially filled Landau level is the
generalized single-mode approximation (SMA), which
has also been used to calculate dispersion relations for the
rnagnetoplasmon modes. ' ' The magnetoplasmon
dispersion relations are relevant to light-scattering exper-
iments, where structure is observed in the spectra at ener-
gies that correspond to critical points in the dispersion re-
lations. Spectra measured for filling factor v=1 also
show a large peak at an energy corresponding to the shift
of the spin-Aip mode from co, . ' When there is more
than one mode for the magnetoplasmon or spin-Aip exci-
tations at a particular filling factor, as occurs for v) 1,
the modes may contribute unequally to structure in the
light-scattering spectra. Oscillator weights, which are a
measure of the relative contribution of each mode, have
been calculated previously for magnetoplasmon modes
for filling factors between 1 and 2, ' and near k=0, for
filling factors between 2 and 3.' We have calculated os-
cillator weights for the magnetoplasmon modes for all k
for filling factors between 2 and 3, as the weights are re-
quired to predict the result of a light-scattering experi-
ment. We have also calculated dispersion relations in the
Hartree-Fock approximation and oscillator weights for
the spin-Aip modes near co, +co, for integer and nonin-
teger filling factors. It is expected that these modes will
cause structure in the light-scattering spectra. To illus-
trate the interplay between oscillator weights and the
dispersion relations, we include a calculation of the dy-
namic structure factor, which is proportional to the
differential cross section for light scattering. '

II. DISPERSION RELATIONS

A. Hartree-Fock approximation

The charge-density and spin-density response functions
have been calculated previously using a diagrammatic ap-
proach, which is equivalent to the Hartree-Fock approx-
imation (HFA), " for integer filling factors. The poles of
the response functions given the dispersion relations

m, 5SE„' '(k). Here we present the main results of that cal-
culation, with the extension to noninteger filling factors,
and 5S,AO, and refer the reader for details to Ref. 8.

The single-particle Hamiltonian for an electron
confined to two dimensions, in a perpendicular magnetic
field is

'2

H; = p; ——A(r;) +co,S,(i),1 8
m* (2. 1)

where the magnetic field is B=V X A, and S(i) is the spin
angular momentum operator for the ith electron. For the
single-particle state P„&,(r; ),

H;P„ i, (r;) = [(n+ —,')co, +see, ]P„,, (r, ) . (2.2)

where the Coulomb interaction is

V= —gf,u(q)p;(q)p, (
—q) .

1 dq
2,~~ (2ir)

(2.3)

The finite thickness of the electron layer can be taken
into account by modifying the Coulomb interaction. ' In
this case, the Fourier transform of the effective interac-
tion can be written as

2 8u(q)= F(q),
q

where
—3

F(q) = —1+—q
8 b

8+9—+3q q
b b

2

(2.4)

modifies the interaction from its ideal two-dimensional
form. The average distance of the inversion layer elec-
trons from the interface is Z0, and b =3/Z0. The ideal
two-dimensional case is recovered in the limit of infinite
b. The density operator is

p(q) = gp, (q) =pe (2.5)

For integer filling factors v, the ground state is un-
changed by interactions; in the strong magnetic field limit
it is v filled single spin Landau levels, with the remaining
levels unoccupied. When v is noninteger, electrons in the
highest occupied level, which is partially filled, are
strongly correlated.

In the HFA of Ref. 8, the dispersion relations of the
collective excitations are found by locating the poles of
the charge-density and spin-density response functions.
The response functions are

g„(k,co)= —i f dt e' '[B„(k,t), B (k, O)], (2.6)

where

Here n is the Landau level index, and l distinguishes the
different members of the degenerate set of states. The
spin index, s, is +—,'.

The Hamiltonian for the interacting two-dimensional
electron gas in a 8 field is

&=gH;+ V,
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e„(k,t)=e' ~'ge 'e„e

The charge-density response function has 3 =p, and
e = 1; the spin-density response functions have
=o.„o.+ and e~ =2S„2S+,where S+ =S„+iS . In this
approximation for the response functions, only diagrams
with one exciton present at all times are considered. This
results in poles for the response functions at real frequen-
cies co(k). This calculation does not produce decay rates
which are given by Im(co(k)). When both spin states are
equally occupied (v =2, 4, . . . ) this approximation in-

I

eludes all contributions to order E„and so is essentially
exact in the strong-field limit. For the spin-flip modes
considered here, there are additional contributions which
are of order E, at integer filling factors when both spin
states are unequally occupied (v=1,3. . .) which are not
included in this calculation. For example, a spin-flip ex-
citation may decay into a magnetoplasmon and spin
wave, conserving both energy and momentum. Contribu-
tions of this type are currently being studied and may
produce poles at complex frequencies in the spin response
functions, and lead to an estimate for decay rates.

In the HFA, the response functions have poles at fre-
quencies co(k) which are solutions to

25p„[D(~)] p' —5, , 5, , V"„)pi(k)+5, , 5, , V' 'ip(k)]Bi„(k)=0,
kp

(2.7)

where the Greek labels represent both Landau level and
spin, i.e., a=(n, s ). The basis states are B&„(k). The
two-particle propagator is

v [1—vp]
D p(co)=

co+E —E&+i0+
vp[1 —v ]

co+E —Ep —i 0+

(2.8)

where the poles of the electron Green's function occur at
energies

E = ( n + —,
'

)co, +s co, +X (2.9)

with the exchange self-energy of an electron labeled by o:
equal to

X = —g5, , vpV 'p p(0) .
p

(2.10)

V' ' (k)= G (k)G " "(k*)ap.2.P (2. 1 1)

is from interactions in which an electron-hole pair recom-
bines, simultaneously exciting another electron-hole pair.
These terms only contribute when the excited electron
does not flip its spin, and do not contribute to the energy
of the spin-flip and spin-wave modes. The contribution
of the exchange or Fock term (i.e. , the ladder diagrams),

V(1) (k) q iqxk zV(2)e xpaP q (2.12)

is from the direct interaction of the excited electron and
hole. The function G ""

( k ) is

The filling factor for level a is v . The contribution of
the direct or Hartree term (i.e., the bubble diagrams),

B. Generalized single-mode approximation

The above HFA is exact to order E, at integer filling
factors for the magnetoplasmon and spin-wave modes.
At noninteger filling factors there are many intra-
Landau-level excitations with energy of order E, . An ex-
citon with energy near m m, +6S,co, can decay into
another exciton plus a number of low-energy excitations,
conserving energy and momentum. Although the di-
agrammatic approach has been extended to noninteger
filling factors, it is unreliable since contributions which
have more than one exciton present at a time are not in-
cluded.

At special filling factors, the ground state is an in-
compressible, highly correlated electron fluid described
by Laughlin's wave function. The Hartree-Fock approx-
imation does not take into account the special nature of
the ground state. The correlations that are present in the
ground state can be built into the excited-state wave func-
tions by considering excited-state wave functions that are
created by forming density-wave excitations in the
ground state. This approach, known as the single-mode
approximation, was first applied to finding the dispersion
relations for intra-Landau-level excitations for filling fac-
tors less than 1 (magnetorotons). ' It has since been gen-
eralized (GSMA), and has been applied to finding disper-
sion relations, and wave functions for inter-Landau-level
excitations, and for v) 1. ' ' Here we generalize this ap-
proach further to find the dispersion relations and many-
body wave functions for the excited states in which an
electron's spin is flipped.

The approach begins by choosing a set of basis states
all with the same m and 5S, . These are formed by
operating on the ground state, it~a, with the operator

Gnn'(k )
nf
n'!

1/2 —ik
v'2 (2.13)

a+6;a(k) y a+5;a(k) (2.14)

where b, =(m, 5S, ), and a+6=( +nm, s +5S, ). The
generalized density operator is

where k=k„+ik, and I „' ' is a generalized Laguerre
polynomial. In the strong-field approximation, the sums
in Eq. (2.7) are restricted to pairs of indices such that
(nz —n„)=(n —np) =m, and (si —s„)=(s —sp) =5$, . +, i,. +ss, (r ) . (2.15)

' (k)P„i,(r;)=5„„5, , G
' (k)B,(k)
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B,(k ) is the part of the density operator, p, (k), which can
be expressed in terms of intra-Landau-level operators, as
in Ref. 14. When the symmetric gauge is used, the index
l is the angular momentum, and

B, (k )P„&,(r, ) =gG'+' '( —k )P„&+, , (r; ) . (2.16)

When 6S, =0, p
+ ' (k) is the density operator projected

between Landau levels n and n +m, and the excited
states are density waves. The definition of p

+ ' (k) has
been extended to include spin-wave excitations, with
65, =+1.

The basis states are

q&a+ 5;a(k ) [Na+ 6;a(k ) ]
—1/2y a+6;a(k )q (2.17)

normalized by

(n +m )!
N +~ (k)=N'v [1—v +~]

A

X
l
G

' (k)
I

ze a'/2

The many-body excited-state wave functions

%' (k)=~C + ' (k)4& + ' (k)v ~ v P

(2.18)

(2.19)

are formed by making linear combinations of the (p) basis
states a11 with the same A.

The dispersion relations, EE„(k), and excited-state
wave functions, 4„(k), are found by diagonalizing the

p Xp matrix with elements

& '(k) =
& + +' (k) l( V —1;)l+ +' (k) ) (2.20)

The unprojected density operators in the expansion of V
in Eq. (2.3) can be written as

p;(q)=g&, , pP~(q),
O' P'

(2.21)

since the Coulomb interaction does not Hip the spin of an
electron. The following identity from Ref. 14 can be used
to simplify the matrix elements:

—k1 k~/2QG"'(k )G' (k )=e ' ' G" (k +k ) .
I

The matrix elements, Eq. (2.20), can be written in

terms of Fourier transforms of pair correlation functions,
of the form

The static structure factor for electrons in Landau level o.
1s

S (k)= fdre'"'[g (r) —1], (2.26)

& golp; '~(k —q)p, '~( —k)pi'~(q)
l it/0)

G~"(k —q)G ~( —k)G ~(q)

(2.27)

are required, where y is diFerent from the other super-
scripts. This can be written in terms of the single-particle
distribution function for electrons in level y, which is
constant in a Laughlin state. The result is

SPP; P ~P — q (k —q)/'2S P kP
k —q; —k;q y 1c (2.28)

where the pair correlation function is one of the types in
Eqs. (2.24).

Like the HFA, this approach only considers states
which have a single exciton present at all times, however,
the fu11 correlations of the ground state are included
through the static structure factor for the ground state
S(k). Because it does not allow for a single exciton to de-
cay and emit two excitons, conserving momentum and
energy, this approach also is not capable of producing an
estimate for decay rates.

III. OSCILLATOR WEIGHTS

A generalized oscillator weight for the mode %„(k) can
be defined as

where g (r) is the pair distribution function for electrons
in Landau level a. For a full Landau level, h (k)= —l.
When 0 (v ( 1, calculation of S& ' requires knowledge
of the two-particle distribution function for electrons
within a partially filled Landau level. For filling factor
v =1/m, with m =1,3, 5, . . . , the two-particle distri-
bution function is known from an analogy with a two-
dimensional one-component plasma. ' Equations (2.24b)
and (2.24c) are unchanged when v, v&(1. The Hartree-
Fock results are obtained by using Eqs. (2.24) with
h (k)= —v for v ( l.

When excited states are considered in which an elec-
tron is excited into a level that is already partially occu-
pied, three-particle correlation functions of the form

~i G 0( —k)G~P(k)

The required Fourier transforms are

S„' =A'v [h (k)e '"' +2~v 5 (k)]

Sl, '~~=2vrJVv vP (k),
SaP'Pa = vav

with a&P, and

h (k) =e " [S (k) —1] .

(2.23)

(2.24a)

(2.24b)

(2.24c)

(2.25)

Using Eqs. (2.17) and (2.19), this can be written as

P+ ( k )
— y [N

a +6;a
( k ) ]

1 /2 g a + 6;a
( k )

2

(3.1)

In the case where only one value of n contributes to this
sum [for example, when only the lowest Landau level is
occupied, only n =0 contributes in the sum for V„(k)]
the oscillator weight may be written as
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~G
'

(k)~ F„(n,k), where

(n +m)!
F„(n,k)=, g[v (1—v +~)]' 'C„+ ' (k)

A' S

bEsMA(k)= u(q)[G "(q)e'q "*—1]
d

Xe ~ h(q) (4.1)

(3.2)

1/2
(n +m)!

F„(k)= Ca+5;a(k)v [1—v +~]
n 1

(3.3)

The sum over diff'erent modes gc of F ' (n, k), and the
sum over p and 5S, =+1 of F„' '(n, k) are each equal to
v, the total filling factor.

In more general cases (general v and m) it is possible to
define an oscillator weight

2

~EHFA(k) =v[ V'lool (k)+ ~ oooo(0)] (4.2)

is equal to v times the result for the full Landau level, and
can be obtained by using the unco rrelated value,
h(q)= —v, in Eq. (4.1). These results are shown in Fig.
1(a) for v= I /3, using the structure factor for electrons in
a Laughlin state. The pair correlation function, g(r), was
obtained from the fit to Monte Carlo data reported in

with h(q)=e~ [S(q)—1], where S(q) is the static
structure factor for electrons in the partially filled level.
The result in the Hartree-Fock approximation,

such that 0.3

gF„' (k)=v (3.4)

QF„(k)=v .
6S =+1 p

In the limit of small k,
m

2

—
/k/ /2

F„(k) .
(m! )'

(3.5)

(3.6)

0.2

0.1

S (k, co) ~+V„(k)6(co—E„(k)) . (3.7)

The differential cross section for scattering to a state
which couples to the ground state through the density
operator is proportional to the dynamic structure factor, 0.0

0.0 1.0 8.0
I I I I I I I I I I I I I I

3.0

In light-scattering experiments, with a scattering wave
vector of 10 cm ', peaks are seen in the spectra which
correspond to structure in the dispersion relation at the
wave vector of IO cm ', implying a massive break-
down of wave-vector conservation, which is not yet un-
derstood. Completely ignoring wave-vector conserva-
tion, the dynamic structure factor for scattering at energy
near m~, +6S,co, is

0.3

0.2

I I I I
I

I I I I
I

I I I I

dk 2nkV„(k)6(k —.ko(co))
S (co)=

[(nE„'yak )'+7 ']'" (3.8)
0.1

where E& (ko) =co, and y' is the (small) lifetime of the col-
lective excitation. The structure factor has peaks at ener-
gies corresponding to critical points of the dispersion re-
lations, weighted by the oscillator weights which contain

2/
an e factor.

0.0
0.0 1.0 2.0

I I I I I I I I I I I I I I

3.0

IV. RESULTS

A. v(1
The eigenstate for the spin-ffip mode, N''~2'o ' (k),

has energy shifted from co, +co, by

FIG. l. (a) Energy shift from ~, +~, for the spin-Hip mode,
hE "(k), for filling factor v=1/3, calculated for the ideal two-
dimensional electron gas as a function of wave vector. The solid
curve is the result in the SMA, and the dotted curve is the result
in the HFA. The energy is in units of e'/elo, and the wave vec-
tor is in units of lo '. (b) As in (a), but for finite thickness of the
electron layer, with b =3.
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1
AE "(k)=Xi i/2 Xo, —i/2 (4.3)

is equal to the change in self-energy of the excited elec-
tron, and the energy of a well-separated electron-hole
pair interacting through an r ' potential. For
v 3 5, ~ ~ ~, it has been argued that at 1arge k, there is

an excitation with lower energy than that given by the
SMA. ' This excited state consists of an exciton formed
from the fractionally charged quasielectron and quasihole
of the Laughlin state. The dispersion relation at large k
of this excitation is

Ref. 17. In the SMA, the excited electron retains the
correlations that it had with the electrons in the partially
filled level in the ground state, so that the first term in
Eq. (4.1), the direct interaction between the excited elec-
tron and hole, involves the structure factor for correlated
electrons. The second term, —Xo,&z, is the loss of self-

energy due to exchange within the partially filled level in
the ground state, and also involves S(q). In the SMA,
since both of these terms are affected by the strong corre-
lations in the partially filled level, each is larger in magni-
tude than the corresponding term in the HFA result.
However, the terms have opposite signs, and for small k
there is more cancellation between them in the SMA re-
sult, so that AEsNIA(0) (AEH'FA(0). There is no theorem
requiring these shifts to be zero at k =0, and indeed they
are substantial, of order E, . The dispersion curves in Fig.
1(a) were calculated for the ideal two-dimensional case,
with b = oo in Eq. (2.4). The effect of finite thickness can
be seen in Fig. 1(b), where the calculations were carried
out for b =3. The rest of the calculations will be present-
ed for b =3.

At k —+ ~, the energy of the excitation for v= 1,

V
h, „(k)=A( ~ )— (4.4)

where b,(~ ) is the energy required to produce a well-
separated quasielectron-quasihole pair. At some inter-
mediate wave vector, the spectrum crosses over from the
magnetoroton excitation of the SMA to the quasiexciton.
There are excited states' for inter-Landau-level excita-
tions, and for excitations in which the spin of the electron
is Aipped of the form

@(k)=[X(k)] ' QL, +P, ' (k)$0, (4.5)

where the density operator acting alone would produce a
magnetoroton within the partially filled level a. The
operator L; is the Landau-level-raising operator, a, , the
spin operator, 2S+(i), or the product, 2a, S+(i), to pro-
duce states with energies near u„+co„or co, +m„re-
spectively. The energy spectrum from magnetorotons is
repeated exactly at ~, +55,co, . In general, for any excit-
ed state labeled by k formed within the partially filled lev-
el, there is a corresponding state formed by operating
with g, L, which has the same energy shift. At small k,
the SMA is expected to produce good results, but at
larger k, the repeated magnetoroton spectrum may have
lower energy, and for k ~ ~, the lowest-energy state will
have an energy shift given by Eq. (4.4). Since the large-k
behavior is not experimentally accessible because of the

—k~~y2factor of e " / in the oscillator weight, V (k), we will

confine our attention to small and intermediate wave vec-
tors and will assume that the SMA is valid in this regime.
It is likely that the SMA is only valid for k & 1, and that
there are other modes at larger k that have lower energy
than the result of the calculation in the SMA.

The SMA result for the magnetoplasmon mode,
(Pl, —1/2;0, —1/2(k) is14

)

AE' (k)= q u(q)e 'i
I [G "(q)e' "'*—1]h (q)+6' (

—q)G '(q)h(Ik+qI )]+vv I0'i0(k)
SMA (2 )2

(4.6)

and the HFA result, obtained using h (q) = —v, is

AEHFA(k)=v[ V i00i(k)+ V0000(0)

V i0I0(0)+ V ii0(k)] (4.7)

In addition to the terms which also occur in the expres-
sions for the spin-Aip modes, these expressions include
the self-energy of the excited electron, X, , /2(k), and
the random-phase approximation energy. In the SMA,
the excited electron retains its correlations with the elec-
trons in the partially filled level, and the self-energy of the
excited electron is k dependent because it arises from ex-
change between the excited electron of the electron-hole
pair with momentum k, and the other correlated elec-
trons. In the HFA, which ignores the correlations
among electrons in the partially filled level, this self-
energy is a constant. In both the SMA and HFA, the
shift from m, at k=0 is zero, as required by Kohn's
theorem.

The spin-wave mode, 4 ' ' ' ' (k), is not shifted
from co, at k =0. In the SMA, the dispersion can be ex-
pressed in terms of h (q):

~EHFA(k) v[ V 0000(k)+ V 0000(0)] (4.9)

is equal to v times its value for a full Landau level. In the
SMA, both the direct energy and the self-energy are
affected by the strong correlations in the partially filled
level, and both terms are larger in magnitude than the
corresponding terms in the HFA. The spin-wave mode is
shown in Fig. 2 for v=1/3 in the HFA and the SMA.
Note that at larger wave vectors there will be a lower-

(k)= g(q)e ~ 2[ /i qxek z 1]h(q')SMA
(2 )2

(4.8)

This reduces to the HFA result when h(q) = —v. In the
HFA, the dispersion,
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AEH'FA (k) =e[—VIpp1(k)+ Vpppp(k)] —V1p'1p(0),

(4.12)

O.i—

0.0
0.0 1.0 2.0 3.0

is obtained using 111(q)=—e. The third term in both of
these expressions is X, »z, the self-energy of the excited
electron; this depends on the correlations between majori-
ty and minority spin electrons, which are the same in
both approximations. Again, there is no theorem that re-
quires that these shifts are zero at k=0. In the HFA,
bE&FA(0)= —bEH'FA (0), while in the SMA, in which
only two of the terms contributing to the energy shift are

I I I I
I

I I I I
I

I I I I

FIG. 2. The shift of the spin-wave mode from co„calculated
in the HFA (dotted curve), and in the SMA (solid curve), for
v= 1/3.

(a)0.4—

energy excitation than that shown in Fig. 2, correspond-
ing to an exciton formed by a quasihole and a spin-
reversed quasiparticle.

The oscillator weight for each of these modes is equal
to the filling factor v.

0.2—
A

0.0 ——

B. 1&v&2

Here we discuss the dispersion relations for the modes
at filling factor v=1+a, where e is the filling factor for
the minority spin electrons.

The 5S, =1 spin-Rip mode, 4''/ ' ' '/ (k), has energy
shifted from co, +co, by

—0.2—

0.0 1.0 2.0
I I I I I I I I I I I I I I

3.0

AE '
( k): V1pp1 (k ) + V pppp(0) EV1p1p( 0') (4.10) I I I I

I
I I I I

I
I I I I

which is the same in both the SMA and HFA. The direct
interaction between the excited electron and the hole in
the full Landau level, and the self-energy due to exchange
within the full level depend on S(q) for a full Landau lev-
el, which is the same in the SMA and HFA. The last
term, X»»~, is the self-energy of the excited electron
(which is correlated with the majority spin electrons), due
to exchange with the minority spin electrons, and de-
pends on single-particle distribution functions, which are
the same in the HFA, and for the uniform density Laugh-
lin state.

The shift from ~, —~, for the 5S, = —1 spin-Rip mode,
q&1,

—1/2;P, 1/2(k )

0.2—
A
W

0.0 ——

—0.2—

1/= 4/3

HFA

I I I I I I I I I I I I I I

'(k)= u(q)e q /2[G1 (q)eiqxk. z
sMA

(2 )2

X h (q) VIpIp(0) (4.11)

0.0 1.0 2.0 3.0

in the SMA. The first term in this expression is the direct
energy between the electron excited from and the hole
remaining in the partially filled level, and the second term
is the loss of self-energy due to exchange within the par-
tially filled level; both depend on the electron static struc-
ture factor for the partially filled level. The Hartree-

FICx. 3. (a) The dashed curve is the shift of the spin-wave
mode from m„AE' (k), at v= 3. The shifts of the spin-Aip

1,6S
modes, bE '(k), from ~, +6S,co, are the dotted curve (for
5S, =1}and the solid curve {for 6S, = —1). The calculations
were done in the SMA for finite thickness of the electron layer.
(b) As in (a), but in the HFA.
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affected by the strong correlations in the partially filled
level, the magnitudes of the shifts are not equal at k =0.
The oscillator weight is 1 for the mode with 6S, =1, and
e for the mode with 5S, = —1. The results for the
6S, =+1 modes are shown in Figs. 3 at v=4/3, using a
Laughlin 1/3 state for the electrons in the partially filled

I

level ~

There are two basis states with I =1 and 5S, =0 at
filling factor v=l+e: N' ' ' (k) with o=+—,'. The
modes near co, are found by taking linear combinations of
these two states which diagonalize the Hamiltonian. '

The diagonal matrix elements are

d2
E ' (k)=vo VIo'Io(k)+ f u(q)e ~ {[G"(q)e'q "'—1]ho (q)+G'( —q)G '(q)ho (~k+q~)]. (4. 1 3)

(4. 14)

The filling factors are v0, /2=1, and v0»2=@, and h0 is related to the electron static structure factor for the level
(O, o ). Each of the matrix elements involves only electrons of the same spin, and is equal to bE' (k) for a single level
with filling factor v= v0 . The off-diagonal matrix elements are

Eo, a;0, —a(k) (v v )I/2V(2) (k)
The dispersion relations for the two modes are

~0, 1/2;0, 1/2+ ~0, —1/2;0, —1/2
bE' (k)= +

2

'2
~0, 1/2;0, 1/2 EO, —1/2;0, —1/2

+(Eo, I/2;0, —I/2)2
1/2

(4. 1 5)

These dispersion relations are shown in Fig. 4 for
v=4/3, calculated in the SMA using a Laughlin state for
the electrons in the partially filled level, and in the
Hartree-Fock approximation, together with the corre-
sponding oscillator weights. The higher-energy mode,
which for small k is an in-phase combination of the two
basis states and has most of the oscillator weight, corre-
sponds to a pole of the density response function
g'(k, "). The lower-energy mode, an out-of-phase com-
bination of the two basis states which has nearly zero os-
cillator weight for small k, corresponds to a pole of the
spin response function y (k, co). At large k, the

Z

I

I

Coulomb interaction becomes small, and the modes
decouple, and approach the value of the self-energy
change of the excited electron. In this limit, the upper
branches of the dispersion relations in the HFA and
SMA, Eq. (4.13) with h(q) = —1, become equal, and the
oscillator weights become 1 and e. In the SMA, there is
structure in the oscillator weights at intermediate k
where the modes cross.

The spin-wave mode has an electron excited from the
filled level into the partially filled level, and involves the
three-particle correlation functions discussed in Sec. II B.
The result of the SMA is

2

bEsMA(k) = [
—VoIooo(k)+ Voooo(0)]+ f u(q)e ~ [e'q "'—1]h(q) . (4.16)

1.0

I I I I [ I I I I
i

I I I I

v= 4

The electron excited into the partially filled level retains
the correlations with the full Landau level, and is not
corrected with the electrons in the partially filled level.
The last two terms in this expression, which involve h(q),
arise from terms involving interaction and exchange with
a third electron in the partially filled level. This expres-
sion reduces to the HFA result

0.0
I

I I I I
I I I I I

I I I bEHF~(k) =(1—e) [
—V oooo(k)+ Voooo(0)] (4.17)

03—

~ 0.2A
C)

W
0.1

if the uncorrelated value ( —e) is taken for h(q). Th"'
dispersion relations for the spin-wave modes are shown in
Fig. 3 for filling factor v= 3.

0.0 C. 2(+~3
—0.1

0.0
I I I I I I I I I I I I I I

1.0 8.0 3.0

FICz. 4. Energy shifts and oscillator weights for the two
5S, =O modes near co„calculated in the HFA (dotted curves)
and the SMA (solid curves) for v= 3.

The spin-fiip mode with 6S, = —1, N' ' ' '' (k), has
an electron excited into the partially filled level but re-
taining correlations with the electrons in the full Landau
level. The energy shift from co, —cu, for filling factor
V=2+ E' 1S
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~ESMA (k} V1001(k)+ Voooo(0} V1010(0) V1111(0)
1 1 6

d2+ f q u(q)e ~ / [e' "'*—G "(q)]h(q)G "(q)
1 —e (2~) (4.18)

Vlolo(0) e Vl 1 i 1 (0}(1) (1) (4.19)

is obtained if the uncorrelated value, h(q) = —e, is used.
The oscillator weight for this mode is (1 —e). These

in the SMA, where h(q) can be written in terms of the
static structure factor for electrons in the partially filled
level. The terms which involve h(q) are the energies of
interaction and exchange involving a third electron in the
partially filled level. The Hartree-Fock result,

~EHpp, '(k) = (1 &) VIooi(k)+ Voooo(0} Eo, —1/2;0, —1/2(k) V(1) (k)+ V(l) (0)

+eV1010( } Vlolo(0)(&) (&) (4.20)

dispersion relations are shown in Fig. 5, calculated for
v =7/3.

The basis states for the spin-Hip modes with 5S, = 1 are
(k) and &0 '' " ' (k). The diagonal ma-

trix elements are

E' ' "' ' '(k) =I,t7(q)e ' '[e' "*G"(q) G "(q)—]G "(q)h(q)+ VIo»(0) —
VQQ2Q(0)

(2m. )
(4.21)

The off-diagonal matrix elements are

E 1, —1/2;0, —1/2(k) ~ V(&) (k) (4.22)

The eigenvalues of this matrix are the energy shifts,
bE+'(k), shown in Fig. 5 for the HFA and SMA with
the corresponding oscillator weights. These modes are
substantially shifted from ~, +co, at k=O. At small k,
the lower-energy mode, with energy hE "' (k), contribut-
ing most of the oscillator weight for the 5S, =1 modes, is
an in-phase combination of the two basis states. The
higher-energy mode, b,E+'(k), which has nearly zero os-
cillator weight at small k, and so would not contribute to
the structure factor, is an out-of-phase combination of

the two 6S, =1 basis states. At large k, the normal
modes decouple, and the oscillator weights are 2e and 1;
in this limit the higher-energy mode, given by Eq. (4.20),
is the same in the HFA and SMA.

The eigenstates for the three modes near co, with
5S, =O are linear combinations of @' '/ ' ' '/ (k),

(k}, and 4& ' ' " ' (k}. The dispersion re-
lations are found by diagonalizing the 3X3 matrix, Eq.
(2.20). The results in the SMA at v=7/3 are shown in
Fig. 6(a), where the static structure factor for a Laughlin
1/3 states is used for the electrons in the partially filled
level. The HFA results in Fig. 6(b) are obtained by using
h(q)= —

—,'. The corresponding oscillator weights for the
three modes,
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1 0

I I I: (a}
1 I

I
I I I I

v= 7/3

b=3
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I I I I
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0.0
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FIG. 5. (a) Energy shifts and oscillator weights for the spin-Rip modes near co, +6S,co„calculated in the SMA for v= 3. The two
6S,= 1 modes are the dotted and dashed curves; the 5S, = —1 mode is the solid curve. (b) As in (a), but in the HFA.
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F1,0(k) [+I &Cl, —1/2;0, —I/2(k)+ 1/2&C2, —1/2;I, —I/2(g)+ C1, 1/2;0, 1/2(k) ]2
P P P p (4.23)
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I00--

(a)

I

"/
ee'

i
I

I
I I I I

show that at small k, nearly all the oscillator weight is
contributed by one mode, an in-phase oscillation of the
three normal modes. At k=O, the energy of this mode is
co, . At large k, the excitations correspond to well-
separated electron-hole pairs, and the Coulomb interac-
tion is small, so that the matrix is diagonalized by the
normal modes. In this limit, the oscillator weights be-
come (I —e), 2e, and l. In the region between the two
limits, there is structure in the oscillator weights where
the modes cross.

V. COMPARISON WITH EXPERIMENT

Pinczuk et a/. ' have reported the results of inelastic
light-scattering experiments on the 2DEG in
GaAs/A1GaAs heterojunctions. The spectra shown in
Fig. 7 were measured on a sample with filling factor
v=0. 98. The excitation spectra, calculated within the
HFA, are also shown in Fig. 7, for v= 1 and b =3. The
dispersion relations at v= 1 can be compared with the ex-
perimental spectra in Fig. 7, and the features may be
identified as follows.

The strongest peak, which is at 17.5 meV, is from the
6S, = 1 spin-Hip mode, which has a large density of states
and a large oscillator weight. Presumably this mode is
active because of the presence of spin-orbit coupling in
this system. The agreement between the position of this
peak and the shift calculated in the HFA is excellent.
This suggests that corrections to the HFA are small; in
particular, the decay processes mentioned earlier should

GaAs/Al Ga As SQW (24nm)
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FIG. 6. (a) Energy shifts and oscillator weights for the three
5S, =0 modes near op„calculated in the SMA for v= 3. (b) As
in (a), but in the HFA.

FIG. 7. (a) Results of the inelastic light-scattering experi-
ments reported in Refs. 6 and 7. (b) Dispersion relations calcu-
lated in the HFA for v=1 {solid curves). The additional modes
which appear when there are a finite number of minority spin
electrons present were calculated in the HFA for v= l. 1 {dotted
curves).
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not cause a large shift or broadening of this mode. The
weaker peaks between 15 and 17 meV are associated with
the extrema of the magnetoplasmon dispersion (m =1,
5S, =O). This implies a massive breakdown in wave-
vector conservation which is not yet understood.

The large peak at co, = 13.8 meV has been attributed to
the cyclotron mode which can be active in the presence
of disorder. However, even in the presence of disorder,
the density of states associated with the long-wavelength
magnetoplasmon mode is very small. ' Here we consider
an alternative explanation for this strong peak. Disorder
broadens the spin-split Landau levels and, hence, even at
the low temperature, T=0.5 K, at which the experi-
ments are done, there may be a small but finite occupa-
tion of the (0, —,') level. In this case, two new modes ap-
pear, corresponding to excitations involving minority
spin electrons. This is easiest seen by considering the
case v=1+@, where e is small, although the lowest spin
level does not have to be fully occupied. These two
modes are shown in Fig. 7 for @=0.1. A 6S, =O mode
appears which has nearly zero oscillator weight for k (2,
but also has very little dispersion, and so has a large den-
sity of states. The oscillator weight for the cyclotron
mode is nearly 1+@for k (2. The oscillator weights are

—/c /2to be multiplied by the weighting function (k /2)e
to determine the contribution that the density of states
for that mode will make to the spectrum. In the presence
of disorder, these two modes will mix. The large peak at
co, = 13.8 meV can be expected due to the large density of
states and large oscillator weight of the 6S, =0 modes.

The weak feature near 9 me V may be from the
6S, = —1 excitation of the small number of minority spin
electrons. The 6S, = —1 spin-Hip mode has oscillator
weight e compared to the 6S, =1 mode, but is very Rat,
and so has a large density of states.

There is additional weak structure near 21 meV which
may be from the excitation of the minority spin electrons

with m =2, 6S, = —1. Within the HFA, this excitation
occurs at a somewhat higher energy of 25 meV (and is al-
most dispersionless at v= 1. 1). However, there are
several distinct decay processes for this mode which are
not included in the HFA and which could substantially
shift its frequency. We note that no structure is expected
to be seen from the asymptotes of the dispersion curves

/2because of the e falloff in oscillator weight.
As the filling factor decreases below 1, we can expect

the large peak from the spin-Hip mode to move to lower
energy. The decrease suggested by the SMA calculation
is larger than that expected from the HFA calculation.
As the filling factor increases above 1, we expect the peak
from the 6S, = —1 spin-Aip mode to increase in strength,
and to shift closer to co, . The peak from the AS, =1 spin
Aip mode is also expected to shift closer to co, as the
filling factor increases to 2. At v=2 the shifts of the
6S, =+1 modes become identical, and equal to the lower
branch of the 6S, =0 mode.

It is hoped that the results presented here will stimu-
late further inelastic light-scattering experiments. Exper-
imental studies which track the various peaks as a func-
tion of filling factor could resolve some of the uncertain-
ties that remain in the identification of these features with
collective excitations of the 2DEG. In addition, contri-
butions left out of the HFA and SMA, corresponding to
the possible decay mentioned earlier deserve further
study.

ACKNOWLEDGMENTS

Useful discussions with Luis Brey, Bert Halperin, Alan
McDonald, and Aron Pinczuk are gratefully acknowl-
edged. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

'T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

2The Quantum Hall Effect, 2nd ed. , edited by R. R. Prange and
S. M. Girvin (Springer, New York, 1990).

3Proceedings of the Ninth International Conference on Electronic
Properties of Ttoo Dimensional Sy-stems [Surf. Sci. 263 (1992)].

4F. F. Fang and P. J. Stiles, Phys. Rev. 174, B823 (1968); T. En-
glect, D. C. Tsui, A. C. Gossard, and Ch. Uihlein, Surf. Sci.
113, 295 (1982); R. J. Nicholas, R. J. Haug, K. v. Klitzing,
and G. Weimann, Phys. Rev. B 37, 1294 (1988).

5Z. Schlesinger, W. I. Wang, and A. H. MacDonald, Phys. Rev.
Lett. 58, 783 (1987); C. Kallin, in Interfaces, Quantum Wells
and Superlattices, edited by C. R. Leavens and R. Taylor (Ple-
num, New York, 1988), and references therein.

A. Pinczuk, D. Heiman, S. Schmitt-Rink, C. Kallin, B. S.
Dennis, L. N. PfeifT'er, and K. W. West, in Light Scattering in
Semiconductor Structures and Superlattices, edited by D. J.
Lockwood and J. F. Young (Plenum, New York, 1991).

A. Pinczuk, B. S. Dennis, D. Heiman, C. Kallin, L. Brey, C.
Tejedor, S. Schmitt-Rink, L. N. PfeiA'er, and K. W. West,
Phys. Rev. Lett. 68, 3623 (1992).

8C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).
W. Kohn, Phys. Rev. 123, 1242 (1961).
D. Stein, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett.
51, 130 (1983).
L. Brey (private communication).
A. H. MacDonald, J. Phys. C 18, 1003 (1985).
H. C. A. Oji and A. H. MacDonald, Phys. Rev. B 33, 3810
(1986).
A. H. MacDonald, H. C. A. Oji, and S. M. Girvin, Phys. Rev.
Lett. 55, 2208 (1985).

~5A. H. MacDonald and C. Kallin, Phys. Rev. B 40, 5795
(1989).
I. K. Marmorkos and S. Das Sarma, Phys. Rev. B 45, 13396
(1992).
S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys.
Rev. B 33, 2481 (1986).
R. B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
P. Pietilainen, Phys. Rev. B 38, 4279 (1988).
T. Chakraborty, P. Pietilainen, and F. C. Zhang, Phys. Rev.
Lett. 57, 130 (1986).
C. Kallin and B. I. Halperin, Phys. Rev. B 31, 3635 (1985).


